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To find a point in P: To find a point in P:

* Maintain ellipsoid E containing P.



Geometric divide-and-conquer

To find a point in P:
* Maintain ellipsoid E containing P.
« If center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.

separating
hyperplane

Geometric divide-and-conquer

and consider corresponding
half-ellipsoid Y E=ENH

/

To find a point in P:
* Maintain ellipsoid E containing P.
« If center of ellipsoid z is in P stop;
otherwise find hyperplane separating z from P.
* Find smallest ellipsoid E' containing half-ellipsoid.
* Repeat.

Geometric divide-and-conquer

To find a point in P:

* Maintain ellipsoid E containing P.

« If center of ellipsoid z is in P stop;

otherwise find hyperplane separating z from P.
» Find smallest ellipsoid E' containing half-ellipsoid.

/

Lowner—John ellipsoid

Optimization to feasibility

separating
hyperplane

Standard form.

Ax = b form.

max ¢’ x
s.t. Ax = b
x = 0

I xy

s. t. Ax =
-Ax =
-Xx =
ATy =
x-b'y =

-b

dual feasible

optimal



Ellipsoid algorithm

Goal. Given A € Rimx and b € R, find x € R» such that Ax < b.

——
P
Ellipsoid algorithm.
 Let E, be an ellipsoid containing P.
* k=0. enumerate constraints
* While center z* of ellipsoid Efis notin P: /

- find a constraint, say a- x < B, that is violated by z*
- let E&! be min volume ellipsoid containing XN {x:a-x<a- zk}
- k=k+1

easyjtoicomplte half-ellipsoid % E

Shrinking lemma: unit sphere

Special case. E = unit sphere, H={x:x,=20}.
E={x: 3P =1} E ={x: (20 - +5 SG)? s 1)
i=1 i=2

Claim. E'is an ellipsoid containing »E=E N H.
Pf. If x€ KL E:
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Shrinking lemma

Ellipsoid. Given D € Ji=n positive definite and z €R», then

E ={xER": x-2)'D'(x-2) = 1}
is an ellipsoid centered on z with vol(E) = \/det(D) x vol(B(0, 1))

unit sphere

Key lemma. Every half-ellipsoid % E is contained in an ellipsoid £’
with vol(E') / vOl(E) < e - 1/Cn+D),

Shrinking lemma: unit sphere

Special case. E = unit sphere, H={x:x,=20}.
E={x: 37 =1} E ={x: (=) -1 il SG)? s 1)
i=1 i=2

Claim. E'is an ellipsoid containing » E=E N H.
Pf. Volume of ellipsoid is proportional to side lengths:
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Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid YE=EN{x: a-x=<a- z} is defined by:

7 =z- , D' = —
n+l aTDa n -1

, 1 Da n® 2 Dad"D
n+l a'Da

E = {x€R": (x-2) D) (x-2) = 1}
Moreover, vol(E') / vol(E) < e - 1/2n+D),
Pf sketch.
« We proved E = unit sphere, H={x:x, 20}

« Ellipsoids are affine transformations of unit spheres.

» Volume ratios are preserved under affine transformations.
H

Ellipsoid algorithm

Theorem. LPis in P.

Pf sketch.
» Shrinking lemma.
- Set initial ellipsoid E, so that vol(E;) < 2¢L.
* Perturb Ax< b to Ax<b +¢ = either P is empty or vol(P) = 2-<L,
» Bit complexity (to deal with square roots).
» Purify to vertex solution.

Caveat. This is a theoretical result. Do not implement.

N\

O(mn3 L) arithmetic ops on numbers of size O(L),
where L = number of bits to encode input

Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the
half-ellipsoid YE=EN{x: a-x=<a- z} is defined by:

. D -
n+l aTDa n2—1

, 1 Da n® 2 Dad"D
n+1 a'Da

E' = {x€RN": (x-)"DY'(x-z) = 1}

Moreover, vol(E') / vOl(E) < e - 1/2n+D),

Corollary. Ellipsoid algorithm terminates after at most
2(n+1) In (vol(E,) / vol(P)) steps.
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Separation oracle

Separation oracle. Given x € %, assert x is in P or return a
separating hyperplane.

Theorem. Let S C {0,1}», P =conv(S), and ¢ € Z». Assume that P is full-
dimensional. There exists an algorithm that finds min { ¢™x: x € P } using a
poly number of ops and calls to separation oracle for P.

Remark. Don’t need a polynomial representation of P.

Min cost arborescence problem

Min cost arborescene. Given digraph G =(V, E), distinguished vertex r, and
edge costs ¢, >0, find a subgraph of G that contains a directed path from r
to all other vertices.

min ¢ x
s. t. > x, = 1 VSCV where rES
e=G. ) EE
HES, 4725 \ exponentially
x, = 0 many constraints

Separation oracle. Perform at most n—1 min cut procedures with r as the
source and edge weights x,.

Note. Faster combinatorial algorithm exist.

