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Flow network

A flow network is a tuple G = (V, E, s, t, c).

・Digraph (V, E) with source s ∈ V  and sink t ∈ V. 

・Capacity c(e) ≥ 0 for each e ∈ E. 

 

Intuition.  Material flowing through a transportation network; 

material originates at source and is sent to sink.
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 

Def.  Its capacity is the sum of the capacities of the edges from A to B. 
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

Def.  Its capacity is the sum of the capacities of the edges from A to B.  
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Minimum-cut problem 

Def.  An st-cut (cut) is a partition (A, B) of the nodes with s ∈ A  and t ∈ B. 

 

Def.  Its capacity is the sum of the capacities of the edges from A to B.  

 

 

 

Min-cut problem.  Find a cut of minimum capacity. 
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Network flow:  quiz 1

 Which is the capacity of the given st-cut? 

A. 11  (20 + 25 − 8 − 11 − 9 − 6)

B. 34  (8 + 11 + 9 + 6) 

C. 45  (20 + 25)

D. 79  (20 + 25 + 8 + 11 + 9 + 6) 
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation]
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:
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Maximum-flow problem

Def.  An st-flow (flow)  f is a function that satisfies: 

・For each e ∈ E :            [capacity] 

・For each v ∈ V – {s, t} :          [flow conservation] 

Def.  The value of a flow f  is:

Max-flow problem.  Find a flow of maximum value. 

10

0 / 4

10 / 
10

10 / 105 / 5s

8 / 10

8 / 9

8 / 8

10 / 
1013 / 15

0 / 15

value  =  10 + 5 + 13  =  28

0 / 4

3 / 6

13 / 16

0 / 15

t

2 / 15

0 � f(e) � c(e)

val(f) =
�

e Qmi Q7 s

f(e) �
�

e BM iQ s

f(e)

�

e BM iQ v

f(e) =
�

e Qmi Q7 v

f(e)

7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks
SECTION 7.1

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.

14

0 / 2
0 / 

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 90 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8

flow network G and flow f

s t

+ 2 = 10

Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.

16

0 / 4

8 / 8

10

2 / 2
10 / 

10

10 / 10

0 / 6

0 / 10

0 / 10

2 / 9

6 —

8
—

6
— + 6 = 16

6
—

flow network G and flow f

s t



Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Toward a max-flow algorithm

Greedy algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P where each edge has f (e) < c(e). 

・Augment flow along path P. 

・Repeat until you get stuck.
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Q.  Why does the greedy algorithm fail? 

A.  Once greedy algorithm increases flow on an edge, it never decreases it. 

 

Ex.  Consider flow network G . 

・The unique max flow f * has f *(v, w) = 0. 

・Greedy algorithm could choose s→v→w→t  as first path. 

 

 

 

 

 

 

 

 

 

 

Bottom line.  Need some mechanism to “undo” a bad decision.

Why the greedy algorithm fails
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flow network G

Residual network

Original edge.  e = (u, v)  ∈  E. 

・Flow f (e). 

・Capacity c(e). 
 

Reverse edge.  e reverse = (v, u). 

・“Undo” flow sent. 

 
Residual capacity. 

 

 

 

 

 

Residual network.  Gf = (V, Ef , s, t, cf ). 

・Ef  = {e : f (e) <  c(e)}  ∪  {e : f (e reverse)  >  0}. 

・Key property:  f ʹ is a flow in Gf iff  f + f ʹ is a flow in G.
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Augmenting path

Def. An augmenting path is a simple s↝t path in the residual network Gf . 
 

Def. The bottleneck capacity of an augmenting path P is the minimum 

residual capacity of any edge in P. 

 

Key property.  Let f  be a flow and let P be an augmenting path in Gf . 

Then, after calling f ʹ ← AUGMENT( f, c, P), the resulting f ʹ is a flow and 

val( f ʹ) = val( f ) + bottleneck(Gf, P).
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AUGMENT( f, c, P)                          


δ  ← bottleneck capacity of augmenting path P.

