8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- NP-completeness. \(O(n^k) \) algorithm unlikely.
- PSPACE-completeness. \(O(n^k) \) certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>

Polynomial-time reductions

Desiderata. Suppose we could solve problem \(Y \) in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem \(X \) polynomial-time (Cook) reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Polynomial-time reductions

Desiderata. Suppose we could solve problem \(Y \) in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem \(X \) polynomial-time (Cook) reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Notation. \(X \leq_p Y \).

Note. We pay for time to write down instances sent to oracle \(\Rightarrow \) instances of \(Y \) must be of polynomial size.

Caveat. Don’t mistake \(X \leq_p Y \) with \(Y \leq_p X \).
Polynomial-time reductions

Design algorithms. If \(X \leq_p Y \) and \(Y \) can be solved in polynomial time, then \(X \) can be solved in polynomial time.

Establish intractability. If \(X \leq_p Y \) and \(Y \) cannot be solved in polynomial time, then \(X \) cannot be solved in polynomial time.

Establish equivalence. If both \(X \leq_p Y \) and \(Y \leq_p X \), we use notation \(X =_p Y \). In this case, \(X \) can be solved in polynomial time iff \(Y \) can be.

Bottom line. Reductions classify problems according to relative difficulty.

Independent set

INDEPENDENT-SET. Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \geq k \), and for each edge at most one of its endpoints is in \(S \)?

Ex. Is there an independent set of size \(\geq 6 \) ?

Ex. Is there an independent set of size \(\geq 7 \) ?

Vertex cover

VERTEX-COVER. Given a graph \(G = (V, E) \) and an integer \(k \), is there a subset of vertices \(S \subseteq V \) such that \(|S| \leq k \), and for each edge, at least one of its endpoints is in \(S \)?

Ex. Is there a vertex cover of size \(\leq 4 \) ?

Ex. Is there a vertex cover of size \(\leq 3 \) ?
Theorem. \(\textsc{Vertex-Cover} \equiv_p \textsc{Independent-Set} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]
- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v) \).
- \(S \) independent \(\Rightarrow \) either \(u \not\in S \) or \(v \not\in S \) (or both)
 \[\Rightarrow \] either \(u \in V - S \) or \(v \in V - S \) (or both).
- Thus, \(V - S \) covers \((u, v) \).

\[\Leftarrow \]
- \(V - S \) be any vertex cover of size \(n - k \).
- \(S \) is of size \(k \).
- Consider two nodes \(u \in S \) and \(v \in S \).
- Observe that \((u, v) \not\in E \) since \(V - S \) is a vertex cover.
- Thus, no two nodes in \(S \) are joined by an edge \(\Rightarrow S \) independent set.

Set cover

\textsc{Set-Cover}. Given a set \(U \) of elements, a collection \(S \) of subsets of \(U \), and an integer \(k \), are there \(\leq k \) of these subsets whose union is equal to \(U \)?

Sample application.
- \(m \) available pieces of software.
- Set \(U \) of \(n \) capabilities that we would like our system to have.
- The \(i \)-th piece of software provides the set \(S_i \subseteq U \) of capabilities.
- Goal: achieve all \(n \) capabilities using fewest pieces of software.

\begin{align*}
U &= \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a &= \{ 3, 7 \} \\
S_b &= \{ 2, 4 \} \\
S_c &= \{ 3, 4, 5, 6 \} \\
S_d &= \{ 5 \} \\
S_e &= \{ 1 \} \\
S_f &= \{ 1, 2, 6, 7 \} \\
k &= 2
\end{align*}

\[\text{a set cover instance} \]
Vertex cover reduces to set cover

Theorem. \textsc{Vertex-Cover} \(\leq_p \textsc{Set-Cover} \).

Pf. Given a \textsc{Vertex-Cover} instance \(G = (V, E) \) and \(k \), we construct a \textsc{Set-Cover} instance \((U, S)\) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.

- Universe \(U = E \).
- Include one subset for each node \(v \in V \): \(S_v = \{ e \in E : e \text{ incident to } v \} \).

\[
\begin{array}{c}
\text{vertex cover instance} \\
(k = 2)
\end{array}
\quad
\begin{array}{c}
\text{set cover instance} \\
(k = 2)
\end{array}
\]

\[
U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a = \{ 3, 7 \} \\
S_b = \{ 2, 4 \} \\
S_c = \{ 3, 4, 5, 6 \} \\
S_d = \{ 5 \} \\
S_e = \{ 1 \} \\
S_f = \{ 1, 2, 6, 7 \}
\]

8. Intractability

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. x_i or $\overline{x_i}$

Clause. A disjunction of literals. $C_j = x_1 \lor \overline{x_2} \lor x_3$

Conjunctive normal form (CNF). A propositional formula Φ that is a conjunction of clauses. $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3)$

yes instance: $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false})

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

Theorem. $3\text{-SAT} \leq_p \text{INDEPENDENT-SET}$.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$k = 3$

$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3)$

Review

Basic reduction strategies.

