Union-Find

- union by size
- link-by-rank
- path compression
- link-by-rank with path compression
- context
Disjoint sets data type

Goal. Support two operations on a set of elements:
 - MAKE-SET(x). Create a new set containing only element x.
 - FIND(x). Return a canonical element in the set containing x.
 - UNION(x, y). Merge the sets containing x and y.

Dynamic connectivity. Given an initial empty graph G on n nodes, support the following queries:
 - ADD-EDGE(u, v). Add an edge between nodes u and v. \hspace{1cm} 1 union operation
 - IS-CONNECTED(u, v). Is there a path between u and v? \hspace{1cm} 2 find operations
Disjoint sets data type: applications

Original motivation. Compiling EQUVALENCE, DIMENSION, and COMMON statements in Fortran.

An Improved Equivalence Algorithm

Bernard A. Galler and Michael J. Fisher
University of Michigan, Ann Arbor, Michigan

An algorithm for assigning storage on the basis of EQUVALENCE, DIMENSION and COMMON declarations is presented. The algorithm is based on a tree structure, and has reduced computation time by 40 percent over a previously published algorithm by identifying all equivalence classes with one scan of the EQUVALENCE declarations. The method is applicable in any problem in which it is necessary to identify equivalence classes, given the element pairs defining the equivalence relation.

Note. This 1964 paper also introduced key data structure for problem.
Disjoint sets data type: applications

Applications.
- Percolation.
- Kruskal's algorithm.
- Connected components.
- Computing LCAs in trees.
- Computing dominators in digraphs.
- Equivalence of finite state automata.
- Checking flow graphs for reducibility.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Morphological attribute openings and closings.
- Matlab's BW-LABEL() function for image processing.
- Compiling EQUIVALENCE, DIMENSION and COMMON statements in Fortran.
- ...
SECTION 4.6

UNION-FIND

- link-by-size
- link-by-rank
- path compression
- link-by-rank with path compression
- context
Disjoint-sets data structure

Representation. Represent each set as a tree of elements.
- Each element has a parent pointer in the tree.
- The root serves as the canonical element.
- FIND(x). Find the root of the tree containing x.
- UNION(x, y). Make the root of one tree point to root of other tree.

Note. For brevity, we suppress arrows and self loops in figures.
Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

\[\text{union}(7, 3)\]

```
    4
   / \  \
  3   8   9
      / \  /  \
     0   2 5   1 7
```

size = 4

size = 6
Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

union(7, 3)

```plaintext
size = 10
```

```plaintext
union(7, 3)
```

```plaintext
size = 10
```
Link-by-size

Link-by-size. Maintain a subtree count for each node, initially 1. Link root of smaller tree to root of larger tree (breaking ties arbitrarily).

```
MAKE-SET(\(x\))
parent(x) \leftarrow x.
size(x) \leftarrow 1.

FIND(\(x\))
WHILE (\(x \neq parent(x)\))
    \(x \leftarrow parent(x)\).
RETURN \(x\).
```

```
UNION-BY-SIZE(\(x, y\))
\(r \leftarrow \text{FIND}(x)\).
\(s \leftarrow \text{FIND}(y)\).
\text{IF} (\(r = s\)) \text{RETURN}.
\text{ELSE IF} (size(\(r\)) > size(\(s\)))
    parent(s) \leftarrow r.
    size(\(r\)) \leftarrow size(\(r\)) + size(\(s\)).
\text{ELSE}
    parent(\(r\)) \leftarrow s.
    size(\(s\)) \leftarrow size(\(r\)) + size(\(s\)).
```
Link-by-size: analysis

Property. Using link-by-size, for every root node \(r \), \(\text{size}(r) \geq 2^{\text{height}(r)} \).