FOREACH edge e ∈ P :

IF (e ∈ E)  f (e)  ←  f (e)  +  δ.

ELSE         f (ereverse) ← f (ereverse)  –  δ.

RETURN  f.


Network flow:  quiz 2

Which is the augmenting path of highest bottleneck capacity?

A.  A → F → G → H 

B.  A → B → C → D → H  

C.  A → F → B → G → H

D.  A → F → B → G → C → D → H
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Ford–Fulkerson algorithm

Ford–Fulkerson augmenting path algorithm. 

・Start with f (e) = 0 for each edge e ∈ E. 

・Find an s↝t path P in the residual network Gf . 

・Augment flow along path P. 

・Repeat until you get stuck.
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FORD–FULKERSON(G)                          

_

FOREACH edge e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path P in Gf )

f ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.

augmenting path
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 

the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 

the value of the flow f equals the net flow across the cut (A, B).  
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 

the value of the flow f equals the net flow across the cut (A, B).  
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Network flow:  quiz 3

Which is the net flow across the given cut? 

A.  11  (20 + 25 − 8 − 11 − 9 − 6) 

B.  26  (20 + 22 − 8 − 4 − 4) 

C.  42  (20 + 22) 

D.  45  (20 + 25)
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Relationship between flows and cuts

Flow value lemma.  Let f  be any flow and let (A, B) be any cut. Then, 

the value of the flow f equals the net flow across the cut (A, B).  
 

 

 

 

Pf.
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Weak duality.  Let f  be any flow and (A, B) be any cut. Then, val( f ) ≤ cap(A, B). 
Pf.

Relationship between flows and cuts
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Certificate of optimality

Corollary.  Let f  be a flow and let (A, B) be any cut. 

If val( f )  = cap(A, B), then f  is a max flow and (A, B) is a min cut. 

 

Pf. 

・For any flow f ʹ:  val( f ʹ)  ≤  cap(A, B)  = val( f ).   

・For any cut (Aʹ, Bʹ):  cap(Aʹ, Bʹ)  ≥  val( f )  =  cap(A, B).  ▪
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Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut.
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A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 

c 

ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 

* Manuscript received by the PGIT, July 11, 1956. 
t Elec. Ena. Deot. and Res. Lab. of Electronics. Mass. Inst. 

Tech., CambrTdge, -Mass. 
1 Lincoln Lab., M.I.T., Lexington! Mass. 
5 Bell Telephone Labs., Murray Hill, N. J., and M.I.T., Cam- 

bridge, Mass. 

from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published. 
* G. B. Dantsig and D. R. Fulkerson, “On the Max-Flow Min- 

Cut Theorem of Networks,” in “Linear Inequalities,” Ann. Math. 
Studies, no. 38, Princeton, New Jersey, 1956. 

strong duality



Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

 

Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 
 

[ i ⇒ ii ] 

・This is the weak duality corollary.  ▪
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if Ford–Fulkerson terminates, 
then f is max flow

Max-flow min-cut theorem

Max-flow min-cut theorem. Value of a max flow = capacity of a min cut. 

Augmenting path theorem. A flow f  is a max flow iff no augmenting paths. 

Pf. The following three conditions are equivalent for any flow f : 
  i. There exists a cut (A, B) such that cap(A, B)  =  val( f ). 
 ii.  f  is a max flow. 

iii. There is no augmenting path with respect to f. 

[ ii ⇒ iii ]   We prove contrapositive:  ¬ iii ⇒ ¬ ii. 

・Suppose that there is an augmenting path with respect to f. 

・Can improve flow f  by sending flow along this path. 

・Thus,  f  is not a max flow.   ▪
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[ iii ⇒ i ]  

・Let f  be a flow with no augmenting paths. 

・Let A = set of nodes reachable from s in residual network Gf. 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

=
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Max-flow min-cut theorem
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edge e = (v, w) with v ∈ B, w ∈ A 
must have f(e) = 0

edge e = (v, w) with v ∈ A, w ∈ B 
must have f(e) = c(e)
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f(e) �
�

e BM iQ A

f(e)

= cap(A, B)
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c(e) � 0
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Theorem.  Given any max flow f , can compute a min cut (A, B) in O(m) time. 

