8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.

• Greedy.
• Divide and conquer.
• Dynamic programming.
• Duality.
• Reductions.
• Local search.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. $O(n^k)$ algorithm unlikely.
• PSPACE-completeness. $O(n^k)$ certification algorithm unlikely.
• Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Polynomial-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
Polynomial-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don’t mistake $X \leq_p Y$ with $Y \leq_p X$.
Polynomial-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?

- independent set of size 6
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?

[Diagram of a graph with black and white vertices and edges]
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

![Graph showing an independent set of size 6 and a vertex cover of size 4.](image-url)
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v)\).
- \(S \) independent \(\Rightarrow \) either \(u \notin S \) or \(v \notin S \) (or both)
 \[\Rightarrow \text{either } u \in V - S \text{ or } v \in V - S \text{ (or both)}. \]
- Thus, \(V - S \) covers \((u, v)\).
Vertex cover and independent set reduce to one another

Theorem. \textsc{Vertex-Cover} \(\equiv_p\) \textsc{Independent-Set}.

Pf. We show \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).

\[
\iff
\]

- Let \(V - S\) be any vertex cover of size \(n - k\).
- \(S\) is of size \(k\).
- Consider two nodes \(u \in S\) and \(v \in S\).
- Observe that \((u, v) \notin E\) since \(V - S\) is a vertex cover.
- Thus, no two nodes in \(S\) are joined by an edge \(\Rightarrow S\) independent set. □
Set cover

SET-COVER. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} & S_b &= \{ 2, 4 \} \\
S_c &= \{ 3, 4, 5, 6 \} & S_d &= \{ 5 \} \\
S_e &= \{ 1 \} & S_f &= \{ 1, 2, 6, 7 \} \\
k &= 2
\end{align*}
\]

a set cover instance
Vertex cover reduces to set cover

Theorem. \textsc{Vertex-Cover} $\leq_p \textsc{Set-Cover}$.

Pf. Given a \textsc{Vertex-Cover} instance $G = (V, E)$ and k, we construct a \textsc{Set-Cover} instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{ e \in E : e$ incident to $v \}$.

vertex cover instance
\begin{tabular}{l}
$k = 2$ \end{tabular}
set cover instance
\begin{tabular}{l}
$k = 2$ \end{tabular}

\begin{itemize}
\item $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
\item $S_a = \{ 3, 7 \}$ \quad $S_b = \{ 2, 4 \}$
\item $S_c = \{ 3, 4, 5, 6 \}$ \quad $S_d = \{ 5 \}$
\item $S_e = \{ 1 \}$ \quad $S_f = \{ 1, 2, 6, 7 \}$
\end{itemize}
Vertex cover reduces to set cover

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k)\) contains a set cover of size \(k \).

Pf. \(\Rightarrow \) Let \(X \subseteq V \) be a vertex cover of size \(k \) in \(G \).
- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \). \(\blacksquare \)
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \iff Let $Y \subseteq S$ be a set cover of size k in (U, S, k).
 • Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. □
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. x_i or $\overline{x_i}$

Clause. A disjunction of literals. $C_j = x_1 \lor \overline{x_2} \lor x_3$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses. $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false}$

Key application. Electronic design automation (EDA).
Theorem. 3-SAT \leq_p INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$

k = 3
3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. \blacksquare

$k = 3$

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$$
Review

Basic reduction strategies.

- Simple equivalence: \textsc{Independent-Set} $\equiv_p \textsc{Vertex-Cover}$.
- Special case to general case: \textsc{Vertex-Cover} $\leq_p \textsc{Set-Cover}$.
- Encoding with gadgets: \textsc{3-Sat} $\leq_p \textsc{Independent-Set}$.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.

Pf idea. Compose the two algorithms.

Ex. \textsc{3-Sat} $\leq_p \textsc{Independent-Set} \leq_p \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}$.
Search problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Ex. To find a vertex cover of size \(\leq k \):
- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \). (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{v\} \).

