Priority Queues

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Priority queue data type

A min-oriented priority queue supports the following core operations:

- **MAKE-HEAP()**: create an empty heap.
- **INSERT(H, x)**: insert an element x into the heap.
- **EXTRACT-MIN(H)**: remove and return an element with the smallest key.
- **DECREASE-KEY(H, x, k)**: decrease the key of element x to k.

The following operations are also useful:

- **IS-EMPTY(H)**: is the heap empty?
- **FIND-MIN(H)**: return an element with smallest key.
- **DELETE(H, x)**: delete element x from the heap.
- **MELD(H₁, H₂)**: replace heaps $H₁$ and $H₂$ with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.
Priority queue applications

Applications.

• A* search.
• Heapsort.
• Online median.
• Huffman encoding.
• Prim's MST algorithm.
• Discrete event-driven simulation.
• Network bandwidth management.
• Dijkstra's shortest-paths algorithm.
• ...

http://younginc.site11.com/source/5895/fos0092.html
Section 2.4

Priority Queues

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

![Complete tree with 16 nodes](image)

Property. Height of complete binary tree with \(n \) nodes is \(\lceil \log_2 n \rceil \).

Pf. Height increases (by 1) only when \(n \) is a power of 2. □
A complete binary tree in nature

Hyphaene Compressa - Doum Palm

© Shlomit Pinter
Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child \geq key in parent.
Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
- Maintain number of elements n.
- Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.
Implicit binary heap

Array representation. Indices start at 1.
- Take nodes in level order.
- Parent of node at k is at $\lfloor k/2 \rfloor$.
- Children of node at k are at $2k$ and $2k + 1$.
Binary heap demo

heap ordered

```
       6
      / \  
 10   8
 / \   / \  
12 18 11 25
/ \ / \ /
21 17 19
```
Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.
Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.

![Binary heap diagram]

- **Extract min.** Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.

- **Extract min.** Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.
Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

decrease key of node x to 11
Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of m \textsc{insert}, \textsc{extract-min}, and \textsc{decrease-key} operations with n \textsc{insert} operations takes $O(m \log n)$ time.

Pf.

- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is $O(n)$.

Theorem. In an explicit binary heap with n nodes, the operations \textsc{insert}, \textsc{decrease-key}, and \textsc{extract-min} take $O(\log n)$ time in the worst case.
Binary heap: find-min

Find the minimum. Return element in the root node.
Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

delete node x or y
Meld. Given two binary heaps H_1 and H_2, merge into a single binary heap.

Observation. No easy solution: $\Omega(n)$ time apparently required.
Binary heap: heapify

Heapify. Given \(n \) elements, construct a binary heap containing them.
Observation. Can do in \(O(n \log n) \) time by inserting each element.

Bottom-up method. For \(i = n \) to 1, repeatedly exchange the element in node \(i \) with its smaller child until subtree rooted at \(i \) is heap-ordered.
Binary heap: heapify

Theorem. Given \(n \) elements, can construct a binary heap containing those \(n \) elements in \(O(n) \) time.

Pf.
- There are at most \(\lceil n / 2^{h+1} \rceil \) nodes of height \(h \).
- The amount of work to sink a node is proportional to its height \(h \).
- Thus, the total work is bounded by:

\[
\sum_{h=0}^{\lceil \log_2 n \rceil} \left\lceil \frac{n}{2^{h+1}} \right\rceil \ h \leq \sum_{h=0}^{\lceil \log_2 n \rceil} n \ h \ / \ 2^h \\
\leq 2n \quad \blacksquare
\]

Corollary. Given two binary heaps \(H_1 \) and \(H_2 \) containing \(n \) elements in total, can implement \textsc{Meld} in \(O(n) \) time.
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Priority queues performance cost summary

Q. Reanalyze so that *EXTRACT-MIN* and *DELETE* take $O(1)$ amortized time?

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binary heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized
Section 2.4

Priority Queues

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Complete d-ary tree

d-ary tree. Empty or node with links to d disjoint d-ary trees.

Complete tree. Perfectly balanced, except for bottom level.

Fact. The height of a complete d-ary tree with n nodes is $\leq \lceil \log_d n \rceil$.
d-ary heap

d-ary heap. Heap-ordered complete d-ary tree.

Heap-ordered tree. For each child, the key in child \geq key in parent.
d-ary heap: insert

Insert. Add node at end; repeatedly exchange element in child with element in parent until heap order is restored.

Running time. Proportional to height = $O(\log_d n)$.
d-ary heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange element in parent with element in largest child until heap order is restored.

Running time. Proportional to $d \times \text{height} = O(d \log_d n)$.
d-ary heap: decrease key

Decrease key. Given a **handle** to an element \(x \), repeatedly exchange it with its parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n) \).
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked List</th>
<th>Binary Heap</th>
<th>D-ary Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
CHAPTER 6 (2ND EDITION)

PRIORITY QUEUES

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Goal. $O(\log n)$ INSERT, DECREASE-KEY, EXTRACT-MIN, and MELD.

mergeable heap
A data structure is described which can be used for representing a collection of priority queues. The primitive operations are insertion, deletion, union, update, and search for an item of earliest priority.

