A INTRACTABILITY I

PEARSON
e

Addison
Wesley

» special cases: trees

» special cases: planarity

» approximation algorithms: vertex cover
» approximation algorithms: knapsack

» exponential algorithms: 3-SAT

JON;KLEINBERG"EVA TARb"OS 3 exponem‘ia/ a/gorifhms: TSP

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 5/5/18 5:15 AM

Coping with NP-completeness

Q. Suppose | need to solve an NP-hard problem. What should | do?

A. Sacrifice one of three desired features.

So
So
So

ve arbitrary instances of the problem.

ve problem to optimality.
ve problem in polynomial time.

Coping strategies.

Design algorithms for special cases of the problem.
Design approximation algorithms or heuristics.
Design algorithms that may take exponential time.

using greedy,
dynamic programming,
divide-and-conquer, and
network flow algorithms!

INTRACTABILITY I

» special cases: trees

wt i e

r\ JON KlEINBERG EVA TARDOS
\

SECTION 10.2

Independent set on trees

Independent set on trees. Given a tree, find a max-cardinality subset of
nodes such that no two are adjacent.

Fact. A tree has at least one node that is a leaf (degree = 1).

O
o O
Key observation. If node v is a leaf, there exists O O
a max-cardinality independent set containing v. o @
Pf. [exchange argument]
- Consider a max-cardinality independent set S. o O

* IfvES, we're done.

* Otherwise, let (u,v) denote the lone edge incident to v.
- ifu&Sand v& s, then SU {v}is independent = S not maximum
- ifueSandv& s, then SU {v}—-{u} is independent =

Independent set on trees: greedy algorithm

Theorem. The greedy algorithm finds a max-cardinality independent
set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. =

INDEPENDENT-SET-IN-A-FOREST(F')

S < O.

WHILE (F has at least 1 edge)
Let v be a leaf node and let (u, v) be the lone edge incident to v.
S<=SU{v}.
F<F —{u,v}. <«— delete both u and v (including all incident edges)

RETURN § U { nodes remaining in F }.

Remark. Can implement in O(n) time by maintaining nodes of degree 1.

Intractability Ill: quiz 1 e

How might the greedy algorithm fail if the graph is not a tree/forest?

Might get stuck.
Might take exponential time.

Might produce a suboptimal independent set.

o N w »

Any of the above.

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set § that maximizes X c.w,.

Greedy algorithm can fail spectacularly.

)

<u <«——— weight = huge

O,

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set § that maximizes X c.w,.

Dynamic-programming solution. Root tree at some node, say r.
« OPT, (1) = max-weight IS in subtree rooted at u, containing u.
« OPT,,(u) = max-weight IS in subtree rooted at u, not containing u.
« Goal: max { OPT, (r), OPT, (1) }.

overlapping r
subproblems O

Bellman equation. e
C Q

OPT () = wy+ 3 OPT,()
v € children(u) } @ O
OPT .(u) = > max {OPT,,(v), OPT,,(v)}

v € children(u) @ @ @
O

children(u) = { v, w, x }

Intractability 1ll: quiz 2

In which order to solve the subproblems?

A. Preorder.
B. Postorder.
C. Level order.

D. Any of the above.

Weighted independent set on trees: dynamic-programming algorithm

Theorem. The DP algorithm computes max weight of an independent set

In a tree in O(n) time. AN can also find independent set itself
(not just value)

WEIGHTED-INDEPENDENT-SET-IN-A-TREE (7)

Root the tree T at any node r.

S<— .
FOREACH (node u of T in postorder/topological order)
IF (u 1s a leaf node) \
ensures a node is processed
Mm[u] = Wy. after all of its descendants
Moul‘[u] - O.
ELSE

Mzn[l/l] =wy + 2y e children(u) Mout[V] .
Moulul = 2y € chitdrenwy max { Min[v], Mowlv] }.
RETURN max { Min[r], Moulr] }.

10

NP-hard problems on trees: context

Independent set on trees. Tractable because we can find a node that breaks
the communication among the subproblems in different subtrees.

11

INTRACTABILITY I

» special cases: planarity

SECTION 23.1

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that

no two edges cross.

O O

Ks is nonplanar

planar

Applications. VLSI circuit design, computer graphics, ...

