
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 7/25/17 11:06 AM

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Coping With NP-hardness

Q. Suppose I need to solve an NP-hard problem. What should I do?

A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

・Solve problem to optimality.

・Solve problem in polynomial time.

・Solve arbitrary instances of the problem.

2

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Gradient descent: vertex cover

Vertex cover. Given a graph G = (V, E), find a subset of nodes S of minimal

cardinality such that for each (u, v) ∈ E, either u or v (or both) are in S.

Neighbor relation. S ∼ S ʹ if S ʹ can be obtained from S by adding or deleting

a single node. Each vertex cover S has at most n neighbors.

Gradient descent. Start with S = V. If there is a neighbor S ʹ that is a vertex

cover and has lower cardinality, replace S with S ʹ.

Remark. Algorithm terminates after at most n steps since each update

decreases the size of the cover by one.

4

Gradient descent: vertex cover

Local optimum. No neighbor is strictly better.

optimum = center node only 
local optimum = all other nodes

optimum = all nodes on left side
local optimum = all nodes on right side

optimum = even nodes
local optimum = omit every third node

5

Local search

Local search. Algorithm that explores the space of possible solutions in

sequential fashion, moving from a current solution to a “nearby” one.

Neighbor relation. Let S ∼ S ʹ be a neighbor relation for the problem.

Gradient descent. Let S denote current solution. If there is a neighbor S ʹ of S
with strictly lower cost, replace S with the neighbor whose cost is as small

as possible. Otherwise, terminate the algorithm.

6

A funnel a jagged funnel

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Metropolis algorithm

Metropolis algorithm.

・Simulate behavior of a physical system according to principles of

statistical mechanics.

・Globally biased toward “downhill” steps, but occasionally 
makes “uphill” steps to break out of local minima.

8

THE 0 R Y 0 F T RAe KEF FEe T SIN R A D I 0 L Y SIS 0 F W ATE R 1087

instead, only water molecules with different amounts of
excitation energy. These may follow any of three paths:

(a) The excitation energy is lost without dissociation
into radicals (by collision, or possibly radiation, as in
aromatic hydrocarbons).

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage.

(c) The molecules dissociate and escape from the
cage. In this case we would not expect them to move
more than a few molecular diameters through the dense
medium before being thermalized.

In accordance with the notation introduced by
Burton, Magee, and Samuel,22 the molecules following

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952).

THE JOURNAL OF CHEMICAL PHYSICS

paths (a) and (b) can be designated H 20* and those
following path (c) can be designated H 20t. It seems
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the
H 20t molecules, but this is not likely to be a complete
correspondence.

In conclusion we would like to emphasize that the
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters
used. However, this treatment is classical, and a correct
treatment must be wave mechanical; therefore the
result of this section cannot be taken as an a priori
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the
occurrence of electron capture as described by this
crude calculation. Further work is clearly needed.

VOLUME 21, NUMBER 6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines
NICHOLAS METROPOLIS, ARIANNA W. ROSENBLUTH, MARSHALL N. ROSENBLUTH, AND AUGUSTA H. TELLER,

Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

EDWARD TELLER, * Department of Physics, University of Chicago, Chicago, Illinois
(Received March 6, 1953)

A general method, suitable for fast computing machines, for investigatiflg such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.

I. INTRODUCTION

T HE purpose of this paper is to describe a general
method, suitable for fast electronic computing

machines, of calculating the properties of any substance
which may be considered as composed of interacting
individual molecules. Classical statistics is assumed,
only two-body forces are considered, and the potential
field of a molecule is assumed spherically symmetric.
These are the usual assumptions made in theories of
liquids. Subject to the above assumptions, the method
is not restricted to any range of temperature or density.
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system.
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a
later paper. Also, the problem in three dimensions is
being investigated.

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California.

