e 13. RANDOMIZED ALGORITHMS

» contention resolution
» global min cut
» linearity of expectation
, d » max 3-satistiability
N Mo Desion— » emiversal hoshing
1 JON'.‘KlHNBERG“ EVA TAR&OS 4 C/‘lel‘nOfI[bounds

1\

» load balancing

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 1/5/22 12:31 PM

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne

Randomization

Algorithmic design patterns.
« Greedy.

Divide-and-conquer.

Dynamic programming.

Network flow.

Randomization.
in practice, access to a pseudo-random number generator

v

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for
a particular problem.

Ex. Symmetry-breaking protocols, graph algorithms, quicksort, hashing,
load balancing, closest pair, Monte Carlo integration, cryptography,

13. RANDOMIZED ALGORITHMS

» contention resolution

/~\Ig thm Design

r\ JON KLEINBERG - EVA TARDOS
\

Contention resolution in a distributed system

Contention resolution. Given n processes P,, ..., P,, each competing for
access to a shared database. If two or more processes access the database
simultaneously, all processes are locked out. Devise protocol to ensure all
processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

Contention resolution: randomized protocol

Protocol. Each process requests access to the database at time ¢ with
probability p = 1/n.

Claim. Let S[i, 7] = event that process i succeeds in accessing the database at
timer. Then 1/(e-n) < Pr[S(@,] < 1/2n).

Pf. By independence, Pr[S(,H]=p(1-p)n-1.
/ N\

process i requests access none of remaining n-1 processes request access

* Setting p=1/n, we have Pr[S(i,1)] = 1/n(1—-1/n)n-1, =

~

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:
* (1-1/n)» converges monotonically from 1/4 up to 1/ e.
* (1-1/n)»-1 converges monotonically from 1/2 down to 1/ e.

Contention resolution: randomized protocol

Claim. The probability that process i fails to access the database in
en rounds is at most 1/ e. After e - n (c In n) rounds, the probability <n—.

Pf. Let F[i,] = event that process i fails to access database in rounds 1
through t. By independence and previous claim, we have
Pr [F[i,f]] = (1 - 1/(en)).

- Choose r=[e-n]: Pr{F(i,)] = (—i)w < _j)e” < 1

« Choose tr=[e-n][cInn]: Pr[F(i,t)]

IA
Ve
N =
N

@)
[u—"
-
S
Il
>
I
o

Contention resolution: randomized protocol

Claim. The probability that all processes succeed within 2e -nInn rounds
IS>1-1/n.

Pf. Let F[f] = event that at least one of the n processes fails to access
database in any of the rounds 1 through +.

P F[1]] - Pr[OF[i,t]] < SPUFLAL < n(1-4)
=1 i=1
1 1

union bound previous slide

* Choosing t=2[en][cInn]yields Pr[F[tf]]<sn-n2=1/n. =

13. RANDOMIZED ALGORITHMS

» global min cut

/~\Ig thm Design

r\ JON KLEINBERG - EVA TARDOS
\

Global minimum cut

Global min cut. Given a connected, undirected graph G=(V,E),
find a cut (4, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related
documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
* Replace every edge (u,v) with two antiparallel edges (u,v) and (v, u).
* Pick some vertex s and compute min s—v cut separating s from each
other node vE V.

False intuition. Global min-cut is harder than min s-r cut.

Contraction algorithm

Contraction algorithm. [Karger 1995]
* Pick an edge e = (u, v) uniformly at random.
* Contract edge e.
- replace u and v by single new super-node w
- preserve edges, updating endpoints of x and v to w
- keep parallel edges, but delete self-loops
« Repeat until graph has just two nodes u; and v,.

- Return the cut (all nodes that were contracted to form v,).

; a b
contract u-v y

10

Contraction algorithm

Contraction algorithm. [Karger 1995]

* Pick an edge e = (u, v) uniformly at random.

* Contract edge e.
- replace u and v
- preserve edges

by single new super-node w

, updating endpoints of u and v to w

- keep parallel edges, but delete self-loops

« Repeat until grap
« Return the cut (al

SREEEYY
AEEAFTE

n has just two nodes u, and v,.

nodes that were contracted to form v,).

—>0

Reference: Thore Husfeldt

11

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/n?.

Pf. Consider a global min-cut (A*, B¥) of G.
* Let F* be edges with one endpoint in A* and the other in B*.

let £k = | F*| = size of min cut.

In first step, algorithm contracts an edge in F* probability £/ E].

Every node has degree =k since otherwise (A*, B¥) would not be
amin-cut = |El=z%kn < k/IE|l < 2/n.