O

O O

Ks 3 is nonplanar

13

Planarity testing

Theorem. [Hopcroft-Tarjan 1974] There exists an O(n) time algorithm to
determine whether a graph is planar. \

simple planar graph
has at < 3n edges

Efficient Planarity Testing

JOHN HOPCROFT AND ROBERT TARJAN

Cornell University, Ithaca, New York

ABSTRACT. This paper describes an efficient algorithm to determine whether an arbitrary graph G
can be embedded in the plane. The algorithm may be viewed as an iterative version of a method
originally proposed by Auslander and Parter and correctly formulated by Goldstein. The algorithm
uses depth-first search and has O(V) time and space bounds, where V is the number of vertices in
G. An ALcoL implementation of the algorithm successfully tested graphs with as many as 900 vertices
in less than 12 seconds.

14

Problems on planar graphs

Fact 0. Many graph problems can be solved faster in planar graphs.

Ex. Shortest paths, max flow, MST, matchings, ...

Fact 1. Some NP-complete problems become tractable in planar graphs.
Ex. MAX-CuT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...

Fact 2. Other NP-complete problems become easier in planar graphs.
Ex. INDEPENDENT-SET, VERTEX-COVER, TSP, STEINER-TREE, ...

An O (nlog n) Algorithm for Maximum sz-Flow
in a Directed Planar Graph

GLENCORA BORRADAILE AND PHILIP KLEIN
Brown University, Providence, Rhode Island
Abstract. We give the first correct O (n log n) algorithm for finding a maximum s¢-flow in a directed

planar graph. After a preprocessing step that consists in finding single-source shortest-path distances
in the dual, the algorithm consists of repeatedly saturating the leftmost residual s-to-¢ path.

SIAM J. COMPUT. © 1980 Society for Industrial and Applied Mathemati cs
Vol. 9, Na. 3, August 1980 . 0097-5397/80/0903-0013 $01.00/0

APPLICATIONS OF A PLANAR SEPARATOR THEOREM*

RICHARD J. LIPTONT anp ROBERT ENDRE TARJAN?

Abstract. Any n-vertex planar graph has the property that it can be divided into components of roughly
equal size by removing only O(Vn) vertices. This separator theorem, in combination with a divide-a_nd-
conquer strategy, leads to many new complexity results for planar graph problems. This paper describes
some of these resuits.

15

Planar graph 3-colorability

PLANAR-3-CoOLOR. Given a planar graph, can it be colored using 3 colors
so that no two adjacent nodes have the same color?

()
()
()

N ZZNNEZaN N

16

Planar map 3-colorability

PLANAR-MAP-3-CoOLOR. Given a planar map, can it be colored using 3 colors
so that no two adjacent regions have the same color?

yes instance

17

Planar map 3-colorability

PLANAR-MAP-3-CoOLOR. Given a planar map, can it be colored using 3 colors
so that no two adjacent regions have the same color?

no instance

18

Planar graph and map 3-colorability reduce to one another

Theorem. PLANAR-3-COLOR = p PLANAR-MAP-3-COLOR.
Pf sketch.
- Nodes correspond to regions.
« Two nodes are adjacent iff they share a nontrivial border.

\

e.d., hot Arizona
and Colorado

19

Planar 3-colorability is NP-complete

Theorem. PLANAR-3-COLOR € NP-complete.

Pf.
* Easy to see that PLANAR-3-COLOR & NP.

« We show 3-COLOR <p PLANAR-3-COLOR.
* Given 3-COLOR instance G, we construct an instance of

PLANAR-3-COLOR that is 3-colorable iff G is 3-colorable.

20

Planar 3-colorability is NP-complete

Lemma. W is a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
« Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

planar gadget W

21

Planar 3-colorability is NP-complete

Lemma. W is a planar graph such that:
* In any 3-coloring of W, opposite corners have the same color.
« Any assignment of colors to the corners in which opposite corners have
the same color extends to a 3-coloring of W.

Pf. The only 3-colorings (modulo permutations) of W are shown below. =

planar gadget W
22

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G’ by replacing each edge crossing with planar gadget w.

Lemma. G is 3-colorable iff G’ is 3-colorable.
* In any 3-coloring of W, a=da and b=b'.
* Ifazd and b #b' then can extend to a 3-coloring of W.

a crossing gadget W

23

Planar 3-colorability is NP-complete

Construction. Given instance G of 3-COLOR, draw G in plane, letting edges
cross. Form planar G’ by replacing each edge crossing with planar gadget w.

Lemma. G is 3-colorable iff G’ is 3-colorable.
* In any 3-coloring of W, a=da and b=b'.
* Ifazd and b #b' then can extend to a 3-coloring of W.

multiple crossings concatenate copies of gadget W

24

Planar map k-colorability

Theorem. [Appel-Haken 1976] Every planar map is 4-colorable.
« Resolved century-old open problem.