II. THE GENERAL METHOD FOR AN ARBITRARY
POTENTIAL BETWEEN THE PARTICLES

In order to reduce the problem to a feasible size for
numerical work, we can, of course, consider only a finite
number of particles. This number N may be as high as
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface
effects we suppose the complete substance to be periodic,
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we
define dAB, the minimum distance between particles A
and B, as the shortest distance between A and any of
the particles B, of which there is one in each of the
squares which comprise the complete substance. If we
have a potential which falls off rapidly with distance,
there will be at most one of the distances AB which
can make a substantial contribution; hence we need
consider only the minimum distance dAB.

t We will use two-dimensional nomenclature here since it
is easier to visualize. The extension to three dimensions is obvious.

Downloaded 01 Jan 2013 to 129.170.195.147. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Gibbs-Boltzmann function

Gibbs-Boltzmann function. The probability of finding a physical system in a

state with energy E is proportional to e -E / (kT), where T > 0 is temperature and

k is a constant.

・For any temperature T > 0, function is monotone decreasing 
function of energy E.

・System more likely to be in a lower energy state than higher one.
- T large: high and low energy states have roughly same probability
- T small: low energy states are much more probable

9

Metropolis algorithm

Metropolis algorithm.

・Given a fixed temperature T, maintain current state S.

・Randomly perturb current state S to new state S ʹ ∈ N(S).

・If E(S ʹ) ≤ E(S), update current state to S ʹ. 
Otherwise, update current state to S ʹ with probability e - ΔE / (kT), 
where ΔE = E(S ʹ) – E(S) > 0.

Theorem. Let fS(t) be fraction of first t steps in which simulation is in state S.

Then, assuming some technical conditions, with probability 1:

Intuition. Simulation spends roughly the right amount of time in each state,

according to Gibbs-Boltzmann equation.

10

€

lim
t→∞

fS (t) =
1
Z

e−E(S) /(kT) ,

where Z = e−E(S) /(kT)

S∈ N (S)
∑ .

Simulated annealing

Simulated annealing.

・T large ⇒ probability of accepting an uphill move is large.

・T small ⇒ uphill moves are almost never accepted.

・Idea: turn knob to control T.

・Cooling schedule: T = T(i) at iteration i.

Physical analog.

・Take solid and raise it to high temperature, we do not expect it to

maintain a nice crystal structure.

・Take a molten solid and freeze it very abruptly, we do not expect to get

a perfect crystal either.

・Annealing: cool material gradually from high temperature, allowing it

to reach equilibrium at succession of intermediate lower temperatures.

11

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Hopfield neural networks

Hopfield networks. Simple model of an associative memory, in which a

large collection of units are connected by an underlying network, and

neighboring units try to correlate their states.

Input: Graph G = (V, E) with integer (positive or negative) edge weights w.

Configuration. Node assignment su = ± 1.

Intuition. If wuv < 0, then u and v want to have the same state;  
if wuv > 0 then u and v want different states.

Note. In general, no configuration respects all constraints.

13

5

7

6

Hopfield neural networks

Def. With respect to a configuration S, edge e = (u, v) is good if  
we 𐄂 su 𐄂 sv < 0. That is, if we < 0 then su = sv ; if we > 0, then su ≠ sv.

Def. With respect to a configuration S, a node u is satisfied  
if the weight of incident good edges ≥ weight of incident bad edges.

Def. A configuration is stable if all nodes are satisfied.

Goal. Find a stable configuration, if such a configuration exists.

14

-5

-10

4

-1

-1

bad edge

€

 we su sv
v: e=(u,v)∈ E

∑ ≤ 0

satisfied node: 5 – 4 – 1 – 1 < 0

Hopfield neural networks

Goal. Find a stable configuration, if such a configuration exists.

State-flipping algorithm. Repeated flip state of an unsatisfied node.

15

HOPFIELD-FLIP (G, w)
__

S ← arbitrary configuration.

WHILE (current configuration is not stable)

u ← unsatisfied node.

su ← -su.

RETURN S.
__

State-flipping algorithm example

16

unsatisfied node 
10 – 8 > 0

unsatisfied node 
8 – 4 – 1 – 1 > 0

stable

State-flipping algorithm: proof of correctness

Theorem. The state-flipping algorithm terminates with a stable

configuration after at most W = Σe | we | iterations.