Thus, algorithm contracts an edge in F* with probability < 2 /.

12

Contraction algorithm

Claim. The contraction algorithm returns a min cut with prob > 2/n?.

Pf. Consider a global min-cut (A*, B¥) of G.

Pr[E, NE, ---NE,_, |

Let F** be edges with one endpoint in A* and the other in B*.

Let k = | F*| = size of min cut.

Let G’ be graph after j iterations. There are n' =n—j supernodes.
Suppose no edge in F* has been contracted. The min-cut in G’ is still .
Since value of min-cutis k, |[E'l=%kn' < k/IE'l <2/n.

Thus, algorithm contracts an edge in F* with probability < 2/n#'.

Let E; = event that an edge in F* is not contracted in iteration ;.

Pr[E,] x Pr[E, |E] x --- x Pr[E, , |[EENE,---NE ;]

(1-3) (1) (-3) (-3

\Y

Il
—_

S
S|

(\)
~——
—_——
SIS
[
—_
~———
=
SN\
~ B
=
W =
N—

\
N

n 13

Contraction algorithm

Amplification. To amplify the probability of success, run the contraction
algorithm many times.

with independent random choices,

/

Claim. If we repeat the contraction algorithm »?In n times,
then the probability of failing to find the global min-cut is < 1/n?.

Pf. By independence, the probability of failure is at most

»12Inn

0 n’lnn [0 n _\2Inn 1
) - [0 (-

14

Contract ion algorithm: example execut ion

O Andriedegefotegdsie EEREY
R 8 doddsis EEEFFRESS
w HERERLADDSSCLrTY
SR 5T 5 S Se eSSt oM
e L LG L AT
@@@%%@@@@@@@@%%&

http://commons.wikimedia.org/w/index.php?title=User:Thore_Husfeldt&action=edit&redlink=1

Global min cut: context

Remark. Overall running time is slow since we perform ©(n?log n) iterations
and each takes Q(m) time.

Improvement. [Karger-Stein 1996] O(n? log’n).
« Early iterations are less risky than later ones: probability of contracting
an edge in min cut hits 50% when n/+v2 nodes remain.
» Run contraction algorithm until n/+v2 nodes remain.
« Run contraction algorithm twice on resulting graph and
return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O@m log?n).

\

faster than best known max flow algorithm or
deterministic global min cut algorithm

16

13. RANDOMIZED ALGORITHMS

» linearity of expectation

/~\Ig i Uesir
r\\ JON KLEINBERG - EVA TARDOS

Expectation

Expectation. Given a discrete random variable X, its expectation E[X]
is defined by:

(0.0]

E[X]=) jPr[X =]

j=0

Waiting for a first success. Coin is heads with probability p and tails with
probability 1- p. How many independent flips X until first heads?

< . = . = - 1- 1
EIX] = 3j-PriX=jl = 3Sjd-p'p = L3 ja-py =L =P_~
Jj=0 Jj=0 i 0 1-p l-p p P

j -1 tails 1 head T

18

Expectation: two properties

Useful property. If Xis a 0/1 random variable, E[X] = Pr[X = 1].

Pf. ElX] = §j-Pr[X=j] = éj-Pr[X=j] = Pr[X =1]
J=0 j=0

not necessarily independent

Y N\

Linearity of expectation. Given two random variables X and Y defined over
the same probability space, E[X + Y] = E[X] + E[Y].

Benefit. Decouples a complex calculation into simpler pieces.

19

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what'’s
been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.
Pf. [surprisingly effortless using linearity of expectation]

Let X, =1 if i#» prediction is correct and 0 otherwise.

Let X = number of correct guesses =X, +... +X,.
E[X]= Pr(X,;=1] = 1/n.
EX] = EX]]+ ... + E[X]=1/n+...+1/n=1. =

!

linearity of expectation

20

Guessing cards

Game. Shuffle a deck of n cards; turn them over one at a time;
try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards
not yet seen.

Claim. The expected number of correct guesses is O(log n).
Pf.

Let X, =1 if i#» prediction is correct and 0 otherwise.

Let X = number of correct guesses =X, +... +X,.
ElX]=Pr[X,=1] = 1/(n-(i-1)).
EX] = EX]]+ ... + EIX]=1/n+...+1/2+1/1 = H(n). =

f 1

linearity of expectation In(n+1)<H(n) <1+1Inn

21

Coupon collector

Coupon collector. Each box of cereal contains a coupon. There are n
different types of coupons. Assuming all boxes are equally likely to contain
each coupon, how many boxes before you have =1 coupon of each type?