Pf.  Let A  = set of nodes reachable from s in residual network Gf .  ▪

Computing a minimum cut from a maximum flow
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argument from previous slide implies that 
capacity of (A, B) = value of flow f
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SECTION 7.3

Analysis of Ford–Fulkerson algorithm (when capacities are integral)

Assumption.  Every edge capacity c(e) is an integer between 1 and C. 

 

Integrality invariant.  Throughout Ford–Fulkerson, every edge flow f (e) 
and residual capacity cf (e) is an integer. 

Pf.  By induction on the number of augmenting paths.  ▪ 
 

Theorem.  Ford–Fulkerson terminates after at most val( f *)  ≤  n C 
augmenting paths, where f * is a max flow. 

Pf.  Each augmentation increases the value of the flow by at least 1.   ▪ 
 

Corollary.  The running time of Ford–Fulkerson is O(m n C). 
Pf.  Can use either BFS or DFS to find an augmenting path in O(m) time.   ▪ 
 

Integrality theorem.  There exists an integral max flow f *. 

Pf.  Since Ford–Fulkerson terminates, theorem follows from integrality 

invariant (and augmenting path theorem).  ▪
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consider cut A = { s } 
(assumes no parallel edges)

f(e) is an integer for every e

Ford–Fulkerson:  exponential example

Q.  Is generic Ford–Fulkerson algorithm poly-time in input size? 

 

A.   No. If max capacity is C, then algorithm can take ≥  C iterations. 

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t
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m, n, and log C

each augmenting path 
sends only 1 unit of flow 

(# augmenting paths = 2C)

1

C

C

C

C

t

s

v w

The Ford–Fulkerson algorithm is guaranteed to terminate if the edge 
capacities are …

A.  Rational numbers. 

B.  Real numbers.  

C.  Both A and B. 

D.  Neither A nor B.

Network flow:  quiz 4

40

Let D denote the product (or lcm) of the denominators. 

Then, every edge flow f (e) and every residual capacity cf (e) 
is a multiple of 1 / D.



Choosing good augmenting paths

Use care when selecting augmenting paths. 

・Some choices lead to exponential algorithms. 

・Clever choices lead to polynomial algorithms. 

 

 

Pathology.  When edge capacities can be irrational, no guarantee 

that Ford–Fulkerson terminates (or converges to a maximum flow)! 

 

 

Goal.  Choose augmenting paths so that: 

・Can find augmenting paths efficiently. 

・Few iterations.

41

Choosing good augmenting paths

Choose augmenting paths with: 

・Max bottleneck capacity (“fattest”). 

・Sufficiently large bottleneck capacity. 

・Fewest edges.
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t r anspo r t a t i on  problem, and the  general min imum-cos t  flow problem. Upper  bounds on the 
numbers  of steps in these  algori thms are derived,  and are shown to compale  favorably  with 
upper  bounds on the  numbers  of steps required by earlier algori thms.  

Firs t ,  the paper  s ta tes  the maximum flow problem, gives the Ford-Fulkerson labeling method 
for its solution,  and points  out  t h a t  an improper  choice of flow augment ing  pa ths  can lead to 
severe computa t iona l  difficulties. Then  rules of choice t h a t  avoid these difficulties are given. 
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Capacity-scaling algorithm

Overview.  Choosing augmenting paths with “large” bottleneck capacity. 

・Maintain scaling parameter Δ. 

・Let Gf (Δ) be the part of the residual network containing 

only those edges with capacity ≥  Δ. 

・Any augmenting path in Gf (Δ) has bottleneck capacity ≥  Δ.

43Gf
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though not necessarily largest

Capacity-scaling algorithm
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CAPACITY-SCALING(G)                          
__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

FOREACH edge e ∈ E :  f (e) ← 0.

Δ  ← largest power of 2  ≤  C. 