Pf attempt. Consider measure of progress Φ(S) = # satisfied nodes.

17

State-flipping algorithm: proof of correctness

Theorem. The state-flipping algorithm terminates with a stable

configuration after at most W = Σe | we | iterations.

Pf. Consider measure of progress Φ(S) = Σ e good | we |.

・Clearly 0 ≤ Φ(S) ≤ W.

・We show Φ(S) increases by at least 1 after each flip. 
When u flips state:
- all good edges incident to u become bad
- all bad edges incident to u become good
- all other edges remain the same

18

€

Φ(S ') = Φ(S) − |we |
e: e = (u,v)∈ E
 e is bad

∑ + |we |
e: e = (u,v)∈ E
 e is good

∑ ≥ Φ(S) + 1

u is unsatisfied

Complexity of Hopfield neural network

Hopfield network search problem. Given a weighted graph, find a stable

configuration if one exists.

Hopfield network decision problem. Given a weighted graph, does there

exist a stable configuration?

Remark. The decision problem is trivially solvable (always yes),  
but there is no known poly-time algorithm for the search problem.

19

polynomial in n and log W

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Maximum cut

Maximum cut. Given an undirected graph G = (V, E) with positive integer

edge weights we , find a cut (A, B) such that the total weight of edges

crossing the cut is maximized.

Toy application.

・n activities, m people.

・Each person wants to participate in two of the activities.

・Schedule each activity in the morning or afternoon to maximize number

of people that can enjoy both activities.

Real applications. Circuit layout, statistical physics.

21

€

w(A,B) := wuv
u∈ A, v∈B

∑

Maximum cut

Single-flip neighborhood. Given a cut (A, B), move one node from A to B, 
or one from B to A if it improves the solution.

Greedy algorithm.

22

MAX-CUT-LOCAL (G, w)
__

(A, B) ← random cut.

WHILE (there exists an improving node v)

IF v ∉ A

A ← A ∪ { v }.

B ← B – { v }.

ELSE v ∉ A

B ← B ∪ { v }.

A ← A – { v }.

RETURN (A, B).

Maximum cut: local search analysis

Theorem. Let (A, B) be a locally optimal cut and let (A*, B*) be an 
optimal cut. Then w(A, B) ≥ ½ Σ e we ≥ ½ w(A*, B*).

Pf.

・Local optimality implies that for all u ∈ A : 
Adding up all these inequalities yields:

・Similarly

・Now,

23

€

2 wuv
{u,v}⊆ A
∑ ≤ wuv

u∈ A, v ∈ B
∑ = w(A,B)

€

we
e∈ E
∑ = wuv

{u,v}⊆ A
∑

≤ 1
2w(A, B)
! " # $ #

 + wuv
u∈ A, v ∈ B

∑

w(A, B)
! " # $ #

 + wuv
{u,v}⊆ A
∑

≤ 1
2w(A, B)
! " # $ #

 ≤ 2w(A, B)

each edge counted once

weights are nonnegative

€

wuvv∈ A∑ ≤ wuvv∈B∑

€

2 wuv
{u,v}⊆B
∑ ≤ wuv

u∈ A, v ∈ B
∑ = w(A,B)

Maximum cut: big improvement flips

Local search. Within a factor of 2 for MAX-CUT, but not poly-time!

Big-improvement-flip algorithm. Only choose a node which, when flipped,

increases the cut value by at least

Claim. Upon termination, big-improvement-flip algorithm returns a cut (A, B)
such that (2 + ε) w(A, B) ≥ w(A*, B*).

Pf idea. Add to each inequality in original proof. ▪

Claim. Big-improvement-flip algorithm terminates after O(ε-1 n log W) flips,

where W = Σ e we.

・Each flip improves cut value by at least a factor of (1 + ε / n).

・After n / ε iterations the cut value improves by a factor of 2.