- Simple equivalence: $\text{INDEPENDENT-SET} \not\leq_p \text{VERTEX-COVER}$.
- Special case to general case: $\text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
- Encoding with gadgets: $3\text{-SAT} \leq_p \text{INDEPENDENT-SET}$.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.

Pf idea. Compose the two algorithms.

Ex. $3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER}$.
Search problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Ex. To find a vertex cover of size \(\leq k \):
- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \).
 (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{v\} \).

(delete \(v \) and all incident edges)

Bottom line. \(\textsc{Vertex-Cover} =_{p} \textsc{Find-Vertex-Cover} \).

Optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:
- (Binary) search for size \(k^* \) of min vertex cover.
- Solve corresponding search problem.

Bottom line. \(\textsc{Vertex-Cover} =_{p} \textsc{Find-Vertex-Cover} =_{p} \textsc{Optimal-Vertex-Cover} \).

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?
Hamilton cycle

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?

Directed Hamilton cycle reduces to Hamilton cycle

Lemma. \(G \) has a directed Hamilton cycle iff \(G' \) has a Hamilton cycle.

Pf. \(\Rightarrow \)
- Suppose \(G \) has a directed Hamilton cycle \(\Gamma \).
- Then \(G' \) has an undirected Hamilton cycle (same order).

Pf. \(\Leftarrow \)
- Suppose \(G' \) has an undirected Hamilton cycle \(\Gamma' \).
- \(\Gamma' \) must visit nodes in \(G' \) using one of following two orders:

 \[\ldots, \text{black}, \text{white}, \text{blue}, \text{black}, \text{white}, \text{blue}, \text{black}, \text{white}, \text{blue}, \ldots \]
 \[\ldots, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \text{black}, \text{blue}, \text{white}, \ldots \]
- Black nodes in \(\Gamma' \) make up directed Hamilton cycle \(\Gamma \) in \(G \), or reverse of one.

Directed Hamilton cycle reduces to Hamilton cycle

Theorem. \(\text{DIR-HAM-CYCLE} \leq_p \text{HAM-CYCLE} \).

Pf. Given a digraph \(G = (V, E) \), construct a graph \(G' \) with 3n nodes.

3-satisfiability reduces to directed Hamilton cycle

Theorem. \(3\text{-SAT} \leq_p \text{DIR-HAM-CYCLE} \).

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of \(\text{DIR-HAM-CYCLE} \) that has a Hamilton cycle iff \(\Phi \) is satisfiable.

Construction overview. Let \(n \) denote the number of variables in \(\Phi \). We will create graph that has 2n Hamilton cycles which correspond in a natural way to 2n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow
- Suppose 3-SAT instance has satisfying assignment x^*.
- Then, define Hamilton cycle in G as follows:
 - if $x_i^* = true$, traverse row i from left to right
 - if $x_i^* = false$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice clause node C_j into cycle (and we splice in C_j exactly once)

Pf. \Leftarrow
- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, ..., C_k\}$.
- Set $x_i^* = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause, add a node and 6 edges.

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow
- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, ..., C_k\}$.
- Set $x_i^* = true$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

\blacksquare
3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph $G = (V, E)$, does there exist a simple path consisting of at least k edges?

Theorem. 3-$SAT \leq_p$ LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show $\text{HAM-CYCLE} \leq_p \text{LONGEST-PATH}$.

Traveling salesman problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

- 13,509 cities in the United States
 - http://www.math.uwaterloo.ca/tsp

- 11,849 holes to drill in a programmed logic array
 - http://www.math.uwaterloo.ca/tsp
Traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of \(n \) cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

HAM-CYCLE. Given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?

Theorem. \(\text{HAM-CYCLE} \leq_P \text{TSP} \).

Pf.
- Given an instance \(G = (V, E) \) of \(\text{HAM-CYCLE} \), create \(n = |V| \) cities with distance function
 \[
 d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}
 \]
- TSP instance has tour of length \(\leq n \) iff \(G \) has a Hamilton cycle.

Remark. TSP instance satisfies triangle inequality: \(d(u, w) \leq d(u, v) + d(v, w) \).

