Priority queue data type

A min-oriented priority queue supports the following core operations:

- **MAKE-HEAP()**: create an empty heap.
- **INSERT(H, x)**: insert an element x into the heap.
- **EXTRACT-MIN(H)**: remove and return an element with the smallest key.
- **DECREASE-KEY(H, x, k)**: decrease the key of element x to k.

The following operations are also useful:

- **IS-EMPTY(H)**: is the heap empty?
- **FIND-MIN(H)**: return an element with smallest key.
- **DELETE-MIN(H)**: delete element x from the heap.
- **MELD(H_1, H_2)**: replace heaps H_1 and H_2 with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.

Priority queue applications

Applications.
- A* search.
- Heapsort.
- Online median.
- Huffman encoding.
- Prim's MST algorithm.
- Discrete event-driven simulation.
- Network bandwidth management.
- Dijkstra's shortest-paths algorithm.
- ...
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

![Complete binary tree](image)

Property. Height of complete binary tree with n nodes is $\lceil \log_2 n \rceil$.

Pf. Height increases (by 1) only when n is a power of 2. \blacksquare

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered tree. For each child, the key in child \geq key in parent.

![Binary heap](image)

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
- Maintain number of elements n.
- Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.
Implicit binary heap

Array representation. Indices start at 1.
- Take nodes in level order.
- Parent of node at \(k \) is at \(\lfloor k / 2 \rfloor \).
- Children of node at \(k \) are at \(2k \) and \(2k + 1 \).

Binary heap demo

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.
Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

- **decrease key of node x to 11**

```
8
  
10
   
12
  18

6
```

Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of \(m \) INSERT, EXTRACT-MIN, and DECREASE-KEY operations with \(n \) INSERT operations takes \(O(m \log n) \) time.

Pf.
- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most \(\log_2 n \).
- The total cost of expanding and contracting the arrays is \(O(n) \).

Theorem. In an explicit binary heap with \(n \) nodes, the operations INSERT, DECREASE-KEY, and EXTRACT-MIN take \(O(\log n) \) time in the worst case.

Binary heap: find-min

Find the minimum. Return element in the root node.

```
7
  
10
   
12
  11
  25

root
```

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

- **delete node x or y**

```
7
  
10
   
12
  18

6
```

```
7
  
10
   
12
  18

6
```
Binary heap: meld

Meld. Given two binary heaps H_1 and H_2, merge into a single binary heap.

Observation. No easy solution: $\Omega(n)$ time apparently required.

![Binary heaps H1 and H2](image)

Binary heap: heapify

Theorem. Given n elements, can construct a binary heap containing those n elements in $O(n)$ time.

Pf.
- There are at most $[n/2^h+1]$ nodes of height h.
- The amount of work to sink a node is proportional to its height h.
- Thus, the total work is bounded by:

\[
\sum_{h=0}^{\lfloor \log_2 n \rfloor} \lfloor n/2^{h+1} \rfloor \cdot h \leq \sum_{h=0}^{\lfloor \log_2 n \rfloor} n h/2^h \leq 2n \]

Corollary. Given two binary heaps H_1 and H_2 containing n elements in total, can implement **MELD** in $O(n)$ time.

![Priority queues performance cost summary](image)
Priority queues performance cost summary

Q. Reanalyze so that \texttt{EXTRACT-MIN} and \texttt{DELETE} take $O(1)$ amortized time?

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binary heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$ †</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

† amortized

Complete d-ary tree

\textbf{d-ary tree.} Empty or node with links to d disjoint d-ary trees.

\textbf{Complete tree.} Perfectly balanced, except for bottom level.

![Complete d-ary tree diagram]

Fact. The height of a complete d-ary tree with n nodes is $\leq \lceil \log_d n \rceil$.

d-ary heap

\textbf{d-ary heap.} Heap-ordered complete d-ary tree.

\textbf{Heap-ordered tree.} For each child, the key in child \geq key in parent.

![d-ary heap diagram]
d-ary heap: insert

Insert. Add node at end; repeatedly exchange element in child with element in parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n)\).

d-ary heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange element in parent with element in largest child until heap order is restored.

Running time. Proportional to \(d \times \text{height} = O(d \log_d n)\).

d-ary heap: decrease key

Decrease key. Given a handle to an element \(x\), repeatedly exchange it with its parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n)\).

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>DELETE</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>MELD</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Priority Queues

- Binary heaps
- D-ary heaps
- Binomial heaps
- Fibonacci heaps

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked List</th>
<th>Binary Heap</th>
<th>D-ary Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(d \log_d n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Goal. $O(\log n)$ INSERT, DECREASE-KEY, EXTRACT-MIN, and MELD.