・Cut value can be doubled at most log2 W times. ▪

24

€

2ε
n w(A, B)

€

2ε
n w(A, B)

if x ≥ 1, (1 + 1/x)x ≥ 2

Maximum cut: context

Theorem. [Sahni-Gonzales 1976] There exists a ½-approximation  
algorithm for MAX-CUT.

Theorem. There exists an 0.878-approximation algorithm for MAX-CUT.

Theorem. Unless P = NP, no 0.942-approximation algorithm for MAX-CUT.

25

Improved Approximation Algorithms for
Maximum Cut and Satisfiability Problems Using
Semidefinite Programming

MIC13EL X. GOEMANS

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

DAVID P. WILLIAMSON

IBM T. J. Watson Research Center, Yorktown Heights, New York

Abstract. We present randomized approximation algorithms for the maximum cut (MAX CUT)
and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected
value at least .87856 times the optimal value. These algorithms use a simple and elegant
technique that randomly rounds the solution to a nonlinear programming relaxation. This
relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization
problem. The best previously known approximation algorithms for these problems had perfc~r-
mance guarantees of ~ for MAX CUT and ~ for MAX 2SAT. Slight extensions of our analysis
lead to a .79607-approximation algorithm for the maximum directed cut problem (MAX DICUT)
and a .758-approximation algorithm for MAX SAT, where the best previously known approxim a-
tion algorithms had performance guarantees of ~ and ~, respectively. Our algorithm gives the first
substantial progress in approximating MAX CUT in nearly twenty years, and represents the first
use of :semidefinite programming in the design of approximation algorithms.
Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and Problem Complexity]:
Nonumerical Algorithms and Problems—computations on discrete structures; G2.2 [Discrete Math-

A preliminary version has appeared in Proceedings of the 26th AnnualACM Symposium on Theory
of Computing (Montreal, Que., Canada). ACM, New York, 1994, pp. 422–431.
The research of M. X. Goemans was supported in part by National Science Foundation (NSF)
contract CCR 93-02476 and DARPA contract NOO014-92-J-1799.
The research of D. P. Williamson was supported by an NSF Postdoctoral Fellowship. This
research was conducted while the author was visiting MIT.
Authors’ addresses: M. X. Goemans, Department of Mathematics, Room 2-382, Massachusetts
Institute of Technology, Cambridge, MA 02139, e-mail: goemans@math.mit. edu; D. P. Williamson,
IBM T, J. Watson Research Center, Room 33-219, P.O. Box 218, Yorktown Heights, NY 1059I8,
e-mail: dpw@watson.ibm. corn.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
grantedl without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given tlhat copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
01995 ACM 0004-5411/95/1100-1115 $03.50

Journalof theAssociationfor ComputinsMachinery,Vol. 42,No.6,November1995,pp.1115-1145.

Some Optimal Inapproximability Results

JOHAN HÅSTAD

Royal Institute of Technology, Stockholm, Sweden

Abstract. We prove optimal, up to an arbitrary ϵ > 0, inapproximability results for Max-Ek-Sat for
k ≥ 3, maximizing the number of satisfied linear equations in an over-determined system of linear
equations modulo a prime p and Set Splitting. As a consequence of these results we get improved
lower bounds for the efficient approximability of many optimization problems studied previously. In
particular, for Max-E2-Sat, Max-Cut, Max-di-Cut, and Vertex cover.
Categories and Subject Descriptors: F2.2 [Analysis of Algorithms and ProblemComplexity]: Non-
numerical Algorithms and Problems
General Terms: Theory
Additional Key Words and Phrases: Inapproximability, linear equations, max-sat, NP-hard optimiza-
tion problems, probabilistically checkable proofs

1. Introduction
Many natural optimization problems are NP-hard, which implies that they are prob-
ably hard to solve exactly in the worst case. In practice, however, it is sufficient
to get reasonably good solutions for all (or even most) instances. In this paper, we
study the existence of polynomial time approximation algorithms for some of the
basic NP-complete problems. For amaximization problemwe say that an algorithm
is a C-approximation algorithm if it, for each instance, produces an solution whose
objective value is at least OPT/C where OPT is the global optimum. A similar
definition applies to minimization problems.
A fundamental question is, for a given NP-complete problem, for what value of