Pf. [by induction on number of links]

- Base case: singleton tree has size 1 and height 0.
- Inductive hypothesis: assume true after first \(i \) links.
- Tree rooted at \(r \) changes only when a smaller tree rooted at \(s \) is linked into \(r \).
- Case 1. [\(\text{height}(r) > \text{height}(s) \)]
 \[
 \text{size}'(r) \geq \text{size}(r)
 \geq 2^{\text{height}(r)} \quad \text{inductive hypothesis}
 = 2^{\text{height}'(r)}.
 \]

\[
\text{size} = 8 \\
(\text{height} = 2)
\]

\[
\text{size} = 3 \\
(\text{height} = 1)
\]

\[
\text{iductive hypothesis}
\]

\[
\text{size}'(r) \geq \text{size}(r)
\]

\[
= 2^{\text{height}'(r)}.
\]
Link-by-size: analysis

Property. Using link-by-size, for every root node \(r \), \(\text{size}(r) \geq 2^{\text{height}(r)} \).

Pf. [by induction on number of links]

- **Base case:** singleton tree has size 1 and height 0.
- **Inductive hypothesis:** assume true after first \(i \) links.
- **Tree rooted at** \(r \) **changes only when a smaller tree rooted at** \(s \) **is linked into** \(r \).
- **Case 2.** [\(\text{height}(r) \leq \text{height}(s) \)]

 \[
 \text{size}'(r) = \text{size}(r) + \text{size}(s)
 \]

 \[
 \geq 2 \cdot \text{size}(s) \quad \text{link-by-size}
 \]

 \[
 \geq 2 \cdot 2^{\text{height}(s)} \quad \text{inductive hypothesis}
 \]

 \[
 = 2^{\text{height}(s) + 1}
 \]

 \[
 = 2^{\text{height}(r)}. \quad \blacksquare
 \]
Theorem. Using link-by-size, any UNION or FIND operations takes $O(\log n)$ time in the worst case, where n is the number of elements.

Pf.

- The running time of each operation is bounded by the tree height.
- By the previous property, the height is $\leq \lfloor \lg n \rfloor$.

\[\lg n = \log_2 n \]
A matching lower bound

Theorem. Using link-by-size, a tree with n nodes can have height $= \lg n$.

Pf.

- Arrange $2^k - 1$ calls to UNION to form a binomial tree of order k.
- An order-k binomial tree has 2^k nodes and height k. □
Union-Find

- link-by-size
- link-by-rank
- path compression
- link-by-rank with path compression
- context

Section 5.1.4
Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of smaller rank to root of larger rank; if tie, increase rank of new root by 1.

union(7, 3)

Note. For now, rank = height.
Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of smaller rank to root of larger rank; if tie, increase rank of new root by 1.

Note. For now, rank = height.
Link-by-rank

Link-by-rank. Maintain an integer rank for each node, initially 0. Link root of smaller rank to root of larger rank; if tie, increase rank of new root by 1.

\[
\begin{align*}
\text{MAKE-SET} (x) & \\
parent(x) & \leftarrow x. \\
\text{rank}(x) & \leftarrow 0.
\end{align*}
\]

\[
\begin{align*}
\text{FIND} (x) & \\
\text{WHILE } x \neq \text{parent}(x) & \\
\quad x & \leftarrow \text{parent}(x). \\
\text{RETURN } x.
\end{align*}
\]

\[
\begin{align*}
\text{UNION-BY-RANK} (x, y) & \\
r & \leftarrow \text{FIND} (x). \\
s & \leftarrow \text{FIND} (y). \\
\text{IF } (r = s) & \text{ RETURN.} \\
\text{ELSE IF } \text{rank}(r) > \text{rank}(s) & \\
\quad \text{parent}(s) & \leftarrow r. \\
\text{ELSE IF } \text{rank}(r) < \text{rank}(s) & \\
\quad \text{parent}(r) & \leftarrow s. \\
\text{ELSE} & \\
\quad \text{parent}(r) & \leftarrow s. \\
\quad \text{rank}(s) & \leftarrow \text{rank}(s) + 1.
\end{align*}
\]
Link-by-rank: properties

Property 1. If x is not a root node, then $\text{rank}(x) < \text{rank}(\text{parent}(x))$.

Pf. A node of rank k is created only by merging two roots of rank $k - 1$. □

Property 2. If x is not a root, then $\text{rank}(x)$ will never change again.