Polynomial-time reductions

- **3-SAT** poly-time reduces to **INDEPENDENT-SET**
- **3-SAT** poly-time reduces to **DIR-HAM-CYCLE**
- **3-SAT** poly-time reduces to **GRAPH-3-COLOR**
- **3-SAT** poly-time reduces to **SUBSET-SUM**
- **3-SAT** poly-time reduces to **SET-COVER**
- **3-SAT** poly-time reduces to **TSP**
- **INDEPENDENT-SET** poly-time reduces to **DIR-HAM-CYCLE**
- **INDEPENDENT-SET** poly-time reduces to **GRAPH-3-COLOR**
- **INDEPENDENT-SET** poly-time reduces to **SUBSET-SUM**
- **INDEPENDENT-SET** poly-time reduces to **SET-COVER**
- **INDEPENDENT-SET** poly-time reduces to **TSP**
- **INDEPENDENT-SET** poly-time reduces to **HAM-CYCLE**
- **INDEPENDENT-SET** poly-time reduces to **PLANAR-3-COLOR**
- **INDEPENDENT-SET** poly-time reduces to **SCHEDULING**

8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3-dimensional matching

3D-MATCHING. Given \(n \) instructors, \(n \) courses, and \(n \) times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Course</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>

Remark. Generalization of bipartite matching.

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets \(X, Y, \) and \(Z \), each of size \(n \) and a set \(T \subseteq X \times Y \times Z \) of triples, does there exist a set of \(n \) triples in \(T \) such that each element of \(X \cup Y \cup Z \) is in exactly one of these triples?

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable \(x_i \) with \(2k \) core elements and \(2k \) tip ones.

Theorem. 3-SAT \(\leq_p \) 3D-MATCHING.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff \(\Phi \) is satisfiable.

An instance of 3d-matching (with \(n = 3 \))

\[
X = \{x_1, x_2, x_3\}, \quad Y = \{y_1, y_2, y_3\}, \quad Z = \{z_1, z_2, z_3\}
\]

\[
T_1 = \{x_1, y_1, z_2\}, \quad T_2 = \{x_1, y_2, z_1\}, \quad T_3 = \{x_1, y_2, z_2\}
\]

\[
T_4 = \{x_2, y_2, z_3\}, \quad T_5 = \{x_2, y_3, z_2\}, \quad T_6 = \{x_2, y_3, z_3\}
\]

\[
T_7 = \{x_3, y_1, z_3\}, \quad T_8 = \{x_3, y_1, z_1\}, \quad T_9 = \{x_3, y_2, z_1\}
\]

A gadget for variable \(x_i \) (\(k = 4 \))
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = \text{true}$) or all blue ones (corresponding to $x_i = \text{false}$).

3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)
- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)
- There are $2nk$ tips: nk covered by blue/grey triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets: same as clause gadget but with $2nk$ triples, connected to every tip.

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z?
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X\), \(Y\), and \(Z\)?

A. \(X = \text{black}, Y = \text{white}, \text{and } Z = \text{blue}.\)

\[
\begin{align*}
C_1 &= x_1 \lor \overline{x_2} \lor x_3
\end{align*}
\]

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple. □

8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-colorability

3-COLOR. Given an undirected graph \(G\), can the nodes be colored black, white, and blue so that no adjacent nodes have the same color?
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than \(k \) registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables; edge between \(u \) and \(v \) if there exists an operation where both \(u \) and \(v \) are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is \(k \)-colorable.

Fact. \(3 \text{-COLOR} \leq_p K \text{-REGISTER-ALLOCATION} \) for any constant \(k \geq 3 \).

3-satisfiability reduces to 3-colorability

Construction.
1. Create a graph \(G \) with a node for each literal.
2. Connect each literal to its negation.
3. Create 3 new nodes \(T, F, \) and \(B \); connect them in a triangle.
4. Connect each clause \(C_i \), add a gadget of 6 nodes and 13 edges.
5. For each clause \(C_i \), add a gadget of 6 nodes and 13 edges.

\[ext{to be described later} \]

3-satisfiability reduces to 3-colorability

Lemma. Graph \(G \) is 3-colorable iff \(\Phi \) is satisfiable.

Pf. \(\Rightarrow \) Suppose graph \(G \) is 3-colorable.

- WLOG, assume that node \(T \) is colored \(\text{black} \), \(F \) is \(\text{white} \), and \(B \) is \(\text{blue} \).
- Consider assignment that sets all \(\text{black} \) literals to \(\text{true} \) (and \(\text{white} \) to \(\text{false} \)).
- (iv) ensures each literal is colored either \(\text{black} \) or \(\text{white} \).
- (ii) ensures that each literal is \(\text{white} \) if its negation is \(\text{black} \) (and vice versa).
3-satisfiability reduces to 3-colorability

Lemma. Graph \(G \) is 3-colorable iff \(\Phi \) is satisfiable.