C can we hope for a polynomial time C-approximation algorithm. Posed in this
generality, this is a large research area with many positive and negative results. In
this paper, we concentrate on negative results, that is, results of the form that for
someC > 1 a certain problem cannot be approximatedwithinC in polynomial time.
These results are invariably based on plausible complexity theoretic assumptions,
the weakest possible being NP ̸= P since if NP= P, all considered problems can be
solved exactly in polynomial time.
Themost basic NP-complete problem is satisfiability of CNF-formulas and prob-

ably the most used variant of this is 3-SAT where each clause contains at most 3

An earlier version of this paper appeared in Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (El Paso, Tex., May 4–6). ACM, New York, 1997, pp. 1–10.
Author’s address: Department of Numerical Analysis and Computer Science, Royal Institute of Tech-
nology, S-100 44 Stockholm, Sweden, e-mail: johanh@nada.kth.se.
Permission tomake digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery (ACM), Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
C⃝ 2001 ACM 0004-5411/01/0700-0798 $5.00

Journal of the ACM, Vol. 48, No. 4, July 2001, pp. 798–859.

Neighbor relations for max cut

1-flip neighborhood. Cuts (A, B) and (Aʹ, Bʹ) differ in exactly one node.

k-flip neighborhood. Cuts (A, B) and (Aʹ, Bʹ) differ in at most k nodes. 

KL-neighborhood. [Kernighan-Lin 1970]

・To form neighborhood of (A, B):
- Iteration 1: flip node from (A, B) that results in best cut value (A1, B1),

and mark that node.
- Iteration i: flip node from (Ai–1, Bi–1) that results in best cut value (Ai, Bi)

among all nodes not yet marked.

・Neighborhood of (A, B) = (A1, B1), …, (An–1, Bn–1).

・Neighborhood includes some very long sequences of flips, but without

the computational overhead of a k-flip neighborhood.

・Practice: powerful and useful framework.

・Theory: explain and understand its success in practice.

26

cut value of (A1, B1) 
may be worse than (A, B)

12. LOCAL SEARCH

‣ gradient descent

‣ Metropolis algorithm

‣ Hopfield neural networks

‣ maximum cut

‣ Nash equilibria

Multicast routing

Multicast routing. Given a directed graph G = (V, E) with edge costs 
ce ≥ 0, a source node s, and k agents located at terminal nodes t1, …, tk.  
Agent j must construct a path Pj from node s to its terminal tj.

Fair share. If x agents use edge e, they each pay ce / x.

28

outer

2

outer

middle

4

1 pays

5 + 1

5/2 + 1

middle 4

1

outer

middle

middle

outer

8

2 pays

8

5/2 + 1

5 + 1

s

t1

v

t2

4 8

1 1

5

Multicast routing

Best response dynamics. Each agent is continually prepared to improve its

solution in response to changes made by other agents.

Nash equilibrium. Solution where no agent has an incentive to switch.

Fundamental question. When do Nash equilibria exist?

Ex:

・Two agents start with outer paths.

・Agent 1 has no incentive to switch paths 
(since 4 < 5 + 1), but agent 2 does (since 8 > 5 + 1).

・Once this happens, agent 1 prefers middle 
path (since 4 > 5/2 + 1).

・Both agents using middle path is a Nash 
equilibrium.

29

s

t1

v

t2

4 8

1 1

5

Nash equilibrium and local search

Local search algorithm. Each agent is continually prepared to improve its

solution in response to changes made by other agents.

Analogies.

・Nash equilibrium : local search.

・Best response dynamics : local search algorithm.

・Unilateral move by single agent : local neighborhood.

Contrast. Best-response dynamics need not terminate since no single

objective function is being optimized.

30

Socially optimum

Social optimum. Minimizes total cost to all agent.