Pf. Rank changes only for roots; a nonroot never becomes a root. □

Property 3. If $\text{parent}(x)$ changes, then $\text{rank}(\text{parent}(x))$ strictly increases.

Pf. The parent can change only for a root, so before linking $\text{parent}(x) = x$; After x is linked-by-rank to new root r we have $\text{rank}(r) > \text{rank}(x)$. □
Link-by-rank: properties

Property 4. Any root node of rank k has $\geq 2^k$ nodes in its tree.

Pf. [by induction on k]

- Base case: true for $k = 0$.
- Inductive hypothesis: assume true for $k - 1$.
- A node of rank k is created only by merging two roots of rank $k - 1$.
- By inductive hypothesis, each subtree has $\geq 2^{k-1}$ nodes
 \Rightarrow resulting tree has $\geq 2^k$ nodes. □

Property 5. The highest rank of a node is $\leq \lfloor \lg n \rfloor$.

Pf. Immediate from Property 1 and Property 4. □
Link-by-rank: properties

Property 6. For any integer $r \geq 0$, there are $\leq n / 2^r$ nodes with rank r.

Pf.

• Any root node of rank k has $\geq 2^k$ descendants. [PROPERTY 4]
• Any nonroot node of rank k has $\geq 2^k$ descendants because:
 - it had this property just before it became a nonroot [PROPERTY 4]
 - its rank doesn't change once it becomes a nonroot [PROPERTY 2]
 - its set of descendants doesn't change once it became a nonroot
• Different nodes of rank k can't have common descendants. [PROPERTY 1] □
Link-by-rank: analysis

Theorem. Using link-by-rank, any **UNION** or **FIND** operations takes $O(\log n)$ time in the worst case, where n is the number of elements.

Pf.
- The running time of each operation is bounded by the tree height.
- By the **PROPERTY 5**, the height is $\leq \lfloor \lg n \rfloor$. □
SECTION 5.1.4

UNITON-FIND

- link-by-size
- link-by-rank
- path compression
- link-by-rank with path compression
- context
Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.
Path compression

Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.

![Diagram of a tree with nodes labeled 0 to 12 and the root at node 0. Node x is in the subtree rooted at node 9.]
Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.

[Diagram of a tree with nodes labeled 0 (root), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, with the path from 9 to 0 highlighted.]
Path compression

Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.

![Diagram of a tree with nodes and a path from node 9 to root 0, with paths compressed to nodes 1, 4, and 5.](image)
Path compression. After finding the root \(r \) of the tree containing \(x \), change the parent pointer of all nodes along the path to point directly to \(r \).
Path compression

Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.
Path compression

Path compression. After finding the root r of the tree containing x, change the parent pointer of all nodes along the path to point directly to r.

```plaintext
FIND (x)

IF $x \neq \text{parent}(x)$
    \text{parent}(x) \leftarrow \text{FIND} (\text{parent}(x)).

RETURN \text{parent}(x).
```

Note. Path compression does not change the rank of a node; so $\text{height}(x) \leq \text{rank}(x)$ but they are not necessarily equal.
Path compression

Fact. Path compression (with naive linking) can require \(\Omega(n) \) time to perform a single UNION or FIND operation, where \(n \) is the number of elements.

Pf. The height of the tree is \(n - 1 \) after the sequence of union operations: UNION(1, 2), UNION(2, 3), …, UNION\((n - 1, n)\). □

Theorem. [Tarjan-van Leeuwen 1984] Starting from an empty data structure, path compression (with naive linking) performs any intermixed sequence of \(m \geq n \) find and \(n - 1 \) union operations in \(O(m \log n) \) time.

Pf. Nontrivial but omitted.
Section 5.1.4

Union-Find

- link-by-size
- link-by-rank
- path compression
- link-by-rank with path compression
- context
Link-by-rank with path compression: properties

Property. The tree roots, node ranks, and elements within a tree are the same with or without path compression.