WHILE (Δ  ≥  1)

Gf (Δ) ← Δ-residual network of G with respect to flow f .
WHILE (there exists an s↝t path P in Gf (Δ))

f ← AUGMENT( f, c, P).

Update Gf (Δ).

Δ ← Δ / 2. 

RETURN  f.


Δ-scaling phase



Capacity-scaling algorithm:  proof of correctness

Assumption.  All edge capacities are integers between 1 and C.  

 

Invariant.  The scaling parameter Δ is a power of 2. 

Pf.  Initially a power of 2; each phase divides Δ by exactly 2.  ▪ 
 

Integrality invariant.  Throughout the algorithm, every edge flow f (e) and 

residual capacity cf (e) is an integer. 

Pf.  Same as for generic Ford–Fulkerson.  ▪ 
 

Theorem.  If capacity-scaling algorithm terminates, then f is a max flow. 

Pf. 

・By integrality invariant, when Δ = 1  ⇒  Gf (Δ)  = Gf . 

・Upon termination of Δ = 1 phase, there are no augmenting paths. 

・Result follows augmenting path theorem   ▪
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Capacity-scaling algorithm:  analysis of running time

Lemma 1.  There are 1 + ⎣log2 C⎦ scaling phases. 

Pf.  Initially C / 2  <  Δ  ≤  C;  Δ decreases by a factor of 2 in each iteration.  ▪ 
 

Lemma 2.  Let f be the flow at the end of a Δ-scaling phase. 

Then, the max-flow value ≤  val( f ) + m Δ. 

Pf.  Next slide. 

 

Lemma 3.  There are ≤ 2m augmentations per scaling phase. 

Pf. 

・Let f be the flow at the beginning of a Δ-scaling phase. 

・Lemma 2  ⇒   max-flow value   ≤   val( f ) + m (2 Δ). 

・Each augmentation in a Δ-phase increases val( f ) by at least Δ.  ▪ 
 

Theorem.  The capacity-scaling algorithm takes O(m2 log C) time. 

Pf. 

・Lemma 1 + Lemma 3  ⇒  O(m log C) augmentations. 

・Finding an augmenting path takes O(m) time.  ▪
46

or equivalently, 
at the end 

of a 2Δ-scaling phase

Lemma 2.  Let f be the flow at the end of a Δ-scaling phase. 

Then, the max-flow value  ≤  val( f ) + m Δ. 

Pf. 

・We show there exists a cut (A, B) such that cap(A, B)  ≤  val( f ) + m Δ. 

・Choose A to be the set of nodes reachable from s in Gf (Δ). 

・By definition of A:  s ∈ A. 

・By definition of flow f:  t ∉ A.

t

Capacity-scaling algorithm:  analysis of running time
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original flow network
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A B

edge e = (v, w) with v ∈ B, w ∈ A 
must have f(e) < Δ

edge e = (v, w) with v ∈ A, w ∈ B 
must have f(e) > c(e) – Δ 
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Shortest augmenting path

Q.  How to choose next augmenting path in Ford–Fulkerson? 

A.  Pick one that uses the fewest edges.
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SHORTEST-AUGMENTING-PATH(G)                          


FOREACH e ∈ E :  f (e) ← 0.

Gf  ← residual network of G with respect to flow f.
WHILE (there exists an s↝t path in Gf )

P ← BREADTH-FIRST-SEARCH(Gf ).

f  ← AUGMENT( f, c, P).

Update Gf.

RETURN  f.


can find via BFS

Shortest augmenting path:  overview of analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

Pf.  Ahead. 

 

Lemma 2.  After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases. 

Pf.  Ahead. 

 

Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time. 

Pf. 

・O(m) time to find a shortest augmenting path via BFS. 

・There are ≤  m n augmentations. 
- at most m augmenting paths of length k
- at most n−1 different lengths   ▪
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Lemma 1 + Lemma 2

augmenting paths are simple paths

number of edges

Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1.
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s t

graph G

s t

level graph LG

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

Network flow:  quiz 5

Which edges are in the level graph of the following digraph? 

