DATA STRUCTURES I, II, III, AND IV

I. Amortized Analysis
II. Binary and Binomial Heaps
III. Fibonacci Heaps
IV. Union–Find

Lecture slides by Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time), produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union–find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...
Appetizer

Goal. Design a data structure to support all operations in $O(1)$ time.
- **INIT(n):** create and return an *initialized* array (all zero) of length n.
- **READ(A, i):** return element i in array.
- **WRITE($A, i, value$):** set element i in array to $value$.

Assumptions.
- Can **malloc** an uninitialized array of length n in $O(1)$ time.
- Given an array, can read or write element i in $O(1)$ time.

Remark. An array does **INIT** in $\Theta(n)$ time and **READ** and **WRITE** in $\Theta(1)$ time.
Appetizer

Data structure. Three arrays $A[1..n]$, $B[1..n]$, and $C[1..n]$, and an integer k.

- $A[i]$ stores the current value for READ (if initialized).
- $k =$ number of initialized entries.
- $C[j] =$ index of j^{th} initialized element for $j = 1, \ldots, k$.
- If $C[j] = i$, then $B[i] = j$ for $j = 1, \ldots, k$.

Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. Ahead.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B[\]$</td>
<td>?</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>?</td>
<td>2</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>$C[\]$</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

$k = 4$

Appetizer

INIT \((A, n)\)

\[
k \leftarrow 0.
\]
\[
A \leftarrow \text{MALLOC}(n).
\]
\[
B \leftarrow \text{MALLOC}(n).
\]
\[
C \leftarrow \text{MALLOC}(n).
\]

READ \((A, i)\)

\[
\text{IF} \ (\text{IS-INITIALIZED} \ (A[i]))
\]
\[
\text{RETURN} \ A[i].
\]
\[
\text{ELSE}
\]
\[
\text{RETURN} \ 0.
\]

WRITE \((A, i, value)\)

\[
\text{IF} \ (\text{IS-INITIALIZED} \ (A[i]))
\]
\[
A[i] \leftarrow \text{value}.
\]
\[
\text{ELSE}
\]
\[
k \leftarrow k + 1.
\]
\[
A[i] \leftarrow \text{value}.
\]
\[
B[i] \leftarrow k.
\]
\[
C[k] \leftarrow i.
\]

IS-INITIALIZED \((A, i)\)

\[
\text{IF} \ (1 \leq B[i] \leq k) \text{ and } (C[B[i]] = i)
\]
\[
\text{RETURN} \ true.
\]
\[
\text{ELSE}
\]
\[
\text{RETURN} \ false.
\]
Theorem. $A[i]$ is initialized iff both $1 \leq B[i] \leq k$ and $C[B[i]] = i$.

Pf. \Rightarrow

- Suppose $A[i]$ is the j^{th} entry to be initialized.
- Then $C[j] = i$ and $B[i] = j$.
- Thus, $C[B[i]] = i$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B[i]$</td>
<td>?</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>?</td>
<td>2</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C[i]$</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

$k = 4$

Theorem. \(A[i] \) is initialized iff both \(1 \leq B[i] \leq k \) and \(C[B[i]] = i \).

Pf. \(\iff \)

- Suppose \(A[i] \) is uninitialized.
- If \(B[i] < 1 \) or \(B[i] > k \), then \(A[i] \) clearly uninitialized.
- If \(1 \leq B[i] \leq k \) by coincidence, then we still can’t have \(C[B[i]] = i \) because none of the entries \(C[1..k] \) can equal \(i \).

\[k = 4 \]

\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}

Amortized Analysis

- binary counter
- multi-pop stack
- dynamic table

Lecture slides by Kevin Wayne
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure operation as function of the input size n.

Amortized analysis. Determine worst-case running time of a sequence of n data structure operations.

Ex. Starting from an empty stack implemented with a dynamic table, any sequence of n push and pop operations takes $O(n)$ time in the worst case.
Amortized analysis: applications

- Splay trees.
- Dynamic table.
- Fibonacci heaps.
- Garbage collection.
- Move-to-front list updating.
- Push–relabel algorithm for max flow.
- Path compression for disjoint-set union.
- Structural modifications to red–black trees.
- Security, databases, distributed computing, ...