Pf. Path compression does not create new roots, change ranks, or move elements from one tree to another. □
Link-by-rank with path compression: properties

Property. The tree roots, node ranks, and elements within a tree are the same with or without path compression.

Corollary. Property 2, 4–6 hold for link-by-rank with path compression.

Property 1. If x is not a root node, then $\text{rank}(x) < \text{rank}(\text{parent}(x))$.

Property 2. If x is not a root, then $\text{rank}(x)$ will never change again.

Property 3. If $\text{parent}(x)$ changes, then $\text{rank}(\text{parent}(x))$ strictly increases.

Property 4. Any root node of rank k has $\geq 2^k$ nodes in its tree.

Property 5. The highest rank of a node is $\leq \lfloor \lg n \rfloor$.

Property 6. For any integer $r \geq 0$, there are $\leq n / 2^r$ nodes with rank r.

Bottom line. Property 1–6 hold for link-by-rank with path compression. (but we need to recheck Property 1 and Property 3)
Link-by-rank with path compression: properties

Property 1. If \(x \) is not a root node, then \(\text{rank}(x) < \text{rank}(\text{parent}(x)) \).

Pf. Path compression only increases rank of parent.

Property 3. If \(\text{parent}(x) \) changes, then \(\text{rank}(\text{parent}(x)) \) strictly increases.

Pf. Path compression can only make \(x \) point to an ancestor of \(\text{parent}(x) \).
Iterated logarithm function

Def. The iterated logarithm function is defined by:

\[
\lg^* n = \begin{cases}
1 & \text{if } n \leq 1 \\
1 + \lg^*(\lg n) & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>$\lg^* n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(3, 4]</td>
<td>2</td>
</tr>
<tr>
<td>[5, 16]</td>
<td>3</td>
</tr>
<tr>
<td>[17, 65536]</td>
<td>4</td>
</tr>
<tr>
<td>[65537, 2^{65536}]</td>
<td>5</td>
</tr>
</tbody>
</table>

Note. We have $\lg^* n \leq 5$ unless n exceeds the # atoms in the universe.
Analysis

Divide nonzero ranks into the following groups:

- \{ 1 \}
- \{ 2 \}
- \{ 3, 4 \}
- \{ 5, 6, \ldots, 16 \}
- \{ 17, 18, \ldots, 2^{16} \}
- \{ 65537, 65538, \ldots, 2^{65536} \}
- \ldots

Property 7. Every nonzero rank falls within one of the first \(\lg^* n \) groups.

Pf. The rank is between 0 and \(\lfloor \lg n \rfloor \). [PROPERTY 5]
Creative accounting

Credits. A node receives credits as soon as it ceases to be a root. If its rank is in the interval \(\{k + 1, k + 2, \ldots, 2^k\} \), we give it \(2^k\) credits.

Proposition. Number of credits disbursed to all nodes is \(\leq n \lg^* n\).

Pf.

- By Property 6, the number of nodes with rank \(\geq k + 1\) is at most
 \[
 \frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \cdots \leq \frac{n}{2^k}
 \]
- Thus, nodes in group \(k\) need at most \(n\) credits in total.
- There are \(\leq \lg^* n\) groups. [Property 7] ▪
Running time of find

Running time of find. Bounded by number of parent pointers followed.

- Recall: the rank strictly increases as you go up a tree. [PROPERTY 1]
- Case 0: $\text{parent}(x)$ is a root \Rightarrow only happens for one link per FIND.
- Case 1: $\text{rank}($parent$(x))$ is in a higher group than $\text{rank}(x)$.
- Case 2: $\text{rank}($parent$(x))$ is in the same group as $\text{rank}(x)$.

Case 1. At most $\lg^* n$ nodes on path can be in a higher group. [PROPERTY 7]

Case 2. These nodes are charged 1 credit to follow parent pointer.

