8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness. \(O(n^k)\) certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

constants tend to be small, e.g., $3n^2$
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Polynomial-time reductions

Desiderata. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

![Algorithm for X](algorithm_for_x.png)

![Algorithm for Y](algorithm_for_y.png)

![Solution S to I](solution_s_to_i.png)

computational model supplemented by special piece of hardware that solves instances of Y in a single step
Polynomial-time reductions

Desiderata'. Suppose we could solve problem Y in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don't mistake $X \leq_p Y$ with $Y \leq_p X$.
Polynomial-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6?
Ex. Is there an independent set of size ≥ 7?
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

[Diagram of a graph with vertices marked as independent set of size 6 and vertex cover of size 4]
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET}. \)

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).
Vertex cover and independent set reduce to one another

Theorem. \textsc{Vertex-Cover} $\equiv_p \text{Independent-Set}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\[\Rightarrow\]

- Let S be any independent set of size k.
- $V - S$ is of size $n - k$.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)
 \Rightarrow either $u \in V - S$ or $v \in V - S$ (or both).
- Thus, $V - S$ covers (u, v).
Vertex cover and independent set reduce to one another

Theorem. \textsc{Vertex-Cover} \(\equiv_p\) \textsc{Independent-Set}.

Pf. We show \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).

\(\Leftarrow\)

- Let \(V - S\) be any vertex cover of size \(n - k\).
- \(S\) is of size \(k\).
- Consider two nodes \(u \in S\) and \(v \in S\).
- Observe that \((u, v) \notin E\) since \(V - S\) is a vertex cover.
- Thus, no two nodes in \(S\) are joined by an edge \(\Rightarrow S\) independent set. \(\blacksquare\)
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
\begin{align*}
U &= \{1, 2, 3, 4, 5, 6, 7\} \\
S_a &= \{3, 7\} & S_b &= \{2, 4\} \\
\textbf{S}_c &= \{3, 4, 5, 6\} & S_d &= \{5\} \\
S_e &= \{1\} & \textbf{S}_f &= \{1, 2, 6, 7\} \\
k &= 2
\end{align*}
\]

a set cover instance
Vertex cover reduces to set cover

Theorem. \textsc{Vertex-Cover} $\leq_p \textsc{Set-Cover}$.

Pf. Given a \textsc{Vertex-Cover} instance $G = (V, E)$ and k, we construct a \textsc{Set-Cover} instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{ e \in E : e \text{ incident to } v \}$.

![Diagram of the vertex cover instance](image)

- $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
- $S_a = \{ 3, 7 \}$, $S_b = \{ 2, 4 \}$
- $S_c = \{ 3, 4, 5, 6 \}$, $S_d = \{ 5 \}$
- $S_e = \{ 1 \}$, $S_f = \{ 1, 2, 6, 7 \}$
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. ⇒ Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. □

Vertex cover instance
(k = 2)

Set cover instance
(k = 2)
Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \iff Let $Y \subseteq S$ be a set cover of size k in (U, S).

- Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. □

Vertex cover instance (k = 2)

Set cover instance (k = 2)

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$
$S_a = \{ 3, 7 \}$
$S_c = \{ 3, 4, 5, 6 \}$
$S_e = \{ 1 \}$

$S_b = \{ 2, 4 \}$
$S_d = \{ 5 \}$
$S_f = \{ 1, 2, 6, 7 \}$
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- **constraint satisfaction problems**
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses.

\[\Phi = C_1 \land C_2 \land C_3 \land C_4 \]

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
3-satisfiability reduces to independent set

Theorem. $\text{3-SAT} \leq_P \text{INDEPENDENT-SET}$.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)$$
3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. □

$k = 3$

$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$
Basic reduction strategies.

- Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
- Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
- Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
Search problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Ex. To find a vertex cover of size $\leq k$:
- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G - \{v\}$ has a vertex cover of size $\leq k - 1$.
 (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k - 1$ in $G - \{v\}$.

Bottom line. $\text{VERTEX-COVER} \equiv_p \text{FIND-VERTEX-COVER}$.
Optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:
 • (Binary) search for size k^* of min vertex cover.
 • Solve corresponding search problem.

