Coping with NP-completeness

Q. Suppose | need to solve an NP-complete problem. What should | do?

10. EXTENDING TRACTABILITY A. Theory says you’re unlikely to find poly-time algorithm.
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> finc/ing small vertex covers Must sacrifice one of three desired features.
» Solve problem to optimality.

» solving NP-hard problems on trees

» Solve problem in polynomial time.

» circular arc coverings » Solve arbitrary instances of the problem.

» vertex cover in bipartite graphs

; This lecture. Solve some special cases of NP-complete problems.
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Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices SCV

1 O. EXTENDING TRACTABILITY such that IS|=< k, and for each edge (u,v) either u € S or v € S or both?

» finding small vertex covers

» solving NP-hard problems on trees : o
3 » circular arc coverings
6‘ 4 » vertex cover in bipartite graphs S 7]
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S={3,6,7 10} is a vertex cover of size k = 4



Finding small vertex covers Finding small vertex covers

Q. VERTEX-COVER is NP-complete. But what if k is small? Claim. Let (u,v) be an edge of G. G has a vertex cover of size < k iff
at least one of G- {u} and G- {v} has a vertex cover of size < k- 1.

Brute force. O(knk+).
* Try all C(n, k) = O(n*) subsets of size k. Pf. =
» Takes O(kn) time to check whether a subset is a vertex cover. * Suppose G has a vertex cover S of size <k.

delete v and all incident edges

* S contains either u or v (or both). Assume it contains u.
e S—{u}is avertex cover of G- {u}.
Goal. Limit exponential dependency on k, say to O(2 kn).

Pf. <
Ex. n=1,000,%k=10. » Suppose S is a vertex cover of G- {u} of size < k- 1.
Brute. knk! =103 = infeasible. » Then SU {u} is a vertex cover of G. =
Better. 2¢kn=107 = feasible.
Remark. If kis a constant, then the algorithm is poly-time; Claim. If G has a vertex cover of size k, it has <k (n - 1) edges.
if k is a small constant, then it’s also practical. Pf. Each vertex covers at most n— 1 edges. =
5
Finding small vertex covers: algorithm Finding small vertex covers: recursion tree
Claim. The following algorithm determines if G has a vertex cover of
size < k in O(2k kn) time. c ifk=0
T(n,k)<<cn ifk=1 = T(n k) =<2ckn
Vertex-Cover(G, k) { 2T (nk—1)+ckn ifk>1

if (G contains no edges) return true

if (G contains = kn edges) return false m

let (u, v) be any edge of G A

a = Vertex-Cover(G - {u}, k-1)

b = Vertex-Cover(G - {v}, k-1) kel L

return a or b

}

Pf. k-2 k-2 k-2 k-2

» Correctness follows from previous two claims.
* There are <2+1 nodes in the recursion tree; each invocation
takes O(kn) time. =



10. EXTENDING TRACTABILITY

» solving NP-hard problems on trees
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Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality
independent set in forests (and hence trees).

Independent-Set-In-A-Forest(F) {
S«<9¢
while (F has at least one edge) {
Let e = (u, v) be an edge such that v is a leaf
Add v to S
Delete from F nodes u and v, and all edges
incident to them.

X

return S U { isolated vertices in F }

Pf. Correctness follows from the previous key observation. =

Remark. Can implement in O(n) time by considering nodes in postorder.

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset
of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.
/
degree = 1 / \
Key observation. If vis a leaf, there exists
a maximum size independent set containing v. /L
V\

AN

Pf. (exchange argument)
* Consider a max cardinality independent set S.
* If vES, we're done.
s IfuéSand v S, then SU {v} is independent = S not maximum.
IfueSandvé s, then SU {v}-{u} is independent. =

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights w, >0,
find an independent set S that maximizes = s w,.