A.  D→F. 

B.  E→F. 

C.  Both A and B. 

D.  Neither A nor B.
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Shortest augmenting path:  analysis

Def.  Given a digraph G = (V, E) with source s, its level graph is defined by: 

・ℓ(v) = number of edges in shortest s↝v path. 

・LG = (V, EG) is the subgraph of G that contains only those edges (v, w) ∈ E 

with ℓ(w) = ℓ(v) + 1. 

 

 

Key property.  P is a shortest s↝v path in G iff P is an s↝v path in LG.
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level graph LG

s t

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

Shortest augmenting path:  analysis

Lemma 1.  The length of a shortest augmenting path never decreases. 

・Let f and f ʹ be flow before and after a shortest-path augmentation. 

・Let LG and LG ʹ be level graphs of Gf and Gf ʹ . 
・Only back edges added to Gf ′ 

(any s↝t path that uses a back edge is longer than previous length)  ▪
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s t

level graph LG′

ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t

Lemma 2.   After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases.  

・At least one (bottleneck) edge is deleted from LG per augmentation. 

・No new edge added to LG until shortest path length strictly increases.  ▪

Shortest augmenting path:  analysis
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ℓ= 0

level graph LG

ℓ= 1 ℓ= 2 ℓ= 3

s t

level graph LG′

s t

Shortest augmenting path:  review of analysis

Lemma 1.  Throughout the algorithm, the length of a shortest augmenting 

path never decreases. 

 

Lemma 2.  After at most m shortest-path augmentations, the length of a 

shortest augmenting path strictly increases. 

 

Theorem.  The shortest-augmenting-path algorithm takes O(m2 n) time.
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Shortest augmenting path:  improving the running time

Note.  Θ(m n) augmentations necessary for some flow networks. 

・Try to decrease time per augmentation instead. 

・Simple idea    ⇒   O(mn2 ) [Dinitz 1970] 

・Dynamic trees    ⇒   O(m n log n) [Sleator–Tarjan 1983]
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JOURNAL OF COMPUTER AND SYSTEM SCIENCES 26, 362-391 (1983) 

A Data Structure for Dynamic Trees 

DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN 

Bell Laboratories, Murray Hill, New Jersey 07974 

Received May 8, 1982; revised October 18, 1982 

A data structure is proposed to maintain a collection of vertex-disjoint trees under a 
sequence of two kinds of operations: a link operation that combines two trees into one by 
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each 
operation requires O(log n) time. Using this data structure, new fast algorithms are obtained 
for the following problems: 

(1) Computing nearest common ancestors. 

(2) Solving various network flow problems including finding maximum flows, blocking 
flows, and acyclic flows. 

(3) Computing certain kinds of constrained minimum spanning trees. 

(4) Implementing the network simplex algorithm for minimum-cost flows. 

The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a 
maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest 
algorithm previously known for sparse graphs. 

1. INTR~DIJCTI~N 

In this paper we consider the following problem: We are given a collection of 
vertex-disjoint rooted trees. We want to represent the trees by a data structure that 
allows us to easily extract certain information about the trees and to easily update the 
structure to reflect changes in the trees caused by three kinds of operations: 

link(v, w): If u is a tree root and w is a vertex in another tree, link the trees 
containing v and w by adding the edge(v, w), making w the parent of v. 

cut(v): If node v is not a tree root, divide the tree containing v into two trees by 
deleting the edge from v to its parent. 

ever-t(v): Turn the tree containing vertex u “inside out” by making v the root of 
the tree. 

We propose a data structure that solves this dynamic trees problem. We give two 
versions of the data structure. The first has a time bound of O(log n) per operation 
when the time is amortized over a worst-case sequence of operations; the second, 
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

s t

within a phase, length of shortest 
augmenting path does not change

construct level graph

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

advance

s ts t



Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

augment

s t

remove from level graph 
edges with bottleneck capacity

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

advance

s ts

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

retreat

s t

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

augment

s t

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

advance

tss

Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.
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level graph LG

retreat
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

ss
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Dinitz’ algorithm

Two types of augmentations. 