Bottom line. \textsc{Vertex-Cover} \(\equiv_p \textsc{Find-Vertex-Cover} \).
Optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:
- (Binary) search for size k^* of min vertex cover.
- Solve corresponding search problem.

Bottom line. $\text{VERTEX-COVER} \equiv_P \text{FIND-VERTEX-COVER} \equiv_P \text{OPTIMAL-VERTEX-COVER}$.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?
Directed Hamilton cycle reduces to Hamilton cycle

DIR-HAM-CYCLE: Given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

Theorem. $\text{DIR-HAM-CYCLE} \leq_p \text{HAM-CYCLE}.$

Pf. Given a digraph $G = (V, E)$, construct a graph G' with $3n$ nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:

 \ldots, black, white, blue, black, white, blue, black, white, blue, …
 \ldots, black, blue, white, black, blue, white, black, blue, white, …
 \ldots, black, blue, white, black, blue, white, black, blue, white, …

- Black nodes in Γ' make up directed Hamilton cycle Γ in G, or reverse of one. \blacksquare
3-satisfiability reduces to directed Hamilton cycle

Theorem. $3\text{-Sat} \leq_p \text{DIR-HAM-CYCLE}$.

Pf. Given an instance Φ of 3-Sat, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

![Diagram of a directed graph with vertices s, x_1, x_2, x_3, t, and edges connecting them to form Hamilton cycles. The edges are arranged in a grid-like structure with $3k + 3$ edges in total.]
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause, add a node and 6 edges.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]

\[
C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3}
\]
Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

- Suppose 3-SAT instance has satisfying assignment \(x^* \).
- Then, define Hamilton cycle in \(G \) as follows:
 - if \(x^*_i = \text{true} \), traverse row \(i \) from left to right
 - if \(x^*_i = \text{false} \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle
 (and we splice in \(C_j \) exactly once)
3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \iff

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{ C_j \}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{ C_1, C_2, \ldots, C_k \}$.
- Set $x^*_i = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in “correct” direction, and each clause is satisfied. \blacksquare
3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph \(G = (V, E) \), does there exist a simple path consisting of at least \(k \) edges?

Theorem. \(3\text{-Sat} \leq_p \text{LONGEST-PATH} \).

Pf 1. Redo proof for \(\text{DIR-HAM-CYCLE} \), ignoring back-edge from \(t \) to \(s \).

Pf 2. Show \(\text{HAM-CYCLE} \leq_p \text{LONGEST-PATH} \).
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

[13,509 cities in the United States
http://www.math.uwaterloo.ca/tsp]
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

![Optimal TSP tour](http://www.math.uwaterloo.ca/tsp)
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

11,849 holes to drill in a programmed logic array

http://www.math.uwaterloo.ca/tsp
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

optimal TSP tour
http://www.math.uwaterloo.ca/tsp
Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?

Theorem. HAM-CYCLE \(\leq_p \) TSP.

Pf.

- Given an instance \(G = (V, E) \) of HAM-CYCLE, create \(n = |V| \) cities with distance function
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]

- TSP instance has tour of length \(\leq n \) iff \(G \) has a Hamilton cycle.

Remark. TSP instance satisfies triangle inequality: \(d(u, w) \leq d(u, v) + d(v, w) \).
Polynomial-time reductions

constraint satisfaction

3-SAT poly-time reduces to INDEPENDENT-SET

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

packing and covering

3-Sat

DIR-HAM-CYCLE

HAM-CYCLE

sequencing

TSP

partitioning

GRAPH-3-COLOR

PLANAR-3-COLOR

SCHEDULING

numerical

SUBSET-SUM
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- **partitioning problems**
- graph coloring
- numerical problems
3-dimensional matching

3D-Matching. Given \(n \) instructors, \(n \) courses, and \(n \) times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>instructor</th>
<th>course</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

\[
X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \}
\]

\[
T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \}
\]

\[
T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \}, \quad T_6 = \{ x_2, y_2, z_2 \}
\]

\[
T_7 = \{ x_3, y_1, z_3 \}, \quad T_8 = \{ x_3, y_1, z_1 \}, \quad T_9 = \{ x_3, y_2, z_1 \}
\]

an instance of 3d-matching (with $n = 3$)

Remark. Generalization of bipartite matching.
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets \(X, Y, \) and \(Z, \) each of size \(n \) and a set \(T \subseteq X \times Y \times Z \) of triples, does there exist a set of \(n \) triples in \(T \) such that each element of \(X \cup Y \cup Z \) is in exactly one of these triples?