« Used 50 days of computer time to deal with many special cases.

« First major theorem to be proved using computer.

BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 82, Number 5, September 1976

RESEARCH ANNOUNCEMENTS

EVERY PLANAR MAP IS FOUR COLORABLE!

BY K. APPEL AND W. HAKEN

Communicated by Robert Fossum, July 26, 1976

The following theorem is proved.

THEOREM. Every planar map can be colored with at most four colors.

Remarks.
* Appel-Haken yields O®#*) algorithm to 4-color of a planar map.
* Best known: O(n?) to 4-color; O(n) to 5-color.
* Determining whether 3 colors suffice is NP-complete.

25

Beyond planarity

Graph minor theorem. [Robertson-Seymour 1983-2004]
Pf of theorem. Tour de force.

Corollary. There exist an O(®) algorithm to determine if a graph can be

embedded in the torus in such a way that no two edges cross. 21k = 2%

more than 212121 (n/2)
Mind boggling fact 1. The proof is highly nonconstructive! /

Mind boggling fact 2. The constant of proportionality is enormous!

“ Unfortunately, for any instance G = (V, E) that one could fit into the known
universe, one would easily prefer n’’ to even constant time, if that constant

had to be one of Robertson and Seymour’s. ” — David Johnson

Theorem. There exists an explicit O(n) algorithm.
Practice. LEDA implementation guarantees O(n>).

k

2

2

26

Poly-time special cases of NP-hard problems

Trees. VERTEX-COVER, INDEPENDENT-SET, LONGEST-PATH, GRAPH-ISOMORPHISM, ...
Bipartite graphs. VERTEX-COVER, INDEPENDENT-SET, 3-COLOR, EDGE-COLOR, ...
Planar graphs. MAX-CuT, ISING, CLIQUE, GRAPH-ISOMORPHISM, 4-COLOR, ...
Bounded treewidth. HAM-CYCLE, INDEPENDENT-SET, GRAPH-ISOMORPHISM, ...
Small integers. SUBSET-SUM, KNAPSACK, PARTITION, ...

o e O O —0—0
O
O O
2 09 o O o P ® o
O
e O—~CQ
O O O @ O O O O O
tree bipartite planar bounded treewidth

27

INTRACTABILITY I

» approximation algorithms: vertex cover

\\ /~\Ig i Desion
‘\\ JON KLEINBERG - EVA TARDOS

SECTION 11.8

Approximation algorithms

p-approximation algorithm.
* Runs in polynomial time.
« Applies to arbitrary instances of the problem.
 Guaranteed to find a solution within ratio p of true optimum.

Ex. Given a graph G, can find a vertex cover that uses < 2 OPT(G) vertices
In O(m + n) time.

Challenge. Need to prove a solution’s value is close to optimum value,
without even knowing what optimum value is!

David P. Williamson « David B. Shmoys

Approximation Algorthms
o NP—HARD PROBLEMS

The DESIGN of
APPROXIMATION
ALGORITHMS

_Approximation

“) Algorithms

DORIT S, HOCHBAUM

29

Vertex cover

VERTEX-COVER. Given a graph G=(V, E), find a min-size vertex cover.

T

for each edge (u,v) €E E:
eitheru&e S, veE S, or both

‘ vertex cover of size 4

Q0 O @—0 O
® O U0 ©

30

Vertex cover: greedy algorithm

VERTEX-COVER. Given a graph G=(V, E), find a min-size vertex cover.

GREEDY-VERTEX-COVER(G)

S <.
E' < E.

, every vertex cover must take
WHILE (E # @) at least one of these; we take both

Let (u,v) € E' be an arbitrary edge.

M<— MU {(u,v)}. <«—— Misamatching
S < SU{ur U {v}. <
Delete from E’ all edges incident to either u or v.

RETURN S§.

Running time. Can be implemented in O(m + n) time.

31

Intractability Ill: quiz 3 e

Given a graph G, let M be any matching and let S be any vertex cover.
Which of the following must be true?

A. |[M|=|S]
B. S| <= |M
C. |S|=|m
D. None of the above.

Vertex cover: greedy algorithm is a 2-approximation algorithm

Theorem. Let S* be a minimum vertex cover. Then, greedy algorithm
computes a vertex cover Swith | S| <2|S*|. «— 2-approximation algorithm
Pf.

e SIS a vertex cover. <«— delete edge only after it’s already covered

* MIS a matching. <«<—— when (u,v) added to M, all edges incident to either u or v are deleted
*|S|=2|M|=<2]|S. =

! !

design weak duality

Corollary. Let M* be a maximum matching. Then, greedy algorithm
computes a matching M with |M| = ¥ |M*|.
Pf. IM|=%|S| = % |M*|. =

!

weak duality

33

Vertex cover inapproximability

Theorem. [Dinur-Safra 2004] If P = NP, then no p-approximation for
VERTEX-COVER for any p < 1.3606.