Claim. The expected number of steps is O log n).

Pf.
* Phase j =time between j and j + 1 distinct coupons.
* Let X;= number of steps you spend in phase j.
* Let X = number of steps intotal =X, + X, +... + X .

n-1 n-1 n
E[X] = SEX]]=3 " = nY
j=0 j=0 =] i=1

1

prob of success=(n—-j)/ n

N | p—

= nH(n)

= expected waiting time =n / (n - j)

22

13. RANDOMIZED ALGORITHMS

» max 3-satistiability

/~\Ig i Uesir
r\\ JON KLEINBERG - EVA TARDOS

Maximum 3-satisfiability

exactly 3 literals per clause and
— each literal corresponds to a different variable

Maximum 3-satisfiability. Given a 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

C, = X, VX3Vx,
C, = X, VX3V X,
C; = X, VX,V X,
Cy = X VXV
Cs = X, VX, VX,

Remark. NP-hard optimization problem.

Simple idea. Flip a coin, and set each variable true with probability)z,
independently for each variable.

24

Maximum 3-satisfiability: analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of
clauses satisfied by a random assignment is 7k / 8.

1 if clause C ; 1s satisfied

Pf. Consider random variable 7. = .
/ 0 otherwise.

* Let Z= number of clauses satisfied by random assignment.

k
E[Z] = 3 ElZ,]

/ -
k

linearity of expectation

Pr[clause C ; 1s satisfied]
ji=1

1k

25

The probabilistic method

Corollary. For any instance of 3-SAT, there exists a truth assignment that
satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. =

Probabilistic method. [Paul Erdds] Prove the existence
of a non-obvious property by showing that a random

construction produces it with positive probability! THE

PROBABILISTIC . *
METHOD -

Third Edition .

&
i

Noga Alon .
Joel H. Spencer o~
Wiley-Interscience Series in Discrete Math: and Optimisation
e
_

26

Maximum 3-satisfiability: analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?

A. Yes (but a random variable can almost always be below its mean).

Lemma. The probability that a random assignment satisfies > 7k /8 clauses

is at least 1/ (8k).

Pf. Let p;, be probability that exactly j clauses are satisfied,

let p be probability that = 7k / 8 clauses are satisfied.

1k = E[Z]

=

=

> jpj
j=0

> Jjp; + X Jp;
j<7k/8 j=7k/8

(%k—%) > P+ k X p
i<7k/8 i=Tk/8

(Zk-14)-1 + kp

Rearranging terms yields p = 1/(8k). =

27

Maximum 3-satisfiability: analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until
one of them satisfies = 7k / 8 clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability > 1/ (8k).

By the waiting-time bound, the expected number of trials to find the
satisfying assignment is at most 8. =

28

Maximum satisfiability

Extensions.
- Allow one, two, or more literals per clause.
« Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for MAXx-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-
approximation algorithm for version of Max-3-SAT in which each clause has
at most 3 literals.

Theorem. [Hastad 1997] Unless P = NP, no p-approximation algorithm for
MAX-3-SAT (and hence MaAx-SAT) for any p > 7/8.

T

very unlikely to improve over simple randomized
algorithm for MAX-3-SAT

29

Monte Carlo vs. Las Vegas algorithms

Monte Carlo. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson’s Max-3-SAT algorithm.

stop algorithm
after a certain point

/

Remark. Can always convert a Las Vegas algorithm into Monte Carlo,
but no known method (in general) to convert the other way.

30

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

can decrease probability of false negative

One-sided error. to 2-100 by 100 independent repetitions
* If the correct answer is no, always return no. /
* If the correct answer is yes, return yes with probability = 5.

/PP. [Las Vegas]| Decision problems solvable in expected poly-time.

T

running time can be unbounded,
but fast on average

Theorem. P C ZPP C RP C NP.

Fundamental open questions. To what extent does randomization help?
Does P=2ZPP? Does ZPP=RP? Does RP=NP?

31

13. RANDOMIZED ALGORITHMS

Alg hm I Igﬂ » universal hashing

r\ JON KLEINBERG - EVA TARDOS
\

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset
S C U so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
* create(): initialize a dictionary with S = .
* insert(u): add element u& U to S.
* delete(u): delete u from S (if u is currently in).
* lookup(u): iISsuin S?

Challenge. Universe U can be extremely large so defining an array of
size | Ul is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P
networks, associative arrays, cryptography, web caching, etc.

33

Hashing

Hash function. A : U—{0,1,...,n—-1}.