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging over time. Amortized running time is a realistic but robust complexity measure for which we can obtain surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing algorithms whose amortized complexity is low, we obtain "self-adjusting" data structures that are simple, flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

AMS(MOS) subject classifications. 68C25, 68E05
Amortized Analysis

- binary counter
- multi-pop stack
- dynamic table
Binary counter

Goal. Increment a k-bit binary counter (mod 2^k).

Representation. $A[j] = j^{\text{th}}$ least significant bit of counter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cost model. Number of bits flipped.
Binary counter

Goal. Increment a k-bit binary counter $(\text{mod } 2^k)$.

Representation. $A[j] = j^{th}$ least significant bit of counter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(nk)$ bits. **overly pessimistic upper bound**

Pf. At most k bits flipped per increment. ■
Aggregate method (brute force)

Aggregate method. Analyze cost of a sequence of operations.

<table>
<thead>
<tr>
<th>Counter value</th>
<th>A0</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>31</td>
</tr>
</tbody>
</table>
Binary counter: aggregate method

Starting from the zero counter, in a sequence of \(n \) INCREMENT operations:
- Bit 0 flips \(n \) times.
- Bit 1 flips \(\lfloor n/2 \rfloor \) times.
- Bit 2 flips \(\lfloor n/4 \rfloor \) times.
- ...

Theorem. Starting from the zero counter, a sequence of \(n \) INCREMENT operations flips \(O(n) \) bits.

Pf.
- Bit \(j \) flips \(\lfloor n/2^j \rfloor \) times.
- The total number of bits flipped is
 \[
 \sum_{j=0}^{k-1} \left\lfloor \frac{n}{2^j} \right\rfloor < n \sum_{j=0}^{\infty} \frac{1}{2^j} = 2n \; \blacksquare
 \]

Remark. Theorem may be false if initial counter is not zero.
Accounting method (banker’s method)

Assign (potentially) different charges to each operation.
- \(D_i\) = data structure after \(i^{th}\) operation.
- \(c_i\) = actual cost of \(i^{th}\) operation.
- \(\hat{c}_i\) = amortized cost of \(i^{th}\) operation = amount we charge operation \(i\).
- When \(\hat{c}_i > c_i\), we store credits in data structure \(D_i\) to pay for future ops; when \(\hat{c}_i < c_i\), we consume credits in data structure \(D_i\).
- Initial data structure \(D_0\) starts with 0 credits.

Credit invariant. The total number of credits in the data structure \(\geq 0\).

\[\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0 \]

Our job is to choose suitable amortized costs so that this invariant holds.

Can be more or less than actual cost.

initial data structure \(D_0\) starts with 0 credits.
Accounting method (banker’s method)

Assign (potentially) different charges to each operation.

• $D_i = \text{data structure after } i^{th} \text{ operation.}$
• $c_i = \text{actual cost of } i^{th} \text{ operation.}$
• $\hat{c}_i = \text{amortized cost of } i^{th} \text{ operation} = \text{amount we charge operation } i.$
• When $\hat{c}_i > c_i,$ we store credits in data structure D_i to pay for future ops; when $\hat{c}_i < c_i,$ we consume credits in data structure $D_i.$
• Initial data structure D_0 starts with 0 credits.

Credit invariant. The total number of credits in the data structure $\geq 0.$

$$\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$$

Theorem. Starting from the initial data structure $D_0,$ the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of n operations is: $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i.$

Intuition. Measure running time in terms of credits (time = money).
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
- Flip bit \(j \) from 0 to 1: charge 2 credits (use one and save one in bit \(j \)).
- Flip bit \(j \) from 1 to 0: pay for it with the 1 credit saved in bit \(j \).

increment

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Increment diagram]
Binary counter: accounting method

Credits. One credit pays for a bit flip.

Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.
- Flip bit j from 0 to 1: charge 2 credits (use one and save one in bit j).
- Flip bit j from 1 to 0: pay for it with the 1 credit saved in bit j.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Chip](image1.png) ![Chip](image2.png)
Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each 1 bit has one credit; each 0 bit has zero credits.

Accounting.