On the Hardness of Approximating Minimum Vertex Cover

Irit Dinur* Samuel Safral

May 26, 2004

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within
a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To
that end, one needs to develop a new proof framework, and borrow and extend ideas from
several fields.

Open research problem. Close the gap.
Conjecture. no p-approximation for VERTEX-COVER for any p < 2.

34

INTRACTABILITY I

» approximation algorithms: knapsack

\\ /~\Ig i Desion
‘\\ JON KLEINBERG - EVA TARDOS

SECTION 11.8

Knapsack problem

Knapsack problem.
* Given n objects and a knapsack.
* Item i has value v; >0 and weighs w; > 0. <— we assume w; < W for each i
* Knapsack has weight limit W.
« Goal: fill knapsack so as to maximize total value.

Ex: {3,4} has value 40.

2 6 2
3 18 5
4 22 6
5 28 /

original instance (W = 11)

36

Knapsack is NP-complete

SUBSET-SUM. Given a set X, values u; >0, and an integer U, is there a subset
S C X whose elements sum to exactly U?

KNAPSACK. Given a set X, weights w; =0, values v; >0, a weight limit W, and a
target value V, is there a subset S C X such that:

<V

]
s
A

Theorem. SUBSET-SUM <p KNAPSACK.
Pf. Given instance (ui, ..., u,, U) of SUBSET-SUM, create KNAPSACK instance:

V; = W; = Uy €S

V=W=U > u

€S

[V
-

Knapsack problem: dynamic programming |

Def. OPT(i,w) = max value subset of items 1.,...,i with weight limit w.

Case 1. OPT does not select item .
* OPT selects best of 1, ...,i—1 using up to weight limit w.

Case 2. OPT selects item ..
* New weight limit =w —w,.
* OPT selects best of 1,...,i—1 using up to weight limit w —w..

-

0) if 1=0
OPT(i,w)=1 OPT(i-1,w) if w,>w
- max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

Theorem. Computes the optimal value in O(n W) time.
« Not polynomial in input size.
« Polynomial in input size if weights are small integers.

38

Knapsack problem: dynamic programming |l

Def. OPT(i,v) = min weight of a knapsack for which we can obtain a solution
of value = v using a subset of items 1...., .

Note. Optimal value is the largest value v such that OPT(n,v) < W.

Case 1. OPT does not select item i.
* OPT selects best of 1,...,i—1 that achieves value = v.

Case 2. OPT selects item i.

* Consumes weight w;, need to achieve value = v—v..
* OPT selects best of 1,...,i—1 that achieves value = v—v..

y

0 it v <0
OPT(i,v) = { 00 ifi=0and v >0
|\ min {OPT(¢ — 1,v), w; + OPT(i —1,v —v;)} otherwise

39

Knapsack problem: dynamic programming |l

Theorem. Dynamic programming algorithm Il computes the optimal value
in O(n2 vmax) time, where v is the maximum of any value.
Pf.

* The optimal value V* < n vimax.

* There is one subproblem for each item and for each value v < V*.

* [t takes O(1) time per subproblem. =

Remark 1. Not polynomial in input size!
Remark 2. Polynomial time if values are small integers.

40

Knapsack problem: poly-time approximation scheme

Intuition for approximation algorithm.
« Round all values up to lie in smaller range.
« Run dynamic programming algorithm Il on rounded/scaled instance.
« Return optimal items in rounded instance.

934221
2 5956342 2 2 6 2
3 17810013 5 3 18 5
4 21217800 6 4 22 6
5 27343199 / 5 28 /

original instance (W = 11) rounded instance (W = 11)

Knapsack problem: poly-time approximation scheme

Round up all values:
* 0 < e <1 =precision parameter.
max

IR = largest value in original instance. V; = {—W 6,
- 0 = scaling factor=¢v__ /2n.

Observation. Optimal solutions to problem with v are equivalent to
optimal solutions to problem with V.

Intuition. v close to v so optimal solution using v is nearly optimal;
v small and integral so dynamic programming algorithm Il is fast.