Bottom line. $\text{VERTEX-COVER} \equiv_p \text{FIND-VERTEX-COVER} \equiv_p \text{OPTIMAL-VERTEX-COVER}$.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

Yes
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

![Graph with nodes and edges]

no
Directed Hamilton cycle reduces to Hamilton cycle

\textbf{DIR-HAM-CYCLE:} Given a digraph \(G = (V, E) \), does there exist a simple directed cycle \(\Gamma \) that contains every node in \(V \) ?

\textbf{Theorem.} \(\text{DIR-HAM-CYCLE} \leq_p \text{HAM-CYCLE} \).

\textbf{Pf.} Given a digraph \(G = (V, E) \), construct a graph \(G' \) with \(3n \) nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

• Suppose G has a directed Hamilton cycle Γ.
• Then G' has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

• Suppose G' has an undirected Hamilton cycle Γ'.
• Γ' must visit nodes in G' using one of following two orders:

 \[\ldots, \text{black, white, blue, black, white, blue, black, white, blue, …}\]
 \[\ldots, \text{black, blue, white, black, blue, white, black, blue, white, …}\]

• Black nodes in Γ' make up directed Hamilton cycle Γ in G, or reverse of one. ▪
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-Sat \leq_p Dir-Ham-Cycle.

Pf. Given an instance Φ of 3-Sat, we construct an instance of Dir-Ham-Cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will create graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

![Diagram showing the construction of a directed Hamilton cycle graph](image-url)
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause, add a node and 6 edges.

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3 \quad \text{clause node 1} \quad C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \quad \text{clause node 2}
\]
3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^*.
- Then, define Hamilton cycle in G as follows:
 - if $x^*_i = true$, traverse row i from left to right
 - if $x^*_i = false$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle
 (and we splice in C_j exactly once)
3-satisfiability reduces to directed Hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \iff

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.
- Set $x^*_i = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.
3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph $G = (V, E)$, does there exist a simple path consisting of at least k edges?

Theorem. 3-Sat \leq_p Longest-Path.

Pf 1. Redo proof for Dir-Ham-Cycle, ignoring back-edge from t to s.

Pf 2. Show Ham-Cycle \leq_p Longest-Path.
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

13,509 cities in the United States
http://www.math.uwaterloo.ca/tsp
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

[Image: Map of the United States with a red outline of an optimal TSP tour.]

optimal TSP tour
http://www.math.uwaterloo.ca/tsp
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

11,849 holes to drill in a programmed logic array
http://www.math.uwaterloo.ca/tsp
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

[Optimal TSP tour](http://www.math.uwaterloo.ca/tsp)
Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

Theorem. $\text{HAM-CYCLE} \leq_p \text{TSP}$.

Pf.

- Given an instance $G = (V, E)$ of HAM-CYCLE, create $n = |V|$ cities with distance function

 $$d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}$$

- TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle. □

Remark. TSP instance satisfies triangle inequality: $d(u, w) \leq d(u, v) + d(v, w)$.
Polynomial-time reductions

Constraint satisfaction

- 3-SAT

- INDEPENDENT-SET
 - VERTEX-COVER
 - SET-COVER

- DIR-HAM-CYCLE
 - HAM-CYCLE
 - TSP

- GRAPH-3-COLOR
 - PLANAR-3-COLOR

- SUBSET-SUM
 - SCHEDULING

Packing and covering
Sequencing
Partitioning
Numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-dimensional matching

3D-Matching. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>instructor</th>
<th>course</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

\[
X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \}
\]

\[
T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \}
\]
\[
T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \},
\]
\[
T_7 = \{ x_3, y_1, z_3 \}, \quad T_8 = \{ x_3, y_1, z_1 \}, \quad T_9 = \{ x_3, y_2, z_1 \}
\]

an instance of 3d–matching (with n = 3)

Remark. Generalization of bipartite matching.
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. 3-SAT \leq_p 3D-MATCHING.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.

