9. **PSPACE**

- **PSPACE complexity class**
- quantified satisfiability
- planning problem
- **PSPACE-complete**

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue. Does Alice have a forced win?

Ex. Budapest → Tokyo → Ottawa → Ankara → Amsterdam → Moscow → Washington → Nairobi → ...

Geography on graphs. Given a directed graph $G = (V, E)$ and a start node s, two players alternate turns by following, if possible, an edge out of the current node to an unvisited node. Can first player guarantee to make the last legal move?

Remark. Some problems (especially involving 2-player games and AI) defy classification according to NP, $EXPTIME$, NP, and $NP-Complete$.

PSPACE

- **P.** Decision problems solvable in polynomial **time**.

- **PSPACE.** Decision problems solvable in polynomial **space**.

Observation. $P \subseteq PSPACE$.

- poly-time algorithm can consume only polynomial space
PSPACE

Binary counter. Count from 0 to $2^n - 1$ in binary.
Algorithm. Use n bit odometer.

Claim. 3-SAT \in PSPACE.
Pf. • Enumerate all 2^n possible truth assignments using counter.
• Check each assignment to see if it satisfies all clauses.

Theorem. NP \subseteq PSPACE.
Pf. Consider arbitrary problem $Y \in$ NP,
• Since $Y \leq_p$ 3-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
• Can implement black box in poly-space.

Quantified satisfiability

Q-SAT. Let $\Phi(x_1, \ldots, x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \; \forall x_2 \; \exists x_3 \; \forall x_4 \; \ldots \; \forall x_{n-1} \; \exists x_n \; \Phi(x_1, \ldots, x_n)$$

Intuition. Amy picks truth value for x_1, then Bob for x_2, then Amy for x_3, and so on. Can Amy satisfy Φ no matter what Bob does?

Ex. $(x_1 \lor x_2) \land (x_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3)$
Yes. Amy sets x_1 true; Bob sets x_2; Amy sets x_3 to be same as x_2.

Ex. $(x_1 \lor x_2) \land (\overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor x_3)$
No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses;
No if Amy sets x_1 true; Bob sets x_2 true; Amy loses.

Quantified satisfiability is in PSPACE

Theorem. Q-SAT \in PSPACE.
Pf. Recursively try all possibilities.
• Only need one bit of information from each subproblem.
• Amount of space is proportional to depth of function call stack.
9. PSPACE

- PSPACE complexity class
- quantified satisfiability
- planning problem
- PSPACE-complete

Planning problem

Conditions. Set \(C = \{ C_1, \ldots, C_n \} \).

Initial configuration. Subset \(c_0 \subseteq C \) of conditions initially satisfied.

Goal configuration. Subset \(c^+ \subseteq C \) of conditions we seek to satisfy.

Operators. Set \(O = \{ O_1, \ldots, O_k \} \).

- To invoke operator \(O_i \), must satisfy certain prereq conditions.
- After invoking \(O_i \), certain conditions become true, and certain conditions become false.

Planning. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.

- 15-puzzle.
- Rubik’s cube.
- Logistical operations to move people, equipment, and materials.

Planning problem: 8-puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. \(C_{ij}, 1 \leq i, j \leq 9 \). \(C_i \) means tile \(i \) is in square \(j \).

Initial state. \(c_0 = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99} \} \).

Goal state. \(c^* = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99} \} \).

Operators.

- Precondition to apply \(O_i \) = \{\(C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99} \)\}.
- After invoking \(O_i \), conditions \(C_{79} \) and \(C_{97} \) become true.
- After invoking \(O_i \), conditions \(C_{78} \) and \(C_{99} \) become false.

Solution. No solution to 8-puzzle or 15-puzzle!
Diversion: Why is 8-puzzle unsolvable?

8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

3 inversions
1-3, 2-3, 7-8

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

3 inversions
1-3, 2-3, 7-8

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

5 inversions
1-3, 2-3, 7-8, 5-8, 5-6

Planning problem: binary counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Conditions. \(C_1, \ldots, C_n \) \(\Longleftrightarrow \) \(C_i \) corresponds to bit \(i = 1 \)

Initial state. \(c_0 = \varnothing \) \(\Longleftrightarrow \) all 0s

Goal state. \(c^n = \{C_1, \ldots, C_n\} \) \(\Longleftrightarrow \) all 1s

Operators. \(O_1, \ldots, O_n \)
- To invoke operator \(O_i \) must satisfy \(C_1, \ldots, C_{i-1} \).
- After invoking \(O_i \), condition \(C_i \) becomes true. \(\Longleftrightarrow \) set bit \(i \) to 1
- After invoking \(O_i \), conditions \(C_1, \ldots, C_{i-1} \) become false. \(\Longleftrightarrow \) set \(i-1 \) least significant bits to 0

Solution. \(\{\} \Rightarrow \{C_1\} \Rightarrow \{C_2\} \Rightarrow \{C_1, C_2\} \Rightarrow \{C_3\} \Rightarrow \{C_3, C_1\} \Rightarrow \ldots \)

Observation. Any solution requires at least \(2^n - 1 \) steps.
9. PSPACE

- PSPACE complexity class
- quantified satisfiability
- planning problem
- PSPACE-complete

PSPACE-complete problems

More PSPACE-complete problems.
- Competitive facility location.
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Competitive facility location

Input. Graph $G = (V, E)$ with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Yes if $B = 20$;
No if $B = 25$
Claim. \(\text{COMPETITIVE-LOCATION} \in \text{PSPACE-complete}. \)

Pf.

- To solve in poly-space, use recursion like Q-SAT, but at each step there are up to \(n \) choices instead of 2.
- To show that it's complete, we show that Q-SAT polynomial reduces to it. Given an instance of Q-SAT, we construct an instance of \(\text{COMPETITIVE-LOCATION} \) so that player 2 can force a win iff Q-SAT formula is \textit{true}.

Construction. Given instance \(\Phi(x_1, \ldots, x_n) = C_1 \land C_1 \land \ldots \land C_k \) of Q-SAT. → assume \(n \) is odd

- Include a node for each literal and its negation and connect them. (at most one of \(x_i \) and its negation can be chosen)
- Choose \(c \geq k + 2 \), and put weight \(c^i \) on literal \(x_i \) and its negation;
 set \(B = c^{n-1} + c^{n-3} + \ldots + c^4 + c^2 + 1 \).
 (ensures variables are selected in order \(x_n, x_{n-1}, \ldots, x_1 \))
- As is, player 2 will lose by 1 unit: \(c^{n-1} + c^{n-3} + \ldots + c^4 + c^2 \).

Construction. Given instance \(\Phi(x_1, \ldots, x_n) = C_1 \land C_1 \land \ldots \land C_k \) of Q-SAT.

- Give player 2 one last move on which she can try to win.
- For each clause \(C_j \), add node with value 1 and an edge to each of its literals.
- Player 2 can make last move iff truth assignment defined alternately by the players failed to satisfy some clause. ■