42

Knapsack problem: poly-time approximation scheme

Theorem. If S is solution found by rounding algorithm and $*
is any other feasible solution, then (1+¢)) v, > Y v,

1eS 1€S*
Pf. Let S* be any feasible solution satisfying weight constraint.

subset containing
E (o always round up only the item
iES* i€ S* of largest value

§ :?—}. solve rounded
L instance optimally

choosing S$* ={ max }

A
(]
S

IA

never round up

< Z(U'L T 9) by more than 0 Umax < Z%‘ + % € Umax
€S €S
: 1
< Zvi + né IS < n < ZUZ -+ 5 Umax
i€S thus €5
1 Umax < 2 V;
— Zvi + 5 € Umax O0=¢€v,,,/2n : zEZS ‘
€S
< (1"‘6)2?}@ Vmax = 22iESvi

43

Knapsack problem: poly-time approximation scheme

Theorem. For any € >0, the rounding algorithm computes a feasible solution
whose value is within a (1 + ¢€) factor of the optimum in O3/ ¢) time.

Pf.
« We have already proved the accuracy bound.

* Dynamic program Il running time is O(n* V...), where

o = [52] = 7]

44

INTRACTABILITY I

» exponential algorithms: 3-SAT

Exact exponential algorithms

Complexity theory deals with worst-case behavior.
« [nstances you want to solve may be “easy.”

“ For every polynomial-time algorithm you have, there is an exponential

algorithm that I would rather run.” — Alan Perlis

444 complexity. Pragmatists
144 suffer it. Some can

.+ avoid it. Geniuses

.. remove it."

Alan Perlis

46

Intractability 1ll: quiz 1

What is complexity of 3-SAT? Choose the best answer.

A. O
B. 0%(1.34")
C. 07(1.84"
D. 02"

\

O* ignores poly(m, n) terms

47

Exact algorithms for 3-satisfiability

Brute force. Given a 3-SAT instance with n variables and m clauses,
the brute-force algorithm takes O((m + n) 2") time.
Pf.

* There are 2" possible truth assignments to the n variables.

* We can evaluate a truth assignment in O(m + n) time. =

48

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula @ is either empty or the disjunction
of a clause (£; v £ v £3) and a 3-SAT formula ®' with one fewer clause.

® = (Lvive) A D

= UiAD) v (oA D) v (LzA D)

(P | Li=true) v (P Ly =true) v (P’ | L3 = true)

Notation. ® | x=rtrue is the simplification of ® by setting x to rrue.
EX.

c ¢ = (xvyvag Axvyvz A(wvyv-g) A(xVvyv2).
c @' = (xvaoyvz) A(wWvyv-g A(xVyvV2).
* (D' lx=true) = wvyv-z A@HV2).

each clause has < 3 literals
49

Exact algorithms for 3-satisfiability

A recursive framework. A 3-SAT formula @ is either empty or the disjunction
of a clause (£; v £ v £3) and a 3-SAT formula ®' with one fewer clause.

3-SAT (D)

I[F ® is empty RETURN frue.

(Liv by viE) A ® «— O,

IF 3-SAT (®' | £1= true) RETURN true.
IF 3-SAT (®' | £2= true) RETURN true.

IF 3-SAT (D' | £3= true) RETURN true.
RETURN false.

Theorem. The brute-force 3-SAT algorithm takes O(poly(n) 3% time.
Pf. T(n) < 3T(n—1) + poly(n). =

50

Exact algorithms for 3-satisfiability

Key observation. The cases are not mutually exclusive. Every satisfiable
assignment containing clause (£; v £2 v £3) must fall into one of 3 classes:
* L11S true.
* Liis false; £21S true.
* LIS false; £21S false; L31S true.

3-SAT (D)

IF @ is empty RETURN true.

(Liv Lav £3) A D — D,

IF 3-SAT(P' | £1= true) RETURN ftrue.
IF 3-SAT(®' | £1 = false, L>= true) RETURN ftrue.
IF 3-SAT(P' | £1= false, 2= false, L3=true) = RETURN true.
RETURN false.

51

Exact algorithms for 3-satisfiability

Theorem. The brute-force algorithm takes O(1.84%) time.
Pf. Tn) < Tn-D+Tn-2)+T(n-3)+ O(m +n). = \

largest root of B =r2+r+1

3-SAT (D)

IF @ is empty RETURN true.

(Liv Lav £3) A D — D,

IF 3-SAT(P' | £1= true) RETURN ftrue.
IF 3-SAT(®' | £1 = false, L>= true) RETURN ftrue.
IF 3-SAT(P' | £1= false, 2= false, L3=true) = RETURN true.
RETURN false.

52

Exact algorithms for 3-satisfiability

Theorem. There exists a O(1.33334") deterministic algorithm for 3-SAT.