Min s+ cut problem

Min s-t cut. Given digraph G = (V, E), distinguished vertices s and ¢, and
edge costs ¢, >0, find a min weight set of edges that intersects every s-t

path.

min ¢’ x
s.t. Yy x, = 1 V s—tpaths P

eE P
x, = 0

e

exponentially
many constraints

Separation oracle. Shortest s-t path with weights x,.

Ellipsoid and combinatorial optimization

Grotschel-Lovasz-Schrijver. Poly-time algorithms for:

Network synthesis.

Matroid intersection.

Chinese postman problem.

Min weight perfect matching.
Minimize submodular set function.
Stability number of a perfect graph.
Covering of directed cuts of a digraph.



Totally unimodular matrices Totally unimodular matrices

Def. A matrix A € i< is totally unimodular if the determinant of each Theorem. If Ais totally unimodular and b is integral, then every vertex of
square submatrix is 0, +1, or —1. {Ax=b,x=0} is integral.
1100 o 1o Pf. Each vertex is a solution to Azx =5 for invertible Aj.
o Apply Cramer’s rule.
1011 I pply
01 10 0 -1 -1 o
1 1 0 1
no yes
Cramer’s rule. For B € fi= invertible, b € R»,
the solution to Bx = b is given by:
_ det(B)
' det(B) replace ith column of B with b
21 22
Totally unimodular matrices Assignment problem
Theorem. A (0,+1,-1) matrix is totally unimodular if it contains at most Assignment problem. Assign n jobs to n machines to minimize total cost,
one +1 and at most one -1 in each column. where ¢; = cost of assignment job j to machine i.

o= =10 1 2 F| [@] [5 1 2 F| (2] [s
1 . 8 9 15 10 1 3 . 9 15 10
2 4 . 7 16 14 2 4 10 . 16 14
Pf. [induction on size of a square submatrix B]
. 309 13.19 10 3 13 11 19.
* Base case: 1-by-1 matrix.
» Case 1: a column of Bis all Os. 4 8 13 12.13 4.13 12 20 13
» Case 2: a column of B has exactly one 1 (or one -1). s 1 7 5 91 . s 5 . 9
* Case 3: all columns of B have exactly one 1 and one -1.

cost=3+10+11+20+9=53 cost=8+7+20+8+11=44

Ex. Network flow matrices.



Assignment problem: LP formulation
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Interpretation: if x;=1,
then assign job j to machine i

» matrix games

Theorem. [Birkhoff 1946, von Neumann 1953] All vertices of the above
polyhedron are {0-1}-valued.

Pf. Total unimodularity.

Corollary. There exist poly-time algorithm for assignment problem.

Matrix games Matrix games

column player B

column player B

1 2

row player A row player A --
2
Ex. A plays row 2: B plays column 2; A loses $4. Ex. A plays row 1 with prob 3/5 and row 2 with prob 2/5.
Ex. A plays row 1: B plays column 1; A loses $2. * B plays column 1: A wins =-2(3/5) + 3(2/5) = 0.

* B plays column 2: A wins =+3(3/5) - 4(2/5) = 1/5.

A can guarantee to lose at most $2. A can guarantee to lose at most $0 (in expectation).



Matrix games

Matrix game. For A € fim<, define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a;.

column player B
1 2

102 +3
row player A

2 43 -4

Ex. A plays row 1 with prob 7/12 and row 2 with prob 5/12.
* B plays column 1: A wins =-2(7/12) + 3(5/12) = 1/12 on average.
* B plays column 2: A wins =+3(7/12) - 4(5/12) = 1/12 on average.

A can guarantee to win 1/12 in expectation.

Matrix games

Matrix game. For A € fim, define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a;.

Pure strategy. Player chooses a given row (or column).

Mixed strategy. Player chooses a row (or column) at random, according to
some probability distribution x €A, (or y EA). \

§ ia X = y'Ax a
2 2 iy =Y A ={z€5ﬁ” : 3z =1, zkEO}
== k=1

P

Expected payoff.

stochastic vector

Matrix games

Matrix game. For A € fim», define a game for two players.
= Row player A selects one of rows i=1,2,...,m.

= Column player B selects one of columns j=1,2,...,n.

= Payoff to row player is a;.

column player B
1 2

12 +3
row player A

2 43 -4

Ex. B plays column 1 with prob 7/12 and column 2 with prob 5/12.
* A plays row 1: B loses =-2(7/12) + 3(5/12) = 1/12 on average.
* A plays row 2: Bloses =+3(7/12) - 4(5/12) = 1/12 on average.

B can guarantee to lose at most 1/12.