- Flip bit \(j \) from 0 to 1: charge 2 credits (use one and save one in bit \(j \)).
- Flip bit \(j \) from 1 to 0: pay for it with the 1 credit saved in bit \(j \).

Theorem. Starting from the zero counter, a sequence of \(n \) INCREMENT operations flips \(O(n) \) bits.

Pf.

- Each INCREMENT operation flips at most one 0 bit to a 1 bit, so the amortized cost per INCREMENT \(\leq 2 \).
- Invariant \(\Rightarrow \) number of credits in data structure \(\geq 0 \).
- Total actual cost of \(n \) operations \(\leq \) sum of amortized costs \(\leq 2n \). □

accounting method theorem
Potential method (physicist’s method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i.

Actual and amortized costs.

- $c_i = \text{actual cost of } i^{th} \text{ operation.}$
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = \text{amortized cost of } i^{th} \text{ operation}.$

Our job is to choose a potential function so that the amortized cost of each operation is low.
Potential method (physicist’s method)

Potential function. $\Phi(D_i)$ maps each data structure D_i to a real number s.t.:
- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each data structure D_i.

Actual and amortized costs.
- $c_i =$ actual cost of i^{th} operation.
- $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) =$ amortized cost of i^{th} operation.

Theorem. Starting from the initial data structure D_0, the total actual cost of any sequence of n operations is at most the sum of the amortized costs.

Pf. The amortized cost of the sequence of operations is:

$$\sum_{i=1}^{n} \hat{c}_i = \sum_{i=1}^{n} (c_i + \Phi(D_i) - \Phi(D_{i-1}))$$

$$= \sum_{i=1}^{n} c_i + \Phi(D_n) - \Phi(D_0)$$

$$\geq \sum_{i=1}^{n} c_i \quad \blacksquare$$
Binary counter: potential method

Potential function. Let $\Phi(D) =$ number of 1 bits in the binary counter D.
- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Increment

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Binary counter: potential method

Potential function. Let $\Phi(D) =$ number of 1 bits in the binary counter D.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

increment

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Binary counter: potential method

Potential function. Let $\Phi(D) = \text{number of 1 bits in the binary counter } D$.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Binary counter: potential method

Potential function. Let $\Phi(D) =$ number of 1 bits in the binary counter D.
- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Theorem. Starting from the zero counter, a sequence of n INCREMENT operations flips $O(n)$ bits.

Pf.
- Suppose that the i^{th} INCREMENT operation flips t_i bits from 1 to 0.
- The actual cost $c_i \leq t_i + 1$. \hspace{1cm}
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $\leq c_i + 1 - t_i$ \hspace{1cm}
 potential decreases by 1 for t_i bits flipped from 1 to 0
 and increases by 1 for bit flipped from 0 to 1
 \hspace{1cm}≤ 2.
- Total actual cost of n operations \leq sum of amortized costs $\leq 2n$. □

potential method theorem
Famous potential functions

Fibonacci heaps. \(\Phi(H) = 2 \text{trees}(H) + 2 \text{marks}(H) \)

Splay trees. \(\Phi(T') = \sum_{x \in T} \left\lfloor \log_2 \text{size}(x) \right\rfloor \)

Move-to-front. \(\Phi(L) = 2 \text{inversions}(L, L^*) \)

Preflow–push. \(\Phi(f) = \sum_{v : \text{excess}(v) > 0} \text{height}(v) \)

Red–black trees. \(\Phi(T) = \sum_{x \in T} w(x) \)

\[
w(x) = \begin{cases}
0 & \text{if } x \text{ is red} \\
1 & \text{if } x \text{ is black and has no red children} \\
0 & \text{if } x \text{ is black and has one red child} \\
2 & \text{if } x \text{ is black and has two red children}
\end{cases}
\]
Amortized Analysis

- binary counter
- multi-pop stack
- dynamic table

Section 17.4
Multipop stack

Goal. Support operations on a set of elements:

- **PUSH**(S, x): add element x to stack S.
- **POP**(S): remove and return the most-recently added element.
- **MULTI-POP**(S, k): remove the most-recently added k elements.

MULTI-POP(S, k)

FOR $i = 1$ TO k

POP(S).