A Full Derandomization of Schoning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science

Department of Computer Science
ETH Ziirich, 8092 Ziirich, Switzerland
{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schoning [7] presents a simple randomized algorithm for k-SAT with running time
O(a}poly(n)) for ap = 2(k —1)/k. We give a deterministic version of this algorithm
running in time O((ax + €)"poly(n)), where € > 0 can be made arbitrarily small.

53

Exact algorithms for satisfiability

DPPL algorithm. Highly-effective backtracking procedure.
 Splitting rule: assign truth value to literal; solve both possibilities.
« Unit propagation: clause contains only a single unassigned literal.
 Pure literal elimination: if literal appears only negated or unnegated.

A Computing Procedure for Quantification Theory*

Marzoy Davis A Machine Program for
Rensselaer Polytechnic Institute, Hartford Division, East Windsor Hill, Conn. Th Eﬁ O re m 'PrOVI n g T
AND ‘

HiLary Purnam Martin Davis, George Logemann, and

Princeton University, Princeton, New Jersey ‘ Donal d Lovel qnd

The hope that mathematical methods employed in the investigation of formal
logic would lead to purely computational methods for obtaining mathematical
theorems goes back to Leibniz and has been revived by Peano around the turn
of the century and by Hilbert’s school in the 1920’s. Hilbert, noting that all of
classical mathematics could be formalized within quantification theory, declared
that the problem of finding an algorithm for determining whether or not a given

Institute of Mathematical Sciences, New York University

The programming of o proof procedure is discussed in

formula of quantification theory is valid was the central problem of mathe- connection with trial runs and possible improvements.

matical logic. And indeed, at one time it seemed as if investigations of this “de- s . .

cision” problem were on the verge of success. However, it was shown by Church In [1] 15 ?et forth an a}gor_lthm f or proving th.eorems f)f
and by Turing that such an algorithm can not exist. This result led to consider- quantification theory which is an improvement in certain

able pessimism regarding the possibility of using modern digital computers in respects over previously available algorithms such as that
deciding significant mathematical questions. However, recently there has been

. . .
a revival of interest in the whole question. Specifically, it has been realized that of [2] '[‘h.e present paper deals with the programming of
while no decision procedure exists for quantification theory there are many proof the algorithm of [1] for the New York University, In-

procedures available—that is, uniform procedures which will ultimately locate stitute of Mathematical Sciences’ IBM 704 m r
a proof for any formula; of quantification theory which is valid but which will computer,

usually involve seeking ‘“forever” in the case of a formula which is not valid— le(.h some modifications m the algorithm suggested by
and that some of these proof procedures could well turn out to be feasible for this work, with the results obtained using the completed

use with modern computing machinerv. algorithm. Familiarity with [1] is assumed throughout.

54

Exact algorithms for satisfiability

Chaff. State-of-the-art SAT solver.
« Solves real-world SAT instances with ~ 10K variable.
Developed at Princeton by undergrads.

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan
Department of EECS Department of EECS
UC Berkeley MIT

moskewcz @ alumni.princeton.edu cmadigan@mit.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of
combinatorial optimization/search problems. Significant effort
has been devoted to trying to provide practical solutions to this
problem for problem instances encountered in a range of
applications in Electronic Design Automation (EDA), as well as
in Artificial Intelligence (Al). This study has culminated in the

Ying Zhao, Lintao Zhang, Sharad Malik
Department of Electrical Engineering
Princeton University

{yingzhao, lintaoz, sharad}@ee.princeton.edu

Many publicly available SAT solvers (e.g. GRASP [8],
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been
developed, most employing some combination of two main
strategies: the Davis-Putnam (DP) backtrack search and heuristic
local search. Heuristic local search techniques are not
guaranteed to be complete (i.e. they are not guaranteed to find a
satisfying assignment if one exists or prove unsatisfiability); as a

55

INTRACTABILITY I

» exponential algorithms: TSP

Pokemon Go

Given the locations of n Pokémon, find shortest tour to collect them

mammai Lenter

Map: Where to catch

123 Pokémon in
San Francisco

2oint Bonita Lighthouse i

BY ADAM BRINKLOW | OCT 4, 2016, 6:33AM PDT

Recreation
Area

Marin Headlands #

all.

e ———

Vista Point &

= Battery Spencer Alcatraz Island x

TREASURE
ISLAND
A2 Yerba Buena
K< Fort Point Island
\0® b
GO
& Lombard Street
Palace of Fine bard St
Arts Theatre =" n
Baker Beach = < S
5 Biglio Golf Course 3
L End SEA CLIFF
RICHMOND
DISTRICT
X OUTER > & AT&T Park
RICHMOND =
g MISSION BAY.
12604