Binomial heaps

- A data structure for manipulating priority queues

Binomial tree

Def. A binomial tree of order k is defined recursively:
- Order 0: single node.
- Order k: one binomial tree of order $k - 1$ linked to another of order $k - 1$.

![Binomial tree diagram]
Binomial tree properties

Properties. Given an order \(k \) binomial tree \(B_k \),
- Its height is \(k \).
- It has \(2^k \) nodes.
- It has \(\binom{k}{i} \) nodes at depth \(i \).
- The degree of its root is \(k \).
- Deleting its root yields \(k \) binomial trees \(B_{k-1}, \ldots, B_0 \).

Pf. [by induction on \(k \)]

Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:
- Each tree is heap-ordered.
- There is either 0 or 1 binomial tree of order \(k \).

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.

Binomial heap properties

Properties. Given a binomial heap with \(n \) nodes:
- The node containing the min element is a root of \(B_0, B_1, \ldots, B_k \).
- It contains the binomial tree \(B_i \) iff \(b_i = 1 \), where \(b_k b_{k-1} \ldots b_0 \) is binary representation of \(n \).
- It has \(\leq \lceil \log_2 n \rceil + 1 \) binomial trees.
- Its height \(\leq \lfloor \log_2 n \rfloor \).
Binomial Heap: meld

Meld operation. Given two binomial heaps \(H_1 \) and \(H_2 \), (destructively) replace with a binomial heap \(H \) that is the union of the two.

Warmup. Easy if \(H_1 \) and \(H_2 \) are both binomial trees of order \(k \).
- Connect roots of \(H_1 \) and \(H_2 \).
- Choose node with smaller key to be root of \(H \).
Binomial heap: meld

Meld operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2 \left(\lceil \log_2 n \rceil + 1 \right)$. □

```
19 + 7 = 26
```

![Diagram of meld operation](image)

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete.
- $H' \leftarrow$ broken binomial trees.
- $H \leftarrow \text{MELD}(H', H)$.

Running time. $O(\log n)$.

![Diagram of extract-min operation](image)

Binomial heap: decrease key

Decrease key. Given a handle to an element x in H, decrease its key to k.

- Suppose x is in binomial tree B_i.
- Repeatedly exchange x with its parent until heap order is restored.

Running time. $O(\log n)$.
Binomial heap: delete

Delete. Given a handle to an element \(x \) in a binomial heap, delete it.
- Decrease-Key(\(H, x, -\infty \)).
- Delete-Min(\(H \)).

Running time. \(O(\log n) \).

Binomial heap: insert

Insert. Given a binomial heap \(H \), insert an element \(x \).
- \(H' \leftarrow \text{MAKE-HEAP}() \).
- \(H' \leftarrow \text{INSERT}(H', x) \).
- \(H \leftarrow \text{MELD}(H', H) \).

Running time. \(O(\log n) \).

Binomial heap: sequence of insertions

Insert. How much work to insert a new node \(x \)?
- If \(n = \ldots 0 \), then only 1 credit.
- If \(n = \ldots 01 \), then only 2 credits.
- If \(n = \ldots 011 \), then only 3 credits.
- If \(n = \ldots 0111 \), then only 4 credits.

Observation. Inserting one element can take \(\Omega(\log n) \) time.

Theorem. Starting from an empty binomial heap, a sequence of \(n \) consecutive INSERT operations takes \(O(n) \) time.

Pf. \((n / 2) + (n / 4)(2) + (n / 8)(3) + \ldots \leq 2n \).
 \[
 \sum_{k=1}^{\infty} \frac{i}{2^k} = 2 - \frac{k}{2^k} - \frac{1}{2^{k-1}} \leq 2
 \]

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is \(O(1) \) and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is \(O(\log n) \).

Pf. Define potential function \(\Phi(H_i) = \text{trees}(H_i) = \# \) trees in binomial heap \(H_i \).
 - \(\Phi(H_0) = 0 \).
 - \(\Phi(H_i) \geq 0 \) for each binomial heap \(H_i \).

Case 1. [INSERT]
- Actual cost \(c_i = \# \) number of trees merged + 1.
- \(\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 1 - \# \) number of trees merged.
- Amortized cost = \(\hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = 2 \).
Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \#\text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 2. [DECREASE-KEY]
- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 0$.
- Amortized cost $= \hat{c}_i = c_i = O(\log n)$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \#\text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 3. [EXTRACT-MIN or DELETE]
- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) \leq \Phi(H_i) \leq \log_2 n$.
- Amortized cost $= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = O(\log n)$.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

\dagger amortized

Hopeless challenge. $O(1)$ INSERT, DECREASE-KEY and EXTRACT-MIN. Why?

Challenge. $O(1)$ INSERT and DECREASE-KEY, $O(\log n)$ EXTRACT-MIN.