![Diagram of a gadget for variable x_i (k = 4)]
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = true$) or all blue ones (corresponding to $x_i = false$).

```plaintext
\[ (\text{true}) \quad \text{core} \quad (\text{false}) \]
```

- $k = 2$ clauses
- $n = 3$ variables

Diagram:
- 3 variables x_1, x_2, x_3
- 2 clauses
- Number of clauses indicated by diagram
- Triangles representing core and tip elements
3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)

- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

$C_1 = x_1 \lor \overline{x_2} \lor x_3$
3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)

- There are $2nk$ tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets: same as clause gadget but with $2nk$ triples, connected to every tip.
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?
Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X\), \(Y\), and \(Z\)?
A. \(X = \text{black}, \ Y = \text{white}, \) and \(Z = \text{blue}\).

\[
C_1 = x_1 \lor \overline{x_2} \lor x_3
\]
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple. \(\blacksquare\)
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. $3 \text{-COLOR} \leq_p \text{K-REGISTER-ALLOCATION}$ for any constant $k \geq 3$.
3-satisfiability reduces to 3-colorability

Theorem. \(3\text{-SAT} \leq_p 3\text{-COLOR}\.)

Pf. Given 3-SAT instance \(\Phi\), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi\) is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

\[x_1 \quad x_2 \quad x_3 \quad \ldots \quad x_n \quad \bar{x}_1 \quad \bar{x}_2 \quad \bar{x}_3 \quad \ldots \quad \bar{x}_n \]

B to \uparrow to be described later
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).

![Diagram](image-url)
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored black, F is white, and B is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- WLOG, assume that node T is colored *black*, F is *white*, and B is *blue*.
- Consider assignment that sets all *black* literals to *true* (and *white* to *false*).
- (iv) ensures each literal is colored either *black* or *white*.
- (ii) ensures that each literal is *white* if its negation is *black* (and vice versa).
- (v) ensures at least one literal in each clause is *black*.

![Diagram](attachment:image.png)

suppose, for the sake of contradiction, that all 3 literals are white in some 3-coloring

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]

contradiction (not a 3-coloring)
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all *true* literals *black* and all *false* literals *white*.
- Pick one *true* literal; color node below that node *white*, and node below that *blue*.
- Color remaining middle row nodes *blue*.
- Color remaining bottom nodes *black* or *white*, as forced. \blacksquare

\[
C_j = x_1 \lor \overline{x}_2 \lor x_3
\]
Polynomial-time reductions

constraint satisfaction

3-SAT

INDEPENDENT-SET

DIR-HAM-CYCLE

GRAPH-3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

PLANAR-3-COLOR

SCHEDULING

SET-COVER

TSP

packing and covering

sequencing

partitioning

numerical
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Subset sum

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Ex. \(\{ 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 \} \), \(W = 3754 \).

Yes. \(1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754 \).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Theorem. \(3\text{-}\text{SAT} \leq_p \text{SUBSET-SUM} \).

Pf. Given an instance \(\Phi \) of \(3\text{-}\text{SAT} \), we construct an instance of \(\text{SUBSET-SUM} \) that has solution iff \(\Phi \) is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables and \(k \) clauses, form \(2n + 2k \) decimal integers, each of \(n + k \) digits:

- Include one digit for each variable \(x_i \) and for each clause \(C_j \).
- Include two numbers for each variable \(x_i \).
- Include two numbers for each clause \(C_j \).
- Sum of each \(x_i \) digit is 1;

sum of each \(C_j \) digit is 4.

Key property. No carries possible \(\Rightarrow \)
each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

\(3\text{-SAT instance}\)

\[
\begin{array}{cccccc}
\hline
& x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\]

\(\text{dummies to get clause columns to sum to 4} \)

\[
\begin{array}{cccc}
& 0 & 0 & 0 & 1 & 0 & 0 & 100,010 \\
& 0 & 0 & 0 & 2 & 0 & 0 & 100,011 \\
& 0 & 0 & 0 & 0 & 1 & 0 & 10,000 \\
& 0 & 0 & 0 & 0 & 2 & 0 & 10,011 \\
& 0 & 0 & 0 & 0 & 0 & 1 & 1,011 \\
& 0 & 0 & 0 & 0 & 0 & 2 & 1,000 \\
\hline
W & 1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{array}
\]

\(\text{SUBSET-SUM instance} \)
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose \(\Phi \) is satisfiable.

