10. Extending Tractability

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

![Graph](https://via.placeholder.com/150)

$S = \{3, 6, 7, 10\}$ is a vertex cover of size $k = 4$
Finding small vertex covers

Q. VERTEXCOVER is NP-complete. But what if \(k \) is small?

Brute force. \(O(kn^{k+1}) \).
- Try all \(C(n, k) = O(n^k) \) subsets of size \(k \).
- Takes \(O(kn) \) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on \(k \), say to \(O(2^k kn) \).

Ex. \(n = 1,000, k = 10 \).
Brute. \(kn^{k+1} = 10^{14} \) \(\Rightarrow \) infeasible.
Better. \(2^k kn = 10^7 \) \(\Rightarrow \) feasible.

Remark. If \(k \) is a constant, then the algorithm is poly-time; if \(k \) is a small constant, then it’s also practical.

Finding small vertex covers: algorithm

Claim. The following algorithm determines if \(G \) has a vertex cover of size \(\leq k \) in \(O(2^k kn) \) time.

```
Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains \( \geq kn \) edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - \{u\}, k-1)
    b = Vertex-Cover(G - \{v\}, k-1)
    return a or b
}
```

Pf.
- Correctness follows from previous two claims.
- There are \(\leq 2^{k+1} \) nodes in the recursion tree; each invocation takes \(O(kn) \) time. •

Finding small vertex covers: recursion tree

Claim. Let \((u, v)\) be an edge of \(G \). \(G \) has a vertex cover of size \(\leq k \) iff at least one of \(G - \{u\} \) and \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \).

Pf. \(\Rightarrow \)
- Suppose \(G \) has a vertex cover \(S \) of size \(\leq k \).
- \(S \) contains either \(u \) or \(v \) (or both). Assume it contains \(u \).
- \(S - \{u\} \) is a vertex cover of \(G - \{u\} \).

Pf. \(\Leftarrow \)
- Suppose \(S \) is a vertex cover of \(G - \{u\} \) of size \(\leq k - 1 \).
- Then \(S \cup \{u\} \) is a vertex cover of \(G \). •

Claim. If \(G \) has a vertex cover of size \(k \), it has \(\leq k (n - 1) \) edges.

Pf. Each vertex covers at most \(n - 1 \) edges. •
10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Independent set on trees

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```plaintext
Independent-Set-In-A-Forest(F) {
    S ← φ
    while (F has at least one edge) {
        Let e = (u, v) be an edge such that v is a leaf
        Add v to S
        Delete from F nodes u and v, and all edges incident to them.
    }
    return S
}
```

Pf. Correctness follows from the previous key observation. •

Remark. Can implement in $O(n)$ time by considering nodes in postorder.

Weighted independent set on trees

Theorem. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists a maximum size independent set containing v.

Pf. (exchange argument)

- Consider a max cardinality independent set S.
- If $v \in S$, we’re done.
- If $u \notin S$ and $v \notin S$, then $S \cup \{v\}$ is independent $\Rightarrow S$ not maximum.
- If $u \in S$ and $v \notin S$, then $S \cup \{v\} - \{u\}$ is independent. •

Weighted independent set on trees

Theorem. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $OPT_{in}(u) = \max$ weight independent set of subtree rooted at u, containing u.
- $OPT_{out}(u) = \max$ weight independent set of subtree rooted at u, not containing u.

$$OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)$$

$$OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max \{OPT_{in}(v), OPT_{out}(v)\}$$

children(u) = { v, w, x }
Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in \(O(n)\) time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node \(r\)
    foreach (node \(u\) of \(T\) in postorder) {
        if (\(u\) is a leaf) {
            \(M_{in}[u] = w_u\)
            \(M_{out}[u] = 0\)
        } else {
            \(M_{in}[u] = w_u + \Sigma_{v \in \text{children}(u)} M_{out}[v]\)
            \(M_{out}[u] = \Sigma_{v \in \text{children}(u)} \max(M_{in}[v], M_{out}[v])\)
        }
    }
    return \(\max(M_{in}[r], M_{out}[r])\)
}
```

Graphs of bounded tree width. Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.