Key Words and Phrases: data structures, implementation of set operations, priority queues, mergeable heaps, binary trees

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1
Def. A binomial tree of order \(k \) is defined recursively:

- Order 0: single node.
- Order \(k \): one binomial tree of order \(k - 1 \) linked to another of order \(k - 1 \).
Binomial tree properties

Properties. Given an order k binomial tree B_k,

- Its height is k.
- It has 2^k nodes.
- It has $\binom{k}{i}$ nodes at depth i.
- The degree of its root is k.
- Deleting its root yields k binomial trees B_{k-1}, \ldots, B_0.

Pf. [by induction on k]
Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:

- Each tree is heap-ordered.
- There is either 0 or 1 binomial tree of order k.

Diagram of a binomial heap with nodes labeled 6, 3, and 18.
Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.
Binomial heap properties

Properties. Given a binomial heap with \(n \) nodes:

- The node containing the min element is a root of \(B_0, B_1, \ldots, \) or \(B_k \).
- It contains the binomial tree \(B_i \) iff \(b_i = 1 \), where \(b_k \cdot b_2 b_1 b_0 \) is binary representation of \(n \).
- It has \(\leq \lceil \log_2 n \rceil + 1 \) binomial trees.
- Its height \(\leq \lceil \log_2 n \rceil \).
Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Warmup. Easy if H_1 and H_2 are both binomial trees of order k.
- Connect roots of H_1 and H_2.
- Choose node with smaller key to be root of H.
Binomial Heap: Meld
Binomial Heap: Meld
Binomial Heap: Meld

19 + 7 = 26
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2 \left(\lfloor \log_2 n \rfloor + 1 \right)$.

$$19 + 7 = 26$$
Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete.

![Binomial heap diagram](image)
Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete.
- $H' \leftarrow$ broken binomial trees.
- $H \leftarrow \text{MELD}(H', H)$.

Running time. $O(\log n)$.
Binomial heap: decrease key

Decrease key. Given a handle to an element \(x \) in \(H \), decrease its key to \(k \).
- Suppose \(x \) is in binomial tree \(B_k \).
- Repeatedly exchange \(x \) with its parent until heap order is restored.

Running time. \(O(\log n) \).
Binomial heap: delete

Delete. Given a handle to an element x in a binomial heap, delete it.

- $\text{DECREASE-KEY}(H, x, -\infty)$.
- $\text{DELETE-MIN}(H)$.

Running time. $O(\log n)$.
Binomial heap: insert

Insert. Given a binomial heap H, insert an element x.

- $H' \leftarrow$ MAKE-HEAP().
- $H' \leftarrow$ INSERT(H', x).
- $H \leftarrow$ MELD(H', H).

Running time. $O(\log n)$.

![Diagram of a binomial heap with elements 3, 6, 18, 37, 30, 23, 22, 48, 31, 17, 44, 29, 10, 8, 3, 55, 32, 24, 50, 45].
Binomial heap: sequence of insertions

Insert. How much work to insert a new node x?
- If $n = \ldots 0$, then only 1 credit.
- If $n = \ldots 01$, then only 2 credits.
- If $n = \ldots 011$, then only 3 credits.
- If $n = \ldots 0111$, then only 4 credits.

Observation. Inserting one element can take $\Omega(\log n)$ time.

Theorem. Starting from an empty binomial heap, a sequence of n consecutive INSERT operations takes $O(n)$ time.

Pf. $(n / 2) (1) + (n / 4)(2) + (n / 8)(3) + \ldots \leq 2n$.
\[
\sum_{i=1}^{k} \frac{i}{2^i} = 2 - \frac{k}{2^k} - \frac{1}{2^{k-1}} \leq 2
\]
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of **INSERT** is $O(1)$ and the worst-case cost of **EXTRACT-MIN** and **DECREASE-KEY** is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 1. [**INSERT**]

- Actual cost $c_i = \text{number of trees merged} + 1$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 1 - \text{number of trees merged}$.
- Amortized cost $= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = 2$.

\[\text{Binomial heap: amortized analysis} \]
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of **INSERT** is $O(1)$ and the worst-case cost of **EXTRACT-MIN** and **DECREASE-KEY** is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0 \text{ for each binomial heap } H_i$.

Case 2. [**DECREASE-KEY**]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 0$.
- Amortized cost $\hat{c}_i = c_i = O(\log n)$.
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 3. [EXTRACT-MIN or DELETE]

- Actual cost $c_i = O(\log n)$.
- $\Delta\Phi = \Phi(H_i) - \Phi(H_{i-1}) \leq \Phi(H_i) \leq \lceil \log_2 n \rceil$.
- Amortized cost $\hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = O(\log n)$.

\blacksquare
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(1)†</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>MELD</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(1)†</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

† amortized

Hopeless challenge. O(1) INSERT, DECREASE-KEY and EXTRACT-MIN. Why?
Challenge. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.