Exceptions. We assume **POP** throws an exception if stack is empty.
Multipop stack

Goal. Support operations on a set of elements:
- $\text{PUSH}(S, x)$: add element x to stack S.
- $\text{POP}(S)$: remove and return the most-recently added element.
- $\text{MULTI-POP}(S, k)$: remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n PUSH, POP, and MULTI-POP operations takes $O(n^2)$ time.

Pf.
- Use a singly linked list.
- POP and PUSH take $O(1)$ time each.
- MULTI-POP takes $O(n)$ time. □

![Linked list diagram](image)
Multipop stack: aggregate method

Goal. Support operations on a set of elements:
- \textbf{PUSH}(S, x): add element x to stack S.
- \textbf{POP}(S): remove and return the most-recently added element.
- \textbf{MULTI-POP}(S, k): remove the most-recently added k elements.

Theorem. Starting from an empty stack, any intermixed sequence of n \textbf{PUSH}, \textbf{POP}, and \textbf{MULTI-POP} operations takes $O(n)$ time.

Pf.
- An element is popped at most once for each time that it is pushed.
- There are $\leq n$ \textbf{PUSH} operations.
- Thus, there are $\leq n$ \textbf{POP} operations (including those made within \textbf{MULTI-POP}).
Multipop stack: accounting method

Credits. 1 credit pays for either a \texttt{PUSH} or \texttt{POP}.

Invariant. Every element on the stack has 1 credit.

Accounting.
- \texttt{PUSH}(S, x): charge 2 credits.
 - use 1 credit to pay for pushing \(x \) now
 - store 1 credit to pay for popping \(x \) at some point in the future
- \texttt{POP}(S): charge 0 credits.
- \texttt{MULTIPOP}(S, k): charge 0 credits.

Theorem. Starting from an empty stack, any intermixed sequence of \(n \) \texttt{PUSH}, \texttt{POP}, and \texttt{MULTIPOP} operations takes \(O(n) \) time.

Pf.
- Invariant \(\Rightarrow \) number of credits in data structure \(\geq 0 \).
- Amortized cost per operation \(\leq 2 \).
- Total actual cost of \(n \) operations \(\leq \) sum of amortized costs \(\leq 2n \). \(\blacksquare \)
Multipop stack: potential method

Potential function. Let $\Phi(D) =$ number of elements currently on the stack.
- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Theorem. Starting from an empty stack, any intermixed sequence of n \textsc{Push}, \textsc{Pop}, and \textsc{Multi-Pop} operations takes $O(n)$ time.

Pf. [Case 1: push]
- Suppose that the i^{th} operation is a \textsc{Push}.
- The actual cost $c_i = 1$.
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$.
Multipop stack: potential method

Potential function. Let \(\Phi(D) \) = number of elements currently on the stack.

- \(\Phi(D_0) = 0 \).
- \(\Phi(D_i) \geq 0 \) for each \(D_i \).

Theorem. Starting from an empty stack, any intermixed sequence of \(n \) \textsc{Push}, \textsc{Pop}, and \textsc{Multi-Pop} operations takes \(O(n) \) time.

Pf. [Case 2: \textsc{pop}]

- Suppose that the \(i^{th} \) operation is a \textsc{Pop}.
- The actual cost \(c_i = 1 \).
- The amortized cost \(\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 - 1 = 0 \).
Multipop stack: potential method

Potential function. Let $\Phi(D)$ = number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Theorem. Starting from an empty stack, any intermixed sequence of n \texttt{PUSH}, \texttt{POP}, and \texttt{MULTI-POP} operations takes $O(n)$ time.

Pf. [Case 3: multi-pop]

- Suppose that the i^{th} operation is a \texttt{MULTI-POP} of k objects.
- The actual cost $c_i = k$.
- The amortized cost $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k - k = 0$. \blacksquare
Multipop stack: potential method

Potential function. Let $\Phi(D) =$ number of elements currently on the stack.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Theorem. Starting from an empty stack, any intermixed sequence of n \textsc{push}, \textsc{pop}, and \textsc{multi-pop} operations takes $O(n)$ time.