Hashing. Create an array a of length n. When processing element u,
access array element a[h(u)].

birthday paradox
Collision. When h(u) = h(v) but u = v. /
» A collision is expected after ®(vn) random insertions.

* Separate chaining: aq[i] stores linked list of elements u with h(u) = .

al[0] jocularly |——| seriously

al[1l] null

al[2] suburban |——| untravelled ——| considerating

a[n-1] browsing

Ad-hoc hash function

Ad-hoc hash function.

int hash(String s, int n) {
int hash = 0;
for (int 1 = 0; 1 < s.length(); 1++)

hash = (31 * hash) + s[1];
return hash % n;

¥ hash function a la Java string library

Deterministic hashing. If IUl = n?, then for any fixed hash function #,
there is a subset S C U of n elements that all hash to same slot.

Thus, ©(n) time per lookup in worst-case.

Q. But isn’t ad-hoc hash function good enough in practice?

35

Algorithmic complexity attacks

When can’t we live with ad-hoc hash function?
« Obvious situations: aircraft control, nuclear reactor, pace maker,
« Surprising situations: denial-of-service (DOS) attacks.

AN

malicious adversary learns your ad-hoc hash function
(e.g., by reading Java API) and causes a big pile-up
in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]
* Linux 2.4.20 kernel: save files with carefully chosen names.
« Perl 5.8.0: insert carefully chosen strings into associative array.
« Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

36

Hashing performance

Ideal hash function. Maps m elements uniformly at random to » hash slots.
« Running time depends on length of chains.
* Average length of chain = a = m/n.
* Choosen =~ m = expect O(1) per insert, lookup, or delete.

Challenge. Hash function & that achieves O(1) per operation.
Approach. Use randomization for the choice of h.

\

adversary knows the randomized algorithm you’re using,
but doesn’t know random choice that the algorithm makes

37

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a

universe U to the set {0,1,...,n—1 } such that
* For any pair of elements u=v: Prycy | h(u)=h(v)]=< 1/n
* Can select random # efficiently. \
* Can compute h(u) efficiently. chosen uniformly at random

EX U:{a,b,c,d,e,f},n=2- H={h, h,}

ﬂﬂﬂﬂ Pryepli(@) =hd)] = 172
O 1 0 1

h,(x) BN Pr, . [h(a) = h(c)] = 1
PN 0 0 O 1 1 1 Pr, ., [h(a)=hd)] = 0

H= {hl’h2 ,h3 ,h4}
Pr, ., [h(a) =h(b)] = 1/2

afblclde|f
o Pr)y [h(@) = h(o)] = 172
S I Pr) [h(@) = h(d)] = 112
Pr)y [h(@) =h(e)] = 172

Pr, ., [h(a) =h(] = 0

not universal

universal

38

Universal hashing: analysis

Proposition. Let H be a universal family of hash functions mapping a
universe U to the set {0,1,...,n—1}; let h € H be chosen uniformly at
random from H; let SC U be a subset of size at most n; and let u & S.
Then, the expected number of items in S that collide with « is at most 1.

Pf. For any s € S, define random variable X, = 1 if i(s) = h(u), and 0 otherwise.
Let X be a random variable counting the total number of collisions with u.

EncylX] = E[S X1 = S ElX] = 3 PriX,=1] = 3 _ L =151 =1

1 1 1

linearity of expectation Xs is a 0—-1 random variable universal

Q. OK, but how do we design a universal class of hash functions?

39

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Uniquely identify each element u € U with a base-p

integer Of r dlgItS X = (xl,xz, cees .Xr). \ distinct elements have
different encodings

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(a,a,,...,a,) Where 0 <a, <p, define

-
ha(X) = (E aixi) IIlOdp <«<— maps universe Uto set{0,1,...,p—1}
i=1

Hash function family. H={h,:a€ A }.

40

Designing a universal family of hash functions

Theorem. H={h,:a€ A} is a universal family of hash functions.

Pf. Let x=(x;,x,,...,x,) and y=(y;,y,, ..., y,) encode two distinct elements of U.

We need to show that Pr[i (x) =h,(y)] < 1/p.
- Since x #y, there exists an integer j such that x; # y..
We have h (x) = h (y) iff

a; (yj_xj) = Ya(x;—y;) modp
h V” 7 i;éj

Can assume a was chosen uniformly at random by first selecting all
coordinates a; where i # j, then selecting a; at random. Thus, we can
assume q; is fixed for all coordinates i #}.

Since p is prime, a;z=m mod p has at most one solution among p
pOSSibi“ties_ <«— see lemma on next slide

Thus Pr[h,(x)=h,(y)] < 1/p. =

41

Number theory fact

Fact. Let p be prime, and let z 2 0 mod p. Then oz =m mod p has
at most one solution 0 < a < p.