- Each time x pays 1 credit, $\text{rank}($parent$(x))$ strictly increases. [PROPERTY 1]
- Therefore, if $\text{rank}(x)$ is in the group $\{ k + 1, \ldots, 2^k \}$, the rank of its parent will be in a higher group before x pays 2^k credits.
- Once $\text{rank}($parent$(x))$ is in a higher group than $\text{rank}(x)$, it remains so because:
 - $\text{rank}(x)$ does not change once it ceases to be a root. [PROPERTY 2]
 - $\text{rank}($parent$(x))$ does not decrease. [PROPERTY 3]
 - thus, x has enough credits to pay until it becomes a Case 1 node. □
Link-by-rank with path compression

Theorem. Starting from an empty data structure, link-by-size with path compression performs any intermixed sequence of $m \geq n$ FIND and $n - 1$ UNION operations in $O(m \log^* n)$ time.
UNION-FIND

- link-by-size
- link-by-rank
- path compression
- link-by-rank with path compression
- context
Link-by-size with path compression

Theorem. [Fischer 1972] Link-by-size with path compression performs any intermixed sequence of $m \geq n$ FIND and $n – 1$ UNION operations in $O(m \log \log n)$ time.
Link-by-size with path compression

Theorem. [Hopcroft-Ullman 1973] Link-by-size with path compression performs any intermixed sequence of \(m \geq n \) FIND and \(n - 1 \) UNION operations in \(O(m \log^* n) \) time.

SET MERGING ALGORITHMS

J. E. HOPCROFT† AND J. D. ULLMAN‡

Abstract. This paper considers the problem of merging sets formed from a total of \(n \) items in such a way that at any time, the name of a set containing a given item can be ascertained. Two algorithms using different data structures are discussed. The execution times of both algorithms are bounded by a constant times \(nG(n) \), where \(G(n) \) is a function whose asymptotic growth rate is less than that of any finite number of logarithms of \(n \).

Key words. algorithm, algorithmic analysis, computational complexity, data structure, equivalence algorithm, merging, property grammar, set, spanning tree
Link-by-size with path compression

Theorem. [Tarjan 1975] Link-by-size with path compression performs any intermixed sequence of $m \geq n$ FIND and $n - 1$ UNION operations in $O(m \alpha(m, n))$ time, where $\alpha(m, n)$ is a functional inverse of the Ackermann function.

Efficiency of a Good But Not Linear Set Union Algorithm

ROBERT ENDRÉ TARJAN

University of California, Berkeley, California

Abstract. Two types of instructions for manipulating a family of disjoint sets which partition a universe of n elements are considered. FIND(x) computes the name of the (unique) set containing element x. UNION(A, B, C) combines sets A and B into a new set named C. A known algorithm for implementing sequences of these instructions is examined. It is shown that, if $t(m, n)$ is the maximum time required by a sequence of $m \geq n$ FINDs and $n - 1$ intermixed UNIONs, then $k_1 \alpha(m, n) \leq t(m, n) \leq k_2 \alpha(m, n)$ for some positive constants k_1 and k_2, where $\alpha(m, n)$ is related to a functional inverse of Ackermann’s function and is very slow-growing.
Ackermann function

Ackermann function. A computable function that is **not** primitive recursive.

\[
A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}
\]

Note. There are many inequivalent definitions.
Ackermann function

Ackermann function. A computable function that is not primitive recursive.

\[
A(m, n) = \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}
\]

Inverse Ackermann function.

\[
\alpha(m, n) = \min\{i \geq 1 : A(i, \lfloor m/n \rfloor) \geq \log_2 n\}
\]

“I am not smart enough to understand this easily.”
— Raymond Seidel
Inverse Ackermann function

Definition.

\[
\alpha_k(n) = \begin{cases}
1 & \text{if } n = 1 \\
\lceil n/2 \rceil & \text{if } k = 1 \\
1 + \alpha_k(\alpha_{k-1}(n)) & \text{otherwise}
\end{cases}
\]

Ex.