10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows \(m\) communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on \(n\) nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if \(k\) colors suffice in \(O(k^m)\) time by trying all \(k\)-colorings.

Goal. \(O(f(k)) \cdot \text{poly}(m,n)\) on rings.
Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

![Circular arc coloring](image)

- Weak duality: number of colors \geq depth.
- Strong duality does not hold.

Circular arc coloring: dynamic programming algorithm

- Assign distinct color to each interval which begins at cut node v_0.
- At each node v_i, some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1}.
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.

Yes

(A)lmost transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of n arcs with depth $d \leq k$, can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v_1 and v_n. The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.

![Circular arc coloring](image)

Circular arc coloring: running time

Running time. $O(k! \cdot n)$.

- The algorithm has n phases.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_i, so there are at most $k!$ colorings to consider.

Remark. This algorithm is practical for small values of k (say $k = 10$) even if the number of nodes n (or paths) is large.
10. **Extending Tractability**

- finding small vertex covers
- solving NP-hard problems on trees
- circular arc coverings
- vertex cover in bipartite graphs

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq |S|$.

Pf. Each vertex can cover at most one edge in any matching.

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

\begin{center}
\begin{tikzpicture}

\node (s) at (0,0) {s};
\node (1) at (1,1) {1};
\node (2) at (1,-1) {2};
\node (3) at (2,0) {3};
\node (4) at (3,0) {4};
\node (5) at (4,-1) {5};
\node (6) at (5,0) {6};
\node (7) at (3,1) {7};
\node (8) at (4,1) {8};
\node (1') at (6,1) {$1'$};

\node (L) at (6,-1) {L};
\node (R) at (8,-1) {R};

\draw (s) -- (1);
\draw (s) -- (2);
\draw (s) -- (3);
\draw (s) -- (4);
\draw (s) -- (5);
\draw (s) -- (6);
\draw (s) -- (7);
\draw (s) -- (8);
\draw (1) -- (1') node[midway, above] {∞};
\draw (1) -- (2);
\draw (1) -- (3);
\draw (1) -- (4);
\draw (1) -- (5);
\draw (1) -- (6);
\draw (1) -- (7);
\draw (1) -- (8);
\draw (2) -- (1');
\draw (2) -- (3);
\draw (2) -- (4);
\draw (2) -- (5);
\draw (2) -- (6);
\draw (2) -- (7);
\draw (2) -- (8);
\draw (3) -- (1');
\draw (3) -- (4);
\draw (3) -- (5);
\draw (3) -- (6);
\draw (3) -- (7);
\draw (3) -- (8);
\draw (4) -- (1');
\draw (4) -- (5);
\draw (4) -- (6);
\draw (4) -- (7);
\draw (4) -- (8);
\draw (5) -- (1');
\draw (5) -- (6);
\draw (5) -- (7);
\draw (5) -- (8);
\draw (6) -- (1');
\draw (6) -- (7);
\draw (6) -- (8);
\draw (7) -- (1');
\draw (7) -- (8);
\draw (8) -- (1');
\draw (L) -- (s)
\draw (R) -- (s);
\end{tikzpicture}
\end{center}

Proof. Let M be a max cardinality matching and let (A, B) be a min cut. Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$, $R_B = R \cap B$.

- Claim 1. $S = L_B \cup R_A$ is a vertex cover.
 - Consider $(u, v) \in E$
 - $u \in L_A, v \in R_B$ impossible since infinite capacity
 - thus, either $u \in L_B$ or $v \in R_A$ or both

 - max-flow min-cut theorem $\Rightarrow |M| = \text{cap}(A, B)$
 - only edges of form (s, u) or (v, t) contribute to $\text{cap}(A, B)$
 - $|M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|$.

\[\blacksquare\]