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Geometric divide-and-conquer

To find a point in P:
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Geometric divide-and-conquer

To find a point in P: 

・Maintain ellipsoid E containing P.
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Geometric divide-and-conquer

To find a point in P: 

・Maintain ellipsoid E containing P. 

・If center of ellipsoid z is in P stop; 
otherwise find hyperplane separating z from P.
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and consider corresponding 
half-ellipsoid ½ E = E ∩ H 
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Geometric divide-and-conquer

To find a point in P: 

・Maintain ellipsoid E containing P. 

・If center of ellipsoid z is in P stop; 
otherwise find hyperplane separating z from P. 

・Find smallest ellipsoid Eʹ containing half-ellipsoid.
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Lowner–John ellipsoid

Geometric divide-and-conquer

To find a point in P: 

・Maintain ellipsoid E containing P. 

・If center of ellipsoid z is in P stop; 
otherwise find hyperplane separating z from P. 

・Find smallest ellipsoid Eʹ containing half-ellipsoid. 

・Repeat.
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Optimization to feasibility

Standard form. 

Ax ≤ b form.
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∃  x, y
s. t. Ax ≤ b

−Ax ≤ −b
−x ≤ 0
AT y ≤ c

cT x  −  bT y ≤ 0

€ 

max cT x
s. t. Ax = b

x ≥ 0

Ax ≤ b

x ≥ 0

dual feasible

optimal



Ellipsoid algorithm

Goal.  Given A ∈ ℜm×n  and b ∈ ℜm , find x ∈ ℜn such that Ax ≤ b. 

Ellipsoid algorithm.   

・Let E0 be an ellipsoid containing P. 

・k = 0. 

・While center z k of ellipsoid Ek is not in P : 
- find a constraint, say a ⋅  x ≤ β, that is violated by z k 
- let Ek+1 be min volume ellipsoid containing Ek ∩ { x : a ⋅  x ≤ a ⋅  z k} 
- k = k + 1
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P

easy to compute

enumerate constraints

half-ellipsoid ½ E 

E k+1

zk

a · x ≤ β
a · x ≤ a · zk 

P
E k

Shrinking lemma

Ellipsoid. Given D ∈ ℜn×n  positive definite and z ∈ ℜn , then 

is an ellipsoid centered on z with vol(E) = 

Key lemma. Every half-ellipsoid ½ E is contained in an ellipsoid Eʹ  
with vol(Eʹ) / vol(E) ≤ e – 1/(2n+1).
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E  =  { x ∈ℜn :  (x − z)T D−1(x − z)  ≤  1 }
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det(D)  ×  vol(B(0,  1))

Eʹ

H

unit sphere

½ E z

Shrinking lemma:  unit sphere

Special case.  E = unit sphere, H = { x : x1 ≥ 0 }. 

Claim.  Eʹ is an ellipsoid containing ½ E = E ∩ H. 
Pf.  If x ∈ ½ E:
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Shrinking lemma:  unit sphere

Special case.  E = unit sphere, H = { x : x1 ≥ 0 }. 

Claim.  Eʹ is an ellipsoid containing ½ E = E ∩ H. 
Pf.  Volume of ellipsoid is proportional to side lengths:
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Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the 
half-ellipsoid ½ E = E ∩ { x :  a ⋅ x ≤ a ⋅  z} is defined by: 

Moreover, vol(Eʹ) / vol(E) < e – 1/(2n+1). 

Pf sketch. 

・We proved E = unit sphere, H = { x : x1 ≥ 0 } 

・Ellipsoids are affine transformations of unit spheres. 

・Volume ratios are preserved under affine transformations.
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" E  =  { x ∈ ℜn :  (x − " z )T ( " D )−1 (x − " z )  ≤  1 }

Shrinking lemma

Shrinking lemma. The min volume ellipsoid containing the 
half-ellipsoid ½ E = E ∩ { x :  a ⋅ x ≤ a ⋅  z} is defined by: 

Moreover, vol(Eʹ) / vol(E) < e – 1/(2n+1). 

Corollary.  Ellipsoid algorithm terminates after at most 
2(n+1) ln (vol(E0) / vol(P)) steps.

14

€ 

" z  =  z  −  1
n +1

 Da
aT Da

 ,     " D  =  n2

n2 −1
 D  −  2

n +1
DaaT D
aT Da

$ 

% 
& 

' 

( 
) 

€ 

" E  =  { x ∈ ℜn :  (x − " z )T ( " D )−1 (x − " z )  ≤  1 }

Ellipsoid algorithm

Theorem.  LP is in P. 

Pf sketch. 

・Shrinking lemma. 

・Set initial ellipsoid E0 so that vol(E0) ≤ 2cnL. 

・Perturb Ax ≤ b to Ax ≤ b + ε  ⇒  either P is empty or vol(P) ≥ 2-cnL. 

・Bit complexity (to deal with square roots). 

・Purify to vertex solution. 