San Francisco Zoo & &

PAIE BuIAS

d6th Avenue Tiled Steps

SUNSET DISERICT

INNER SUNSET

a

FOREST HILL

S BERN;”%?S
GLEN y{d

City College of 2804
_ San Francisco

PORTOLA

HUNTERS POINT

~ EXCELSIOR

o1
& 10
NGLESIDE

=3 VISITAC OZ:
KﬁLLEV

= Baylands Soil Processing

OUTER MISSION

CROCKER-AMAZON

4@

The Olympic Club
Cow Palace A

€l

57

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D? \

can view as a complete graph

ey

13,509 cities in the United States
http:/ /www.math.uwaterloo.ca/tsp

58

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

11,849 holes to drill in a programmed logic array
http:/ /www.math.uwaterloo.ca/tsp

59

TSP books, apps, and movies

The Traveling
Salesman Problem

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

Carrier = 12:33 PM
< Home Bounds

usab32.txt

Moats: 85882.6 (Gap 1.464%)

Run Load

#Nodes 532

1013000111 10010010000001 31000003 1100100510111105101101011010
93 10110010100 1000000 200101101 1 1001 50010000 § 000000 § | 100
210000101 1931010013

BOOOOO
21010113

1110110 DO 10000001101
ei0110 010000001108

100 1 000 1 000000

101000113 100000
10100
100008
00001

SRAVELLING

DE POTESTATE IDEAN EST VIRTUTEM DEI

60

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length <D?

HAMILTON-CYCLE. Given an undirected graph G =(V, E), does there exist a
cycle that visits every node exactly once?

Theorem. HAMILTON-CYCLE <, TSP.

Pf.
« Given an instance G = (V, E) of HAMILTON-CYCLE, create n = | V| cities

with distance function

* TSP instance has tour of length < » iff G has a Hamilton cycle. =

61

Intractability 1ll: quiz 4

What is complexity of TSP? Choose the best answer.

A. O
B. O%(1657")
C. 0@
D. O'(n)

T

O* hides poly(n) terms

62

Exponential algorithm for TSP: dynamic programming

J. Soc. INpusT, APPL. MATH.
Vol. 10, No. 1, March, 1962
Printed in U.S.A.

A DYNAMIC PROGRAMMING APPROACH TO
SEQUENCING PROBLEMS*

MICHAEL HELDt anp RICHARD M. KARPt
INTRODUCTION

Many interesting and important optimization problems require the
determination of a best order of performing a given set of operations.
This paper is concerned with the solution of three such sequencing problems:
a scheduling problem involving arbitrary cost functions, the traveling-
salesman problem, and an assembly-line balancing problem. Each of these
problems has a structure permitting solution by means of recursion schemes
of the type associated with dynamic programming. In essence, these re-
cursion schemes permit the problems to be treated in terms of combinations,
rather than permutations, of the operations to be performed. The dynamic
programming formulations are given in §1, together with a discussion of
various extensions such as the inclusion of precedence constraints. In each
case the proposed method of solution is computationally effective for
problems in a certain limited range. Approximate solutions to larger
problems may be obtained by solving sequences of small derived problems,
each having the same structure as the original one. This procedure of suc-
cessive approximations is developed in detail in §2 with specific reference
to the traveling-salesman problem, and §3 summarizes computational ex-
perience with an IBM 7090 program using the procedure.

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n? 2% time.

HAMILTON-CYCLE is a special case

Dynamic Programming Treatment of the

Travelling Salesman Problem*

RicHarp BELLMAN

RAND Corporation, Santa Monica, California

Introduction

The well-known travelling salesman problem is the following: “A salesman is
required to visit once and only once each of n different cities starting from a base
city, and returning to this city. What path minimizes the total distance travelled
by the salesman?”

The problem has been treated by a number of different people using a variety
of techniques; ef. Dantzig, Fulkerson, Johnson [1], where a combination of
ingenuity and linear programming is used, and Miller, Tucker and Zemlin [2],
whose experiments using an all-integer program of Gomory did not produce
results in cases with ten cities although some success was achieved in cases of
simply four cities. The purpose of this note is to show that this problem can
easily be formulated in dynamic programming terms [3], and resolved computa-
tionally for up to 17 cities. For larger numbers, the method presented below,
combined with various simple manipulations, may be used to obtain quick
approximate solutions. Results of this nature were independently obtained by
M. Held and R. M. Karp, who are in the process of publishing some extensions
and computational results.