Pf. \(\Rightarrow \) Suppose graph \(G \) is 3-colorable.
- WLOG, assume that node \(T \) is colored black, \(F \) is white, and \(B \) is blue.
- Consider assignment that sets all black literals to true (and white to false).
- (iv) ensures each literal is colored either black or white.
- (ii) ensures that each literal is white if its negation is black (and vice versa).
- (v) ensures at least one literal in each clause is black.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

3-satisfiability reduces to 3-colorability

Lemma. Graph \(G \) is 3-colorable iff \(\Phi \) is satisfiable.

Pf. \(\Leftarrow \) Suppose 3-SAT instance \(\Phi \) is satisfiable.
- Color all true literals black and all false literals white.
- Pick one true literal; color node below that node white, and node below that blue.
- Color remaining middle row nodes blue.
- Color remaining bottom nodes black or white, as forced.

\[
C_j = x_1 \lor \overline{x_2} \lor x_3
\]

Polynomial-time reductions
8. **INTRACTABILITY I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

Theorem. 3-SAT ≤ₚ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution if and only if Φ is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n + k digits:

- Include one digit for each variable xᵢ and for each clause Cⱼ.
- Include two numbers for each variable xᵢ.
- Include two numbers for each clause Cⱼ.
- Sum of each xᵢ digit is 1;
- sum of each Cⱼ digit is 4.

Key property. No carries possible ⇒ each digit yields one equation.

Example. Given the 3-SAT instance:

\[
\begin{align*}
\neg x_1 & \lor \neg x_2 & \lor x_3 \\
\neg x_1 & \lor x_2 & \lor \neg x_3 \\
\neg x_1 & \lor \neg x_2 & \lor \neg x_3
\end{align*}
\]

We can encode this as a subset sum problem by assigning each variable and clause a unique number:

<table>
<thead>
<tr>
<th>x₁</th>
<th>x₂</th>
<th>x₃</th>
<th>C₁</th>
<th>C₂</th>
<th>C₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The subset sum is:

\[
\{ 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 \}
\]

The sum is 3754.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose \(\Phi \) is satisfiable.

- Choose integers corresponding to each \textit{true} literal.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) rows.
- Choose dummy integers to make clause digits sum to 4.

\[
\begin{aligned}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3 \\
\end{aligned}
\]

My hobby

SUBSET-SUM. Given natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

PARTITION. Given natural numbers \(v_1, \ldots, v_m \), can they be partitioned into two subsets that add up to the same value \(\frac{1}{2} \sum v_i \)?

Theorem. SUBSET-SUM \(\leq_P \) PARTITION.

Pf. Let \(W, w_1, \ldots, w_n \) be an instance of SUBSET-SUM.

- Create instance of PARTITION with \(m = n + 2 \) elements.
 - \(v_1 = w_1 \), \(v_2 = w_2 \), \ldots, \(v_n = w_n \), \(v_{n+1} = 2 \sum w_j - W \), \(v_{n+2} = \sum w_j + W \)
- Lemma: there exists a subset that sums to \(W \) if there exists a partition since elements \(v_{n+1} \) and \(v_{n+2} \) cannot be in the same partition.

\[
\begin{aligned}
v_{n+1} &= 2 \sum w_j - W \\
v_{n+2} &= \sum w_j + W \\
\end{aligned}
\]

Randall Munro
http://xkcd.com/287
Scheduling with release times

Theorem. \(\text{SUBSET-SUM} \leq_p \text{SCHEDULE}. \)

Pf. Given \(\text{SUBSET-SUM} \) instance \(w_1, \ldots, w_n \) and target \(W \), construct an instance of \(\text{SCHEDULE} \) that is feasible iff there exists a subset that sums to exactly \(W \).

Construction.

- Create \(n \) jobs with processing time \(t_j = w_j \), release time \(r_j = 0 \), and no deadline \(d_j = 1 + \sum w_j \).
- Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W + 1 \).
- Lemma: subset that sums to \(W \) iff there exists a feasible schedule. □

Ex.

<table>
<thead>
<tr>
<th>(j)</th>
<th>(t_j)</th>
<th>(r_j)</th>
<th>(d_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>10</td>
<td>19</td>
</tr>
</tbody>
</table>

Polynomial-time reductions

Constraint satisfaction

3-SAT poly-time reduces to INDEPENDENT-SET

INDEPENDENT-SET

DIR-HAM-CYCLE

GRAPH-3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

PLANAR-3-COLOR

SCHEDULING

SET-COVER

TSP

packing and covering

sequencing

partitioning

numerical

Karp’s 21 NP-complete problems

Dick Karp (1972)

1985 Turing Award

Dick Karp

Â© 1972 Dick Karp

Figure 1: Complete Problems