
Lecture slides by Kevin Wayne 
Copyright © 2005 Pearson-Addison Wesley 

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on 11/14/20 12:21 AM

10. EXTENDING TRACTABILITY

‣ finding small vertex covers

‣ solving NP-hard problems on trees

‣ circular arc coverings

‣ vertex cover in bipartite graphs

Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you’re unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

・Solve problem to optimality.

・Solve problem in polynomial time.

・Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.

2

10. EXTENDING TRACTABILITY

‣ finding small vertex covers

‣ solving NP-hard problems on trees

‣ circular arc coverings

‣ vertex cover in bipartite graphs

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V

such that | S | ≤ k, and for each edge (u, v) either u ∈ S or v ∈ S or both?

4

3

6

10

7

1

5

8

2

4 9

S = { 3, 6, 7, 10 } is a vertex cover of size k = 4

Finding small vertex covers

Q. VERTEX-COVER is NP-complete. But what if k is small?

Brute force. O(k nk+1).

・Try all C(n, k) = O(nk) subsets of size k.

・Takes O(k n) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to O(2k k n).

Ex. n = 1,000, k = 10.

Brute. k nk+1 = 1034 ⇒ infeasible.

Better. 2k k n = 107 ⇒ feasible.

Remark. If k is a constant, then the algorithm is poly-time;

if k is a small constant, then it’s also practical.

5

Finding small vertex covers

Claim. Let (u, v) be an edge of G. G has a vertex cover of size ≤ k iff
at least one of G − { u } and G − { v } has a vertex cover of size ≤ k − 1.

Pf. ⇒

・Suppose G has a vertex cover S of size ≤ k.

・S contains either u or v (or both). Assume it contains u.

・S − { u } is a vertex cover of G − { u }.

Pf. ⇐

・Suppose S is a vertex cover of G − { u } of size ≤ k − 1.

・Then S ∪ { u } is a vertex cover of G. ▪

Claim. If G has a vertex cover of size k, it has ≤ k (n − 1) edges.

Pf. Each vertex covers at most n − 1 edges. ▪

6

delete v and all incident edges

Finding small vertex covers: algorithm

Claim. The following algorithm determines if G has a vertex cover of

size ≤ k in O(2k kn) time.

Pf.

・Correctness follows from previous two claims.

・There are ≤ 2k+1 nodes in the recursion tree; each invocation

takes O(kn) time. ▪

7

Vertex-Cover(G, k) {
 if (G contains no edges) return true

 if (G contains ≥ kn edges) return false

 let (u, v) be any edge of G
 a = Vertex-Cover(G - {u}, k-1)
 b = Vertex-Cover(G - {v}, k-1)
 return a or b
}

Finding small vertex covers: recursion tree

8

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

€

T (n, k) ≤
c if k = 0
cn if k =1
2T (n,k −1)+ ckn if k > 1

$

%
&

'
&

⇒ T (n, k) ≤ 2k ck n

10. EXTENDING TRACTABILITY

‣ finding small vertex covers

‣ solving NP-hard problems on trees

‣ circular arc coverings

‣ vertex cover in bipartite graphs

Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset

of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

Key observation. If v is a leaf, there exists

a maximum size independent set containing v.

Pf. (exchange argument)

・Consider a max cardinality independent set S.

・If v ∈ S, we’re done.

・If u ∉ S and v ∉ S, then S ∪ { v } is independent ⇒ S not maximum.

・If u ∈ S and v ∉ S, then S ∪ { v } − { u } is independent. ▪

10

v

u

degree = 1

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality

independent set in forests (and hence trees).

Pf. Correctness follows from the previous key observation. ▪

Remark. Can implement in O(n) time by considering nodes in postorder.

11

Independent-Set-In-A-Forest(F) {

 S ← φ

 while (F has at least one edge) {
 Let e = (u, v) be an edge such that v is a leaf
 Add v to S
 Delete from F nodes u and v, and all edges
 incident to them.
 }
 return S ∪ { isolated vertices in F }

}

Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights wv > 0,

find an independent set S that maximizes Σv∈S wv.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT

includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

・OPTin (u) = max weight independent set

of subtree rooted at u, containing u.

・OPTout (u) = max weight independent set

of subtree rooted at u, not containing u.

12

r

u

v w

€

OPTin (u) = wu + OPTout (v)
v ∈ children(u)

∑

OPTout (u) = max OPTin (v), OPTout (v){ }
v ∈ children(u)

∑

x

children(u) = { v, w, x }

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted

independent set in a tree in O(n) time.

13

Weighted-Independent-Set-In-A-Tree(T) {
 Root the tree at a node r
 foreach (node u of T in postorder) {
 if (u is a leaf) {
 Min [u] = wu
 Mout[u] = 0

 }
 else {

 Min [u] = wu + Σv∈children(u) Mout[v]

 Mout[u] = Σv∈children(u) max(Min[v], Mout[v])

 }
 }
 return max(Min[r], Mout[r])

}

ensures a node is visited
after all its children

can also find
independent set itself

(not just value)

Context

Independent set on trees. This structured special case is tractable

because we can find a node that breaks the communication among

the subproblems in different subtrees.