63

Exponential algorithm for TSP: dynamic programming

Theorem. [Held-Karp, Bellman 1962] TSP can be solved in O(n? 2% time.

Pf. [dynamic programming] pick node s arbitrarily
* Subproblems: c(s,v,X) = cost of cheapest path between s and v #s
that visits every node in X exactly once (and uses only nodes in X).

* Goal: mi‘l;l c(s,v,V) + c(v, s)
vE

* There are <n 2" subproblems and they satisfy the recurrence:

y

c(s,v) if | X| =2
(50X =0 min e(s,u X\ {o}) +e(uyv) if [X| > 2.
\uEX\{s,v}

* The values c(s, v, X) can be computed in increasing
order of the cardinality of X. =

64

22-city TSP instance takes 1,000 years

The Washington Post

bblem,” where a salesperson has to v

 fake
0O Il . 10

¥,000 years to compute the r

2°2 = 4,194,304

22! =1,124,000,727,777,607,680,000 ~ 10!

65

Concorde TSP solver

Concorde TSP solver. [Applegate-Bixby—Chvatal-Cook]
 Linear programming + branch-and-bound + polyhedral combinatorics.
« Greedy heuristics, including Lin—Kernighan.
* MST, Delaunay triangulations, fractional b-matchings, ...

Remarkable fact. Concorde has solved all 110 TSPLIB instances.

N

largest instance has 85,900 cities!

..... AT&T = 12:42 PM ="

The Traveling
Salesman Problem

>
2
)
m
O
<
>
=
I
m
>
=
(9]
7]

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

66

Euclidean traveling salesperson problem

Euclidean TSP. Given n points in the plane and a real number L, is there a

tour that visit every city exactly once that has distance < L?

Fact. 3-SAT <, EUCLIDEAN-TSP.

Remark. Not known to be in NP.

13509 cities in the USA and an optimal tour

VE+vV6+V18 < V4A+V12+ V12
8.928198407 < 8.928203230

THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

IS NP-COMPLETE*
T~ using rounded weights
Christos H. PAPADIMITRIOU

Center for Research in Computing Technology, Harvard University, Cambridge, MA 02138,
U.5.A.

Communicated by Richard Karp
Received August 1975
Revised July 1976

Abstract. The Traveling Salesman Problem is shown to be NP-Complete even if iic instances are
restricted tu be realizable by sets of points on the Euclidean plane.

67

Euclidean traveling salesperson problem

Theorem. [Arora 1998, Mitchell 1999] Given n points in the plane, for any
constant £ > 0: there exists a poly-time algorithm to find a tour whose length
is at most (1 + €) times that of the optimal tour.

Pf recipe. Structure theorem + divide-and-conquer + dynamic programming.

Polynomial Time Approximation Schemes for GUILLOTINE SUBDIVISIONS APPROXIMATE POLYGONAL

Euclidean Traveling Salesman and other Geometric SUBDIVISIONS: A SIMPLE POLYNOMIAL-TIME
APPROXIMATION SCHEME FOR GEOMETRIC TSP, K-MST, AND

Problems RELATED PROBLEMS

Sanjeev Arora JOSEPH S. B. MITCHELL*

Princeton University
Abstract. We show that any polygonal subdivision in the plane can be converted into an “m-

guillotine” subdivision whose length is at most (1 + ﬁ) times that of the original subdivision, for a
Association for Computing Machinery, Inc., 1515 Broadway, New York, NY 10036, USA small constant ¢. “m-Guillotine” subdivisions have a simple recursive structure that allows one to
Tel: (212) 555-1212; Fax: (212) 555-2000 search for shortest such subdivisions in polynomial time, using dynamic programming. In particular,
a consequence of our main theorem is a simple polynomial-time approximation scheme for geometric
instances of several network optimization problems, including the Steiner minimum spanning tree,
the traveling salesperson problem (TSP), and the &-MST problem.

‘We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For
every fixed ¢ > 1 and given any n nodes in %2, a randomized version of the scheme finds a
(14 1/c)-approximation to the optimum traveling salesman tour in O(n(logn)©(®)) time. When
the nodes are in R¢, the running time increases to O(n(log 7L)(O<\/EC>)G{_1). For every fixed ¢, d the
running time is n - poly(logn), i.e., nearly linear in n. The algorithm can be derandomized, but
this increases the running time by a factor O(nd) The previous best approximation algorithm
for the problem (due to Christofides) achieves a 3/2-approximation in polynomial time.