Observation. If (u,v) is an edge such that v is a leaf node, then either OPT
includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.
* OPT,,(u) = max weight independent set

of subtree rooted at u, containing u. r
* OPT,,.(u) = max weight independent set |
of subtree rooted at u, not containing u. |\
u
OPT,(w) = w,+ Sy OPT,,(v)
v € children(u) ! V/ \!V\ X
OPT,,(u) = > max {OPT,,(v), OPT,,,(»)} |

v € children(u)

children(u) = {v, w, x }



Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted

independent set in a tree in O(n) time. N can also find

independent set itself
(not just value)

Weighted-Independent-Set-In-A-Tree(T) {
Root the tree at a node r
foreach (node u of T in postorder) {
if (u is a Teaf) {

M;, [ul = w, ensures a node is visited
after all its children

Moue[U] = 0
}
else {

Min [ul = Wy + Ziechitdrenawy Mout[V]

Mowr[U] = Ziechitdrencwy MaxMin[v1, Moy [VvI)
}

3

return max(M;,[r], My.[rl)

10. EXTENDING TRACTABILITY

» circular arc coverings
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Context

Independent set on trees. This structured special case is tractable
because we can find a node that breaks the communication among
the subproblems in different subtrees.

see Section 10.4
(but proceed with caution)

Graphs of bounded tree width. Elegant generalization of trees that:
« Captures a rich class of graphs that arise in practice.
» Enables decomposition into independent pieces.

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams
(arcs) to share a portion of a fiber optic cable, provided they are transmitted
using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors
suffice in O(km) time by trying all k-colorings.

Goal. O(f(k)) - poly(m,n) on rings.

n=4m=6 {cd}{bf}{ae}



Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of
colors equals depth of schedule.

maximum number of streams at one location

Circular arc coloring.
* Weak duality: number of colors > depth.
» Strong duality does not hold.

max depth = 2
min colors = 3 17

Circular arc coloring: dynamic programming algorithm

Dynamic programming algorithm.
» Assign distinct color to each interval which begins at cut node v,
» At each node v, some intervals may finish, and others may begin.
» Enumerate all k-colorings of the intervals through v, that are consistent
with the colorings of the intervals through v, ;.
* The arcs are k-colorable iff some coloring of intervals ending at cut node
v, IS consistent with original coloring of the same intervals.
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(Almost) transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of n arcs with depth d < «k,
can the arcs be colored with & colors?

Equivalent problem. Cut the network between nodes v, and v,. The arcs can
be colored with k colors iff the intervals can be colored with k colors in such
a way that “sliced” arcs have the same color.

colors of a’, b’, and ¢’ must correspond
to colors of a”, b”, and c”
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Circular arc coloring: running time

Running time. O(k! - n).
* The algorithm has »n phases.
» Bottleneck in each phase is enumerating all consistent colorings.
» There are at most k intervals through v;, so there are at most
k! colorings to consider.

Remark. This algorithm is practical for small values of k (say k= 10)
even if the number of nodes » (or paths) is large.

20



10. EXTENDING TRACTABILITY

» vertex cover in bipartite graphs

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover.
Then, 1Ml < ISI.

Pf. Each vertex can cover at most one edge in any matching.

matching M: 1-1', 2-2', 3-4', 4-5'

23

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices SCV
such that ISl< k, and for each edge (u, v) either u € S or v € S or both?

vertex cover S ={3,4,5,1,2'}

22

Vertex cover in bipartite graphs: Kénig-Egervéry Theorem

Theorem. [K6nig-Egervary] In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover.

matching M: 1-1', 2-2', 3-4', 4-5'
vertex cover S = { 3,4,5,1',2'} 24



Proof of Kénig-Egervéry theorem Proof of Kénig-Egervéry theorem

Theorem. [Konig-Egervary] In a bipartite graph, the max cardinality of a Theorem. [Konig-Egervary] In a bipartite graph, the max cardinality of a
matching is equal to the min cardinality of a vertex cover. matching is equal to the min cardinality of a vertex cover.

* Suffices to find matching M and cover S such that IMI = ISI. * Suffices to find matching M and cover S such that IM| = ISI.

» Formulate max flow problem as for bipartite matching. » Formulate max flow problem as for bipartite matching.

* Let M be max cardinality matching and let (A, B) be min cut. * Let M be max cardinality matching and let (A, B) be min cut.

* Define Ly=LNA, Ly=LNB, Ry=RNA, Rg=RNB.

* Claim 1. S=LgzUR, is a vertex cover.
- consider (u,v) €EE
- u€Ly,vERgimpossible since infinite capacity
- thus, either u€ Lz or vER, or both

* Claim 2. IMI = ISI.
- max-flow min-cut theorem = IM|=cap(A, B)
- only edges of form (s, u) or (v, ) contribute to cap(A, B)
- IMI=cap(A,B)=ILgl +IR,| = ISI. =
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