Graphs of bounded tree width. Elegant generalization of trees that:

・Captures a rich class of graphs that arise in practice.

・Enables decomposition into independent pieces.

14

u

see Section 10.4
(but proceed with caution)

10. EXTENDING TRACTABILITY

‣ finding small vertex covers

‣ solving NP-hard problems on trees

‣ circular arc coverings

‣ vertex cover in bipartite graphs

Wavelength-division multiplexing

Wavelength-division multiplexing (WDM). Allows m communication streams

(arcs) to share a portion of a fiber optic cable, provided they are transmitted

using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors

suffice in O(km) time by trying all k-colorings.

Goal. O(f (k)) ⋅ poly(m, n) on rings.

16

1

3

24

f

b
c

d

a

e

n = 4, m = 6 { c, d }, { b, f }, { a, e }

Review: interval coloring

Interval coloring. Greedy algorithm finds coloring such that number of

colors equals depth of schedule.

Circular arc coloring.

・Weak duality: number of colors ≥ depth.

・Strong duality does not hold.

17

h

c

a e

f

g i

jd

b

maximum number of streams at one location

max depth = 2 
min colors = 3

(Almost) transforming circular arc coloring to interval coloring

Circular arc coloring. Given a set of n arcs with depth d ≤ k,
can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v1 and vn. The arcs can

be colored with k colors iff the intervals can be colored with k colors in such

a way that “sliced” arcs have the same color.

18

colors of a′, b′, and c′ must correspond 
to colors of a″, b″, and c″

v1

v2v4

v3

v0

v1 v2 v3 v4v0 v0

Circular arc coloring: dynamic programming algorithm

Dynamic programming algorithm.

・Assign distinct color to each interval which begins at cut node v0.

・At each node vi, some intervals may finish, and others may begin.

・Enumerate all k-colorings of the intervals through vi that are consistent

with the colorings of the intervals through vi–1.

・The arcs are k-colorable iff some coloring of intervals ending at cut node

v0 is consistent with original coloring of the same intervals.

19

3

2

1

c′

b′

a′

3

2

1

1

2

3

e

b′

d

3

2

1

1

2

3

e

f

d

3

2

1

1

2

3

e

f

c″

3

2

1

1

2

3

2

3

1

2

1

3

a″

b″

c″

v0 v1 v2 v3 v4 v0

yes

Circular arc coloring: running time

Running time. O(k! ⋅ n).

・The algorithm has n phases.

・Bottleneck in each phase is enumerating all consistent colorings.

・There are at most k intervals through vi, so there are at most

k! colorings to consider.

Remark. This algorithm is practical for small values of k (say k = 10)

even if the number of nodes n (or paths) is large.

20

10. EXTENDING TRACTABILITY

‣ finding small vertex covers

‣ solving NP-hard problems on trees

‣ circular arc coverings

‣ vertex cover in bipartite graphs

Vertex cover

Given a graph G = (V, E) and an integer k, is there a subset of vertices S ⊆ V

such that | S | ≤ k, and for each edge (u, v) either u ∈ S or v ∈ S or both?

22

vertex cover S = { 3, 4, 5, 1', 2' }

1

2

3'

4'

5'

3

4

5

1'

2'

Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover.

Then, | M | ≤ | S |.

Pf. Each vertex can cover at most one edge in any matching.

23

matching M: 1-1', 2-2', 3-4', 4-5'

1

2

3

4

5

1'

2'

3'

4'

5'

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a

matching is equal to the min cardinality of a vertex cover.

24

matching M: 1-1', 2-2', 3-4', 4-5'

1

2

3

4

5

1'

2'

3'

4'

5'

vertex cover S = { 3, 4, 5, 1', 2' }

Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a

matching is equal to the min cardinality of a vertex cover.

・Suffices to find matching M and cover S such that | M | = | S |.

・Formulate max flow problem as for bipartite matching.

・Let M be max cardinality matching and let (A, B) be min cut.

25

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

RL

Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a

matching is equal to the min cardinality of a vertex cover.

・Suffices to find matching M and cover S such that | M | = | S |.

・Formulate max flow problem as for bipartite matching.

・Let M be max cardinality matching and let (A, B) be min cut.

・Define LA = L ∩ A, LB = L ∩ B , RA = R ∩ A, RB = R ∩ B.

・Claim 1. S = LB ∪ RA is a vertex cover.
- consider (u, v) ∈ E
- u ∈ LA, v ∈ RB impossible since infinite capacity
- thus, either u ∈ LB or v ∈ RA or both

・Claim 2. | M | = | S |.
- max-flow min-cut theorem ⇒ | M | = cap(A, B)
- only edges of form (s, u) or (v, t) contribute to cap(A, B)
- | M | = cap(A, B) = | LB | + | RA | = | S |. ▪

26