Theorem. \(3\text{-}Sat \leq_P 3\text{-}D\text{-}Matching. \)

Pf. Given an instance \(\Phi \) of \(3\text{-}Sat, \) we construct an instance of \(3\text{-}D\text{-}Matching \) that has a perfect matching iff \(\Phi \) is satisfiable.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = true$) or all blue ones (corresponding to $x_i = false$).
3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)

- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]
3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)

- There are $2nk$ tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets: same as clause gadget but with $2nk$ triples, connected to every tip.
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?

A. \(X = \text{black}, Y = \text{white},\) and \(Z = \text{blue}\).
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple. \(\blacksquare\)
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?

yes instance
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_P K-REGISTER-ALLOCATION for any constant $k \geq 3$.

REGISTER ALLOCATION & SPILLING VIA GRAPH COLORING

G. J. Chaitin
IBM Research
P.O.Box 218, Yorktown Heights, NY 10598
3-satisfiability reduces to 3-colorability

Theorem. $3\text{-SAT} \leq_p 3\text{-COLOR}$.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

\[\text{to be described later}\]
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to true (and *white* to false).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).

![Diagram of 3-satisfiability to 3-colorability reduction](attachment:image.png)
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$
Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

3-satisfiability reduces to 3-colorability

Suppose, for the sake of contradiction, that all 3 literals are white in some 3-coloring

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \iff Suppose 3-SAT instance Φ is satisfiable.

- Color all *true* literals *black* and all *false* literals *white*.
- Pick one *true* literal; color node below that node *white*, and node below that *blue*.
- Color remaining middle row nodes *blue*.
- Color remaining bottom nodes *black* or *white*, as forced.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]
Polynomial-time reductions

- Independent-Set
 - Vertex-Cover
 - Set-Cover

- Dir-Ham-Cycle
 - Ham-Cycle
 - TSP

- Graph-3-Color
 - Planar-3-Color

- Subset-Sum

constraint satisfaction

3-SAT poly-time reduces to Independent-Set

packing and covering sequencing partitioning numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Subset sum

Subset-Sum. Given natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Ex. \{ 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 \}, \quad W = 3754.

Yes. $1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in *binary* encoding.
Subset sum

Theorem. 3-**SAT** \leq_p **SUBSET-SUM**.

Pf. Given an instance Φ of 3-**SAT**, we construct an instance of **SUBSET-SUM** that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables and \(k \) clauses, form \(2n + 2k \) decimal integers, each of \(n + k \) digits:
- Include one digit for each variable \(x_i \) and for each clause \(C_j \).
- Include two numbers for each variable \(x_i \).
- Include two numbers for each clause \(C_j \).
- Sum of each \(x_i \) digit is 1;
 sum of each \(C_j \) digit is 4.

Key property. No carries possible \(\Rightarrow \) each digit yields one equation.

\[
\begin{align*}
\Phi &= \neg x_1 \lor x_2 \lor x_3 \\
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(W)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

SUBSET-SUM instance
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose \(\Phi \) is satisfiable.