Observation. In general, there can be many Nash equilibria. 
Even when its unique, it does not necessarily equal the social optimum.

31

s

t1

v

t2

3 5 5

1 1

social optimum = 7 
unique Nash equilibrium = 8

s

t

k1 + ε

social optimum = 1 + ε 
Nash equilibrium A = 1 + ε

Nash equilibrium B = k

k agents

Price of stability

Price of stability. Ratio of best Nash equilibrium to social optimum.

Fundamental question. What is price of stability?

Ex: Price of stability = Θ(log k).
Social optimum. Everyone takes bottom paths.

Unique Nash equilibrium. Everyone takes top paths.

Price of stability. H(k) / (1 + ε).

32

s

t2 t3 tkt1 . . .

1 1/2 1/3 1/k

s

0 0 0 0

1 + 1/2 + … + 1/k

1 + ε

Finding a Nash equilibrium

Theorem. The following algorithm terminates with a Nash equilibrium.

 

Pf. Consider a set of paths P1, …, Pk.

・Let xe denote the number of paths that use edge e.

・Let Φ(P1, …, Pk) = Σ e ∈ E ce· H(xe) be a potential function, where

・Since there are only finitely many sets of paths, it suffices to show that

Φ strictly decreases in each step.

33

H(0) = 0

BEST-RESPONSE-DYNAMICS (G, c, k)
__

FOR j = 1 to k

Pj ← any path for agent j.

WHILE (not a Nash equilibrium)

j ← some agent who can improve by switching paths.

Pj ← better path for agent i.

RETURN (P1, P2, …, Pk).

€

H (k) =
1
i

i=1

k
∑

Finding a Nash equilibrium

Pf. [continued]

・Consider agent j switching from path Pj to path Pj ʹ.

・Agent j switches because

・Φ increases by

・Φ decreases by

・Thus, net change in Φ is negative. ▪

34

€

c f

x f + 1
f ∈ Pj ' − Pj

∑

newly incurred cost
! " # # $ # #

 < ce
xe

e ∈ Pj − Pj '
∑

cost saved
! " # $ #

€

c f H(x f +1) − H(x f)[] =
f ∈ Pj ' − Pj

∑
c f

x f + 1
f ∈ Pj ' − Pj

∑

€

 ce H(xe) − H(xe − 1)[] =
e ∈ Pj − Pj '

∑ ce
xe

e ∈ Pj − Pj '

∑

Bounding the price of stability

Lemma. Let C(P1, …, Pk) denote the total cost of selecting paths P1, …, Pk.

For any set of paths P1, …, Pk , we have

Pf. Let xe denote the number of paths containing edge e.

・Let E+ denote set of edges that belong to at least one of the paths. 
Then,

35

€

C(P1,…, Pk) = ce
e∈E+
∑ ≤ ce H(xe)

e∈E+
∑

Φ(P1,…, Pk)
! " # $ #

 ≤ ce H(k) = H(k)
e∈E+
∑ C(P1,…, Pk)

€

C(P1,…, Pk) ≤ Φ(P1,…, Pk) ≤ H(k) ⋅C(P1,…, Pk)

Bounding the price of stability

Theorem. There is a Nash equilibrium for which the total cost to all agents

exceeds that of the social optimum by at most a factor of H(k).

Pf.

・Let (P1
*, …, Pk

*) denote a set of socially optimal paths.

・Run best-response dynamics algorithm starting from P*.

・Since Φ is monotone decreasing Φ(P1, …, Pk) ≤ Φ(P1
*, …, Pk

*).

36

€

C(P1,…, Pk) ≤ Φ(P1,…, Pk) ≤ Φ(P1*,…, Pk *) ≤ H(k) ⋅C(P1*,…, Pk *)

previous lemma 
applied to P

previous lemma 
applied to P*

Summary

Existence. Nash equilibria always exist for k-agent multicast routing with

fair sharing.

Price of stability. Best Nash equilibrium is never more than a factor of H(k)
worse than the social optimum.

Fundamental open problem. Find any Nash equilibria in poly-time.

37