- Choose integers corresponding to each *true* literal.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) rows.
- Choose dummy integers to make clause digits sum to 4.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

3-SAT instance

\[
\begin{array}{ccccccc}
& x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 & 100,010 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 & 100,101 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 & 10,100 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 & 1,001 \\
\hline
& 0 & 0 & 0 & 1 & 0 & 0 & 100 \\
& 0 & 0 & 0 & 2 & 0 & 0 & 200 \\
& 0 & 0 & 0 & 0 & 1 & 0 & 10 \\
& 0 & 0 & 0 & 0 & 2 & 0 & 20 \\
& 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
& 0 & 0 & 0 & 0 & 0 & 2 & 2 \\
\hline
W & 1 & 1 & 1 & 4 & 4 & 4 & 111,444
\end{array}
\]

subset-Sum instance
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Leftarrow Suppose there is a subset that sums to W.

- Digit x_i forces subset to select either row x_i or $\neg x_i$ (but not both).
- Digit C_j forces subset to select at least one literal in clause.
- Assign $x_i = true$ iff row x_i selected. □

\[
C_1 = \neg x_1 \lor x_2 \lor x_3 \\
C_2 = x_1 \lor \neg x_2 \lor x_3 \\
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

3-SAT instance

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

W

1 1 1 4 4 4 111,444

Subset-Sum instance

dummies to get clause columns to sum to 4

100,010
100,101
10,010
10,011
1,110
1,001
100
200
10
20
1
2
111,444

70
My hobby

Randall Munro

http://xkcd.com/287
Partition

Subset-Sum. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Partition. Given natural numbers \(v_1, \ldots, v_m \), can they be partitioned into two subsets that add up to the same value \(\frac{1}{2} \sum_i v_i \)?

Theorem. \textsc{Subset-Sum} \(\leq_p \text{Partition} \).

Pf. Let \(W, w_1, \ldots, w_n \) be an instance of \textsc{Subset-Sum}.

- Create instance of \textsc{Partition} with \(m = n + 2 \) elements.
 - \(v_1 = w_1, v_2 = w_2, \ldots, v_n = w_n, \quad v_{n+1} = 2 \sum_i w_i - W, \quad v_{n+2} = \sum_i w_i + W \)
- Lemma: there exists a subset that sums to \(W \) iff there exists a partition since elements \(v_{n+1} \) and \(v_{n+2} \) cannot be in the same partition.

\[
\begin{array}{c|c|c}
\hline
v_{n+1} &= 2 \sum_i w_i - W \quad \text{subset A} \\
W & & \\
\hline
v_{n+2} &= \sum_i w_i + W \quad \text{subset B} \\
\sum_i w_i - W & & \\
\hline
\end{array}
\]
Scheduling with release times

Schedule. Given a set of n jobs with processing time t_j, release time r_j, and deadline d_j, is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_j time units in the interval $[r_j, d_j]$?

Ex.

<table>
<thead>
<tr>
<th>j</th>
<th>t_j</th>
<th>r_j</th>
<th>d_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>
Scheduling with release times

Theorem. \(\text{SUBSET-SUM} \leq_p \text{SCHEDULE}. \)

Pf. Given \(\text{SUBSET-SUM} \) instance \(w_1, \ldots, w_n \) and target \(W \), construct an instance of \(\text{SCHEDULE} \) that is feasible iff there exists a subset that sums to exactly \(W \).

Construction.

- Create \(n \) jobs with processing time \(t_j = w_j \), release time \(r_j = 0 \), and no deadline \((d_j = 1 + \sum_j w_j)\).
- Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W + 1 \).
- Lemma: subset that sums to \(W \) iff there exists a feasible schedule. •
Polynomial-time reductions

3-SAT

INDEPENDENT-SET

DIR-HAM-CYCLE

GRAPH-3-COLOR

SUBSET-SUM

constraint satisfaction

3-SAT poly-time reduces to INDEPENDENT-SET

VERTEX-COVER

HAM-CYCLE

PLANAR-3-COLOR

SCHEDULING

packing and covering

sequencing

partitioning

numerical
Karp's 21 NP-complete problems

Dick Karp (1972)
1985 Turing Award

FIGURE 1 - Complete Problems