- Choose integers corresponding to each *true* literal.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) rows.
- Choose dummy integers to make clause digits sum to 4.

\[
C_1 = \neg x_1 \lor x_2 \lor x_3 \\
C_2 = x_1 \lor \neg x_2 \lor x_3 \\
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

\[\begin{array}{cccccc}
\hline
x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 1 & 0 & 100,010 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 100,101 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 10,100 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1,001 \\
\hline
0 & 0 & 0 & 1 & 0 & 0 & 100 \\
0 & 0 & 0 & 2 & 0 & 0 & 200 \\
0 & 0 & 0 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & 0 & 2 & 0 & 20 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline
W & 1 & 1 & 1 & 4 & 4 & 4 & 111,444 \\
\hline
\end{array}\]
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Leftarrow \) Suppose there is a subset that sums to \(W \).

- Digit \(x_i \) forces subset to select either row \(x_i \) or \(\neg x_i \) (but not both).
- Digit \(C_j \) forces subset to select at least one literal in clause.
- Assign \(x_i = true \) iff row \(x_i \) selected.

\[
C_1 = \neg x_1 \lor x_2 \lor x_3
\]

\[
C_2 = x_1 \lor \neg x_2 \lor x_3
\]

\[
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

3-SAT instance

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Subset–Sum instance

\(W \)

<table>
<thead>
<tr>
<th></th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\neg x_3)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{dummies to get clause columns to sum to 4}
\]

\[
100,010 \quad 100,101 \quad 10,100 \quad 10,011 \quad 1,110 \quad 1,001 \quad 100 \quad 200 \quad 10 \quad 20 \quad 1 \quad 2
\]

\[
W \quad 1 \quad 1 \quad 1 \quad 4 \quad 4 \quad 4
\]

\[111,444\]
My hobby

Randall Munro
http://xkcd.com/287
Partition

Subset-Sum. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Partition. Given natural numbers \(v_1, \ldots, v_m \), can they be partitioned into two subsets that add up to the same value \(\frac{1}{2} \sum_i v_i \)?

Theorem. \(\text{Subset-Sum} \leq_p \text{Partition} \).

Pf. Let \(W, w_1, \ldots, w_n \) be an instance of \(\text{Subset-Sum} \).
- Create instance of \(\text{Partition} \) with \(m = n + 2 \) elements.
 - \(v_1 = w_1, v_2 = w_2, \ldots, v_n = w_n, \ v_{n+1} = 2 \sum_i w_i - W, \ v_{n+2} = \sum_i w_i + W \)
- Lemma: there exists a subset that sums to \(W \) iff there exists a partition since elements \(v_{n+1} \) and \(v_{n+2} \) cannot be in the same partition.

\[
\begin{align*}
 v_{n+1} &= 2 \sum_i w_i - W & W & \text{subset A} \\
 v_{n+2} &= \sum_i w_i + W & \sum_i w_i - W & \text{subset B}
\end{align*}
\]

...
Scheduling with release times

Schedule. Given a set of n jobs with processing time t_j, release time r_j, and deadline d_j, is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_j time units in the interval $[r_j, d_j]$?

Ex.

<table>
<thead>
<tr>
<th>j</th>
<th>t_j</th>
<th>r_j</th>
<th>d_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>
Scheduling with release times

Theorem. $\text{SUBSET-SUM} \leq_p \text{SCHEDULE}$.

Pf. Given SUBSET-SUM instance w_1, \ldots, w_n and target W, construct an instance of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

- Create n jobs with processing time $t_j = w_j$, release time $r_j = 0$, and no deadline ($d_j = 1 + \sum_j w_j$).
- Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W + 1$.
- Lemma: subset that sums to W iff there exists a feasible schedule.
Polynomial-time reductions

3-Sat

<table>
<thead>
<tr>
<th>INDEPENDENT-SET</th>
<th>DIR-HAM-CYCLE</th>
<th>GRAPH-3-COLOR</th>
<th>SUBSET-SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTEX-COVER</td>
<td>HAM-CYCLE</td>
<td>PLANAR-3-COLOR</td>
<td>SCHEDULING</td>
</tr>
<tr>
<td>SET-COVER</td>
<td>TSP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

packing and covering sequencing partitioning numerical

3-SAT poly-time reduces to INDEPENDENT-SET
Karp’s 21 NP-complete problems

Dick Karp (1972)
1985 Turing Award