Matrix games: LP formulation

Row player strategy. If row player uses strategy x, he guarantees an

expected payoff of miny”"Ax so, goal is to find max min y' Ax
YEA,

XEA, yEA, \

nested min max not linear in x, y

Observation. If row player uses fixed strategy x, then column player wants

to solve linear program:
fixed vector

min y'Ax
s.t. Yy o= 1
j=1

y = 0

All vertices of this LP are unit vectors (pure strategies). Thus

q i q
miny' Ax = min) a;x,
YEA, J



Matrix games: LP formulation

Optimal strategy for row player:

m
(P) mflx min 2 a; x;

Jial
m
s.t. Yy o= 1
i=1
x = 0
every optimal solution (x*, z*)
to (P) satisfies at least of one
. . . these constraints with equality,
Equivalent to following linear program: 5025 =3 4 x*
(P') max z
X,z
L .
st Ya;x, =z (j=12,..n)
i=1
‘ n
>x = 1

x, = 0 (@(=12,..m)

Minimax theorem

Theorem. [von Neumann 1928] For every A € Rmxn |

. T . T
max min y Ax = min max y Ax
XEA, YEA, YEA, xEA,

Pf. LP duality.

Consequence. As long as your mixed strategy is optimal,
you can reveal it to your opponent.

Theorem. Nash equilibrium exist for 2-person zero-sum games.
Moreover, they are poly-time computable.

Matrix games

Optimal strategy for row player:

>x o= 1
i=1
x, = 0
Optimal strategy for column player: (D') min
y.t
s.t. Yayy, = t
j=1
By =
Jj=1
y, =0

Observation. (P’) and (D’) are LP duals!

Application: poker

Kuhn’s simplified poker.
» Deck of 3 cards, numbered 1, 2, and 3.
» Each player antes $1.
« One round of betting ($1 bet).
« If pass-pass, pass-bet-bet, or bet-bet, player with higher card wins;
otherwise player that bet wins.

Strategies for X. Strategies for Y.

1. Pass; if Y bets; pass. 1. Pass no matter what X did.
2. Pass; if Y bets, bet. 2. If X passes, pass; if X bets, bet.
3. Bet. 3. If X passes, bet; if X bets, pass.
4. Bet no matter what X did.
HIE ‘o
L)
v 3 M

>
=<



Application: poker

Optimal strategy for X. bluff 17% of time
* When dealt 1, mix strategies 1 and 3 in ratio 5:1.
« When dealt 2, mix strategies 1 and 2 in ratio 1:1.
* When dealt 3, mix strategies 2 and 3 in ratio 1:1.

AN

trap 50% of time
Optimal strategy for Y.

* When dealt 1, mix strategies 1 and 3 in ratio 2:1.
» When dealt 2, mix strategies 1 and 2 in ratio 2:1.
« When dealt 3, use strategy 4.

bluff 33% of time

Value of game. -1/18 for X.

Gambling lessons. Optimal strategies involve bluffing and trapping.
Player who acts last has advantage.

Strongly polynomial

An algorithm is strongly polynomial if:
« Elementary ops: +, —, *, /, comparison.
+ # ops is polynomial in the dimension of input.
* Polynomial space on a classic TM.

Ex. Mergesort: O(nlgn).

Ex. Edmonds—Karp max-flow: O(mn?).

Ex. Gaussian elimination: O(»3) arithmetic ops.

Ex. Ellipsoid: O(mn3L) arithmetic ops. /

Ex. Ye’s interior point method: O(n3L) arithmetic ops.

weakly polynomial

Open problem. Strongly-polynomial algorithm for LP ?
Open problem. Is LP in Py?
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» open problems

New York Times article

An Approach to Difficult Problems

Mathematicians disagree as to the
ultimate practical value of Leonid
Khachiyan’s new technique, but con-
cur that in any case it is an impor-
tant theoretical accomplishment.

Mr. Khachiyan’s method is be-
lieved to offer an approach for the
linear programming of computers to
solve so-called ‘‘travel sales-
man” problems. Such problems are
among the most intractable ‘in
mathematics. They involve, for in-
stance, finding the shortest route by
which a salesman could visit a num-
ber of cities without his path touch-
ing the same city twice.

Each time a new city is added to
the route, the problem becomes very
much more complex. Very large
numbers of variables must be calcu-
lated from large numbers of equa-
tions using a system of linear pro-
gramming. At a certain point, the
compexity becomes so great that a
computer would require billions of
years to find a solution.

In the past, “traveling salesmen’’
problems, including the efficient
scheduling of airline crews or hospi-
tal nursing staffs, have been solved

on computers using the ‘‘simplex
method” invented by George B.
Dantzig of Stanford University.

As a rule, the simplex method
works well, but it offers no guaran-
tee that after a certain number of
computer steps it will always find an
answer. Mr. Khachiyan’s approach
offers a way of telling right from the
start whether or not a problem will
be soluble in a given number of

steps.
Two. mathematicians conducting
research at. Stanford already have

31‘" d the Kh "f’yan k ‘ct;)lde-
Ve opaprogam for a pocket calcu-
lator, which has solved problems
that would not have been possible
with a pocket calculator using the
simplex method.

Mathematically, the Khachiyan
approach uses equations to create
i ry ellipsoids that encapsu-
late the answer, unlike the simplex
method, in which the answer is rep-
resented by the intersections of the
sides of polyhedrons. As the ellip-
soids are made smaller and smaller,
the answer is known with greater
precision.  MALCOLM W. BROWNE