Pf.
* Suppose 0<a;<pand0=oa,<p are two different solutions.
* Then (01 — a2) z=0 mod p; hence (a; — o) z is divisible by p.

Since z = 0 mod p, we know that z is not divisible by p.

It follows that (o1 — a») is divisible by p.

This implies o) = 0. = here's where we
use that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.
Pf idea. Euclid’s algorithm.

42

Universal hashing: summary

Goal. Given a universe U, maintain a subset S C U so that insert, delete,

and lookup are efficient.

Universal hash function family. H={h, :a €A }.

h,(x) = (é aixi) mod p
i=1

* Choose p prime sothatm < p < 2m, where m=151.
can find such a prime using

* Fact: there exists a prime between m and 2m. <— ,other randomized algorithm ()

Consequence.
* Space used = O(m).
* Expected number of collisions per operation is < 1
= O(1) time per insert, delete, or lookup.

43

13. RANDOMIZED ALGORITHMS

/~\Ig thm Design

r\ JON KLEINBERG - EVA TARDOS 4 Chernoffbounds
\

Chernoff Bounds (above mean)

Theorem. Suppose X, ..., X, are independent 0-1 random variables. Let X =
X;+ ... + X,,. Then for any u = E[X] and for any & > 0, we have

Pr[X >(1+0)u] <
T

sum of independent 0-1 random variables
is tightly centered on the mean

86 "
(1 n 6)1+6

Pf. We apply a number of simple transformations.
 Forany t> 0,

PI‘[X > (1+ 6)“] = PI'[etX > ef(1+6)M] < e—t(1+6)M 'E[e[X]

f f

f(x) = eXis monotone in X Markov’s inequality: Pr[X > a] < E[X] / a

E[etX] _ E[etE"Xi] _ HiE[etX,.]

f f

definition of X independence

* Now

Chernoff Bounds (above mean)

Pf. [continued]
« Let p,=Pr[X;=1]. Then,

E[etXi] = piet"'(l_pi)eo = 1+pi(et_1)

« Combining everything:

< epi(et—l)
1

foranya=0,1+a < e¢“

—1(1+d)u X, —t(1+d)u p.(e'=1) —t(1+d)u _u(e'-1)
Pr[X >(1+0)u] ? e |1 Ele "] ? e |1 e ? e e
previous slide inequality above Y. p=E[X] = p

* Finally, choose r=1In(1 +9). =

46

Chernoff Bounds (below mean)

Theorem. Suppose X,,...,X, are independent 0-1 random variables.
Llet X=X,+...+X . Then forany u<E[X] and forany 0 <d < 1, we have

P{X < (1-8)u] < e 12
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider 6 < 1.

47

13. RANDOMIZED ALGORITHMS

/~\Ig thm Design

r\ JON KLEINBERG - EVA TARDOS
\

» load balancing

Load balancing

Load balancing. System in which m jobs arrive in a stream and need to be
processed immediately on m identical processors. Find an assignment that
balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor
receives at most [m/n] jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
How likely is it that some processor is assigned “too many” jobs?

49

Load balancing

Analysis.

Let X; = number of jobs assigned to processor i.

Let Y;=1 if job j assigned to processor i, and 0 otherwise.
We have E[Y;] = 1/n.

Thus, X;=3.Y;,, and u=E[X]] = 1.

Applying Chernoff bounds with 8 =c -1 yields Pr[X; >c] <

c—1

e

CC

Let v(n) be number x such that xx=n, and choose ¢ =¢ y(n).

c—1 c ey (n) 2y (n)
Pr[Xi>c]<eC <(e\7=(1 \‘ (: \ iz
C c) Y(n)) Y(n)) n
Union bound = with probability =1 - 1/n no processor receives more
than e y(n) = ©(log n / log log n) jobs.

\

Bonus fact: with high probability,
some processor receives O(logn / log log n) jobs

50

Load balancing: many jobs

Theorem. Suppose the number of jobs m =16 n1lnn. Then on average,
each of the n processors handles u=161nn jobs. With high probability,
every processor will have between half and twice the average load.

Pf.
 Let X.,Y.. be as before.

i > i

* Applying Chernoff bounds with 6 =1 yields

16nIlnn Inn
Pr[X; >2u] < (S < (3 !
r i — — —
H 4 e n2

Pr [Xz<%,u} < 6_%(%)2167111&71 _ %

- Union bound = every processor has load between half and
twice the average with probability = 1 -2/n. =

51