Caveat.  This is a theoretical result. Do not implement.
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O(mn 3 L) arithmetic ops on numbers of size O(L), 
where L = number of bits to encode input
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Separation oracle

Separation oracle.  Given x ∈ ℜn, assert x is in P or return a 
separating hyperplane. 

Theorem.  Let S  ⊆ {0, 1} n , P = conv(S), and c ∈ Z n. Assume that P is full-

dimensional. There exists an algorithm that finds min { cTx : x ∈ P } using a 

poly number of ops and calls to separation oracle for P. 

Remark.  Don’t need a polynomial representation of P.
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Min s-t cut problem

Min s-t cut.  Given digraph G = (V,  E), distinguished vertices s and t, and 

edge costs ce > 0, find a min weight set of edges that intersects every s-t 
path. 

Separation oracle.  Shortest s-t path with weights xe.
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min cT x
s. t.    xe

 e  ∈  P
∑ ≥ 1 ∀  s − t paths  P

xe ≥ 0
exponentially 
many constraints

Min cost arborescence problem

Min cost arborescene.  Given digraph G = (V,  E), distinguished vertex r, and 

edge costs ce > 0, find a subgraph of G that contains a directed path from r 
to all other vertices. 

Separation oracle.  Perform at most n – 1 min cut procedures with r as the 

source and edge weights xe. 

Note.  Faster combinatorial algorithm exist.
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min cT x
s. t.         xe

 e  = (i , j)  ∈  E
     i∈S , j∉S

∑ ≥ 1 ∀S ⊆ V  where  r ∈ S

xe ≥ 0
exponentially 
many constraints

Ellipsoid and combinatorial optimization

Grötschel–Lovász–Schrijver.  Poly-time algorithms for: 

・Network synthesis. 

・Matroid intersection. 

・Chinese postman problem. 

・Min weight perfect matching. 

・Minimize submodular set function. 

・Stability number of a perfect graph. 

・Covering of directed cuts of a digraph. 

・…
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Totally unimodular matrices

Def.  A matrix A ∈ ℜm×n is totally unimodular if the determinant of each 

square submatrix is 0, +1, or −1.
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Totally unimodular matrices

Theorem.  If A is totally unimodular and b is integral, then every vertex of 

{ Ax = b, x ≥ 0 } is integral. 

Pf.  Each vertex is a solution to AB x = b for invertible AB. 
Apply Cramer’s rule.
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Cramer’s rule.  For B ∈ ℜn×n  invertible,  b ∈ ℜn, 
the solution to Bx = b is given by:
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xi  =  det(Bi )
det(B) replace ith column of B with b

Totally unimodular matrices

Theorem.  A (0, +1, −1) matrix is totally unimodular if it contains at most  
one +1 and at most one −1 in each column. 

Pf.  [induction on size of a square submatrix B] 

・Base case:  1-by-1 matrix. 

・Case 1:  a column of B is all 0s. 

・Case 2:  a column of B has exactly one 1 (or one −1). 

・Case 3:  all columns of B have exactly one 1 and one −1. 

Ex.  Network flow matrices.
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Assignment problem

Assignment problem.  Assign n jobs to n machines to minimize total cost, 

where cij = cost of assignment job j to machine i.
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1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 3 + 10 + 11 + 20 + 9 = 53
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1' 2' 3' 4' 5'

3 8 9 15 10

4 10 7 16 14

9 13 11 19 10

8 13 12 20 13

1 7 5 11 9

cost = 8 + 7 + 20 + 8 + 11 = 44



Assignment problem:  LP formulation

Theorem.  [Birkhoff 1946, von Neumann 1953]  All vertices of the above 

polyhedron are {0–1}-valued. 

Pf.  Total unimodularity. 

Corollary.  There exist poly-time algorithm for assignment problem.
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(P) min cij xij
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n
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n
∑ = 1 1 ≤ i ≤ n
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m
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xij ≥ 0 1 ≤ i, j ≤ n

Interpretation:  if xij = 1, 
then assign job j to machine i
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Matrix games

Ex.  A plays row 2:  B plays column 2; A loses $4. 

Ex.  A plays row 1:  B plays column 1; A loses $2. 

A can guarantee to lose at most $2.
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1 2

row player A

column player B

Matrix game. For A ∈ ℜm×n, define a game for two players. 
■ Row player A selects one of rows i = 1, 2, …, m.
■ Column player B selects one of columns j = 1, 2, …, n.
■ Payoff to row player is aij.

Matrix games

Ex.  A plays row 1 with prob 3/5 and row 2 with prob 2/5. 

・B plays column 1:  A wins = -2(3/5) + 3(2/5) = 0.

・B plays column 2:  A wins = +3(3/5) - 4(2/5) = 1/5. 

A can guarantee to lose at most $0 (in expectation).
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Matrix game. For A ∈ ℜm×n, define a game for two players. 
■ Row player A selects one of rows i = 1, 2, …, m.
■ Column player B selects one of columns j = 1, 2, …, n.
■ Payoff to row player is aij.

row player A

column player B



Matrix games

Ex.  A plays row 1 with prob 7/12 and row 2 with prob 5/12. 