Pf. [putting everything together]

- Amortized cost $\hat{c}_i \leq 2$. \hspace{1cm} $\leftarrow 2$ for push; 0 for pop and multi-pop
- Sum of amortized costs \hat{c}_i of the n operations $\leq 2n$.
- Total actual cost \leq sum of amortized cost $\leq 2n$. \blacksquare
Amortized Analysis

- binary counter
- multi-pop stack
- dynamic table
Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).

- Two operations: **INSERT** and **DELETE**.
 - too many items inserted ⇒ **expand** table.
 - too many items deleted ⇒ **contract** table.
- Requirement: if table contains \(m \) items, then space = \(\Theta(m) \).

Theorem. Starting from an empty dynamic table, any intermixed sequence of \(n \) **INSERT** and **DELETE** operations takes \(O(n^2) \) time.

Pf. Each **INSERT** or **DELETE** takes \(O(n) \) time. •

overly pessimistic upper bound
Dynamic table: insert only

- When inserting into an empty table, allocate a table of capacity 1.
- When inserting into a full table, allocate a new table of twice the capacity and copy all items.
- Insert item into table.

<table>
<thead>
<tr>
<th>insert</th>
<th>old capacity</th>
<th>new capacity</th>
<th>insert cost</th>
<th>copy cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>16</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
<td>⋮</td>
</tr>
</tbody>
</table>

Cost model. Number of items written (due to insertion or copy).
Dynamic table: insert only (aggregate method)

Theorem. [via aggregate method] Starting from an empty dynamic table, any sequence of \(n \) \texttt{INSERT} operations takes \(O(n) \) time.

Pf. Let \(c_i \) denote the cost of the \(i^{th} \) insertion.

\[
c_i = \begin{cases}
 i & \text{if } i - 1 \text{ is an exact power of 2} \\
 1 & \text{otherwise}
\end{cases}
\]

Starting from empty table, the cost of a sequence of \(n \) \texttt{INSERT} operations is:

\[
\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \lg n \rfloor} 2^j < n + 2n = 3n \quad \blacksquare
\]
Dynamic table demo: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

insert N

capacity = 16

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th></th>
</tr>
</thead>
</table>

![Dynamic table diagram with inserted tokens](image-url)
Dynamic table: insert only (accounting method)

Insert. Charge 3 credits (use 1 credit to insert; save 2 with new item).

Invariant. 2 credits with each item in right half of table; none in left half.

Pf. [induction]
- Each newly inserted item gets 2 credits.
- When table doubles from k to $2k$, $k/2$ items in the table have 2 credits.
 - these k credits pay for the work needed to copy the k items
 - now, all k items are in left half of table (and have 0 credits)

Theorem. [via accounting method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf.
- Invariant \implies number of credits in data structure ≥ 0.
- Amortized cost per INSERT = 3.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3n$. □
Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i)$.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

\[\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i) \]

\[\Phi(D_i) \geq 0 \quad \text{for each } D_i \]

\[\text{size} = 6 \]
\[\text{capacity} = 8 \]
\[\Phi = 4 \]
Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of \(n \) INSERT operations takes \(O(n) \) time.

Pf. Let \(\Phi(D_i) = 2 \text{ size}(D_i) - \text{capacity}(D_i) \).

- \(\Phi(D_0) = 0 \).
- \(\Phi(D_i) \geq 0 \) for each \(D_i \).

Case 0. [first insertion]

- Actual cost \(c_1 = 1 \).
- \(\Phi(D_1) - \Phi(D_0) = (2 \text{ size}(D_1) - \text{capacity}(D_1)) - (2 \text{ size}(D_0) - \text{capacity}(D_0)) \)
 \[= 1.\]
- Amortized cost \(\hat{c}_i = c_i + (\Phi(D_1) - \Phi(D_0)) \)
 \[= 1 + 1\]
 \[= 2.\]
Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{size}(D_i) - \text{capacity}(D_i)$.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Case 1. [no array expansion] $\text{capacity}(D_i) = \text{capacity}(D_{i-1})$.