- \(\alpha_1(n) = \lfloor n / 2 \rfloor\).
- \(\alpha_2(n) = \lceil \log n \rceil = \# \text{ of times we divide } n \text{ by two, until we reach } 1\).
- \(\alpha_3(n) = \log^* n = \# \text{ of times we apply the } \log \text{ function to } n, \text{ until we reach } 1\).
- \(\alpha_4(n) = \# \text{ of times we apply the iterated } \log \text{ function to } n, \text{ until we reach } 1\).

\[
2 \uparrow 65536 = 2^{2^{2^{\cdots^{2}}} \text{ 65536 times}}
\]

<table>
<thead>
<tr>
<th>(\alpha_1(n))</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>\ldots</th>
<th>2^{16}</th>
<th>\ldots</th>
<th>2^{65536}</th>
<th>\ldots</th>
<th>2 \uparrow 65536</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_2(n))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>\ldots</td>
<td>16</td>
<td>\ldots</td>
<td>65536</td>
<td>\ldots</td>
<td>2 \uparrow 65536</td>
</tr>
<tr>
<td>(\alpha_3(n))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>\ldots</td>
<td>4</td>
<td>\ldots</td>
<td>5</td>
<td>\ldots</td>
<td>65536</td>
</tr>
<tr>
<td>(\alpha_4(n))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>\ldots</td>
<td>3</td>
<td>\ldots</td>
<td>3</td>
<td>\ldots</td>
<td>4</td>
</tr>
</tbody>
</table>

\(\alpha_4(n)\) for large values of \(n\) grows very slowly, which makes it harder to prove the growth rate of the Ackermann function.
Inverse Ackermann function

Definition.

\[\alpha_k(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 \lfloor n/2 \rfloor & \text{if } k = 1 \\
 1 + \alpha_k(\alpha_{k-1}(n)) & \text{otherwise}
\end{cases} \]

Property. For every \(n \geq 5 \), the sequence \(\alpha_1(n), \alpha_2(n), \alpha_3(n), \ldots \) converges to 3.

Ex. \([n = 9876!]\) \(\alpha_1(n) \geq 10^{35163} \), \(\alpha_2(n) = 116812 \), \(\alpha_3(n) = 6 \), \(\alpha_4(n) = 4 \), \(\alpha_5(n) = 3 \).

One-parameter inverse Ackermann. \(\alpha(n) = \min \{ k : \alpha_k(n) \leq 3 \} \).

Ex. \(\alpha(9876!) = 5 \).

Two-parameter inverse Ackermann. \(\alpha(m, n) = \min \{ k : \alpha_k(n) \leq 3 + m / n \} \).
A matching lower bound

Theorem. [Fredman-Saks 1989] Any \(\text{CPROBE}(\log n) \) algorithm for the disjoint set union problem requires \(\Omega(m \alpha(m, n)) \) time to perform an intermixed sequence of \(m \geq n \) FIND and \(n - 1 \) UNION operations in the worst case.

Cell probe model. [Yao 1981] Count only number of words of memory accessed; all other operations are free.
Path compaction variants

Path splitting. Make every node on path point to its grandparent.
Path compaction variants

Path halving. Make every other node on path point to its grandparent.
Linking variants

Link-by-size. Number of nodes in tree.

Link-by-rank. Rank of tree.

Link-by-random. Label each element with a random real number between 0.0 and 1.0. Link root with smaller label into root with larger label.
Disjoint set union algorithms

Theorem. [Tarjan-van Leeuwen 1984] Link-by- \{ size, rank \} combined with \{ path compression, path splitting, path halving \} performs any intermixed sequence of \(m \geq n \) find and \(n - 1 \) union operations in \(O(m \alpha(m, n)) \) time.

Worst-Case Analysis of Set Union Algorithms

ROBERT E. TARJAN

AT&T Bell Laboratories, Murray Hill, New Jersey

AND

JAN VAN LEEUWEN

University of Utrecht, Utrecht, The Netherlands

Abstract. This paper analyzes the asymptotic worst-case running time of a number of variants of the well-known method of path compression for maintaining a collection of disjoint sets under union. We show that two one-pass methods proposed by van Leeuwen and van der Weide are asymptotically optimal, whereas several other methods, including one proposed by Rem and advocated by Dijkstra, are slower than the best methods.