・B plays column 1:  A wins = -2(7/12) + 3(5/12) = 1/12 on average.

・B plays column 2:  A wins = +3(7/12) - 4(5/12) = 1/12 on average. 

A can guarantee to win 1/12 in expectation.
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Matrix game. For A ∈ ℜm×n, define a game for two players. 
■ Row player A selects one of rows i = 1, 2, …, m.
■ Column player B selects one of columns j = 1, 2, …, n.
■ Payoff to row player is aij.

row player A

column player B

Matrix games

Ex.  B plays column 1 with prob 7/12 and column 2 with prob 5/12. 

・A plays row 1:  B loses = -2(7/12) + 3(5/12) = 1/12 on average.

・A plays row 2:  B loses = +3(7/12) - 4(5/12) = 1/12 on average. 

B can guarantee to lose at most 1/12.
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Matrix game. For A ∈ ℜm×n, define a game for two players. 
■ Row player A selects one of rows i = 1, 2, …, m.
■ Column player B selects one of columns j = 1, 2, …, n.
■ Payoff to row player is aij.

row player A

column player B

Matrix games

Pure strategy.  Player chooses a given row (or column). 

Mixed strategy. Player chooses a row (or column) at random, according to 

some probability distribution x ∈ Δm (or y ∈ Δn). 

Expected payoff.  
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Matrix game. For A ∈ ℜm×n, define a game for two players. 
■ Row player A selects one of rows i = 1, 2, …, m.
■ Column player B selects one of columns j = 1, 2, …, n.
■ Payoff to row player is aij.

Matrix games:  LP formulation

Row player strategy.   If row player uses strategy x, he guarantees an 

expected payoff of                so, goal is to find  

Observation.  If row player uses fixed strategy x, then column player wants 

to solve linear program: 

All vertices of this LP are unit vectors (pure strategies). Thus
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Matrix games:  LP formulation

Optimal strategy for row player: 

Equivalent to following linear program:
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(P' ) max
x ,  z

 z

s. t. aij xi
i=1

m
∑ ≥ z   ( j =1,2,...,n)

xi
i=1

m
∑ = 1

xi ≥ 0 (i =1,2,...,m)

every optimal solution (x*, z*) 
to (P) satisfies at least of one 
these constraints with equality, 
so z* = ∑ aij xj*

Matrix games

Optimal strategy for row player: 

Optimal strategy for column player: 

Observation.  (P′) and (D′) are LP duals!
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n
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Minimax theorem

Theorem.  [von Neumann 1928]  For every A ∈ ℜm×n , 

Pf. LP duality. 

Consequence.  As long as your mixed strategy is optimal, 
you can reveal it to your opponent.

Theorem.  Nash equilibrium exist for 2-person zero-sum games. 
Moreover, they are poly-time computable.
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Application:  poker

Kuhn’s simplified poker. 

・Deck of 3 cards, numbered 1, 2, and 3. 

・Each player antes $1. 

・One round of betting ($1 bet).  

・If pass-pass, pass-bet-bet, or bet-bet, player with higher card wins; 
otherwise player that bet wins. 

Strategies for X. 

1. Pass; if Y bets; pass. 

2. Pass; if Y bets, bet. 

3. Bet.

36

Strategies for Y. 
1.  Pass no matter what X did. 
2.  If X passes, pass; if X bets, bet. 
3.  If X passes, bet; if X bets, pass. 
4.  Bet no matter what X did.

X Y



Application:  poker

Optimal strategy for X. 

・When dealt 1, mix strategies 1 and 3 in ratio 5:1. 

・When dealt 2, mix strategies 1 and 2 in ratio 1:1. 

・When dealt 3, mix strategies 2 and 3 in ratio 1:1. 

Optimal strategy for Y. 

・When dealt 1, mix strategies 1 and 3 in ratio 2:1. 

・When dealt 2, mix strategies 1 and 2 in ratio 2:1. 

・When dealt 3, use strategy 4. 

Value of game.   −1/18 for X. 

Gambling lessons.   Optimal strategies involve bluffing and trapping. 
Player who acts last has advantage.
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bluff 17% of time

trap 50% of time

bluff 33% of time
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Strongly polynomial

An algorithm is strongly polynomial if: 

・Elementary ops:  +, –, *, /, comparison. 

・# ops is polynomial in the dimension of input. 

・Polynomial space on a classic TM. 

Ex.  Mergesort:  O(n lg n). 
Ex.  Edmonds–Karp max-flow: O(m n 2).
Ex.  Gaussian elimination: O(n3) arithmetic ops.

Ex.  Ellipsoid:  O(m n 3 L ) arithmetic ops.
Ex.  Ye’s interior point method:  O(n 3 L ) arithmetic ops.

Open problem.  Strongly-polynomial algorithm for LP ? 

Open problem.  Is LP in Pℜ ?
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weakly polynomial

New York Times article
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