- Actual cost $c_i = 1$.
- $\Phi(D_i) - \Phi(D_{i-1}) = (2 \text{size}(D_i) - \text{capacity}(D_i)) - (2 \text{size}(D_{i-1}) - \text{capacity}(D_{i-1}))$

 \[= 2. \]
- Amortized cost $\hat{c}_i = c_i + (\Phi(D_i) - \Phi(D_{i-1}))$

 \[= 1 + 2 \]

 \[= 3. \]
Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{size}(D_i) - \text{capacity}(D_i)$.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

Case 2. [array expansion] $\text{capacity}(D_i) = 2 \text{capacity}(D_{i-1})$.

- Actual cost $c_i = 1 + \text{capacity}(D_{i-1})$.
- $\Phi(D_i) - \Phi(D_{i-1}) = (2 \text{size}(D_i) - \text{capacity}(D_i)) - (2 \text{size}(D_{i-1}) - \text{capacity}(D_{i-1}))$
 $= 2 - \text{capacity}(D_i) + \text{capacity}(D_{i-1})$
 $= 2 - \text{capacity}(D_{i-1}).$
- Amortized cost $\hat{c}_i = c_i + (\Phi(D_i) - \Phi(D_{i-1}))$
 $= 1 + \text{capacity}(D_{i-1}) + (2 - \text{capacity}(D_{i-1}))$
 $= 3.$
Dynamic table: insert only (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any sequence of n INSERT operations takes $O(n)$ time.

Pf. Let $\Phi(D_i) = 2 \text{size}(D_i) - \text{capacity}(D_i)$.

- $\Phi(D_0) = 0$.
- $\Phi(D_i) \geq 0$ for each D_i.

[putting everything together]
- Amortized cost per operation $\hat{c}_i \leq 3$.
- Total actual cost of n operations \leq sum of amortized cost $\leq 3n$. \blacksquare
Dynamic table: doubling and halving

Thrashing.
- **INSERT**: when inserting into a full table, double capacity.
- **DELETE**: when deleting from a table that is \(\frac{1}{2} \)-full, halve capacity.

Efficient solution.
- When inserting into an empty table, initialize table size to 1; when deleting from a table of size 1, free the table.
- **INSERT**: when inserting into a full table, double capacity.
- **DELETE**: when deleting from a table that is \(\frac{1}{4} \)-full, halve capacity.

Memory usage. A dynamic table uses \(\Theta(n) \) memory to store \(n \) items.

Pf. Table is always between 25% and 100% full. □
Dynamic table demo: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

delete M

capacity = 16

| A | B | C | D | E | F | G | H | I | J | K | L | M |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

![Image of tokens]
Dynamic table: insert and delete (accounting method)

Insert. Charge 3 credits (1 to insert; save 2 with item if in right half).

Delete. Charge 2 credits (1 to delete; save 1 in empty slot if in left half).

Invariant 1. 2 credits with each item in right half of table.

Invariant 2. 1 credit with each empty slot in left half of table.

Theorem. [via accounting method] Starting from an empty dynamic table, any intermixed sequence of \(n \) INSERT and DELETE operations takes \(O(n) \) time.

Pf.
- Invariants \(\Rightarrow \) number of credits in data structure \(\geq 0 \).
- Amortized cost per operation \(\leq 3 \).
- Total actual cost of \(n \) operations \(\leq \) sum of amortized cost \(\leq 3n \). □
Dynamic table: insert and delete (potential method)

Theorem. [via potential method] Starting from an empty dynamic table, any intermixed sequence of n INSERT and DELETE operations takes $O(n)$ time.

Pf sketch.

- Let $\alpha(D_i) = \text{size}(D_i) / \text{capacity}(D_i)$.

- Define $\Phi(D_i) = \begin{cases} 2 \text{size}(D_i) - \text{capacity}(D_i) & \text{if } \alpha(D_i) \geq 1/2 \\ \frac{1}{2} \text{capacity}(D_i) - \text{size}(D_i) & \text{if } \alpha(D_i) < 1/2 \end{cases}$

- $\Phi(D_0) = 0, \Phi(D_i) \geq 0$. [a potential function]
- When $\alpha(D_i) = 1/2, \Phi(D_i) = 0$. [zero potential after resizing]
- When $\alpha(D_i) = 1, \Phi(D_i) = \text{size}(D_i)$. [can pay for expansion]
- When $\alpha(D_i) = 1/4, \Phi(D_i) = \text{size}(D_i)$. [can pay for contraction]

...