・Normal:  length of shortest path does not change. 

・Special:  length of shortest path strictly increases. 

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and retreat to previous node.

s
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level graph LG

end of phase

t

Dinitz’ algorithm (as refined by Even and Itai)
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INITIALIZE(G, f )                          


LG  ← level-graph of Gf.

P   ← ∅.

GOTO ADVANCE(s).                          


ADVANCE(v)                          


IF  (v = t)

AUGMENT(P).

Remove saturated edges from LG.

P   ← ∅.

GOTO ADVANCE(s). 

IF  (there exists edge (v, w) ∈ LG)

Add edge (v, w) to P.

GOTO ADVANCE(w).

 
ELSE

GOTO RETREAT(v).


RETREAT(v)                          


IF  (v = s) 

STOP.                

ELSE

Delete v (and all incident edges) from LG.

Remove last edge (u, v) from P.

GOTO ADVANCE(u).                    


Network flow:  quiz 6

How to compute the level graph LG efficiently?

A.  Depth-first search. 

B.  Breadth-first search. 

C.  Both A and B. 

D.  Neither A nor B.
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Dinitz’ algorithm:  analysis

Lemma.  A phase can be implemented to run in O(m n) time. 

Pf. 

・Initialization happens once per phase. 

・At most m augmentations per phase. 

(because an augmentation deletes at least one edge from LG) 

・At most n retreats per phase. 

(because a retreat deletes one node from LG) 

・At most mn advances per phase. 

(because at most n advances before retreat or augmentation)  ▪ 

Theorem.  [Dinitz 1970]  Dinitz’ algorithm runs in O(mn2) time. 

Pf. 

・By Lemma, O(mn) time per phase. 

・At most n−1 phases (as in shortest-augmenting-path analysis).   ▪
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O(mn) per phase

O(m + n) per phase

O(mn) per phase

O(m) using BFS



Augmenting-path algorithms:  summary

73

year method # augmentations running time

1955 augmenting path n C O(m n C)

1972 fattest path m log (mC) O(m2 log n log (mC))

1972 capacity scaling m log C O(m2 log C)

1985 improved capacity scaling m log C O(m n log C)

1970 shortest augmenting path m n O(m2 n)

1970 level graph m n O(m n2 )

1983 dynamic trees m n O(m n log n )

augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C

fat paths

shortest paths

Maximum-flow algorithms:  theory highlights
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year method worst case discovered by

1951 simplex O(m n2 C) Dantzig

1955 augmenting paths O(m n C) Ford–Fulkerson

1970 shortest augmenting paths O(m n2) Edmonds–Karp, Dinitz

1974 blocking flows O(n3) Karzanov

1983 dynamic trees O(m n log n) Sleator–Tarjan

1985 improved capacity scaling O(m n log C) Gabow

1988 push–relabel O(m n log (n2 / m)) Goldberg–Tarjan

1998 binary blocking flows O(m3/2 log (n2 / m) log C) Goldberg–Rao

2013 compact networks O(m n) Orlin

2014 interior-point methods Õ(m n1/2 log C) Lee–Sidford

2016 electrical flows Õ(m10/7 C1/7) Mądry

20xx

max-flow algorithms with m edges, n nodes, and integer capacities between 1 and C

Maximum-flow algorithms:  practice

Push–relabel algorithm (SECTION 7.4).  [Goldberg–Tarjan 1988] 

Increases flow one edge at a time instead of one augmenting path at a time.
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A New Approach to the Maximum-Flow Problem 

ANDREW V. GOLDBERG 

Massachusetts Institute of Technology, Cambridge, Massachusetts 

AND 

ROBERT E. TARJAN 

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey 

Abstract. All previously known efftcient maximum-flow algorithms work by finding augmenting paths, 
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length 
augmenting paths at once (using the layered network approach of Dinic). An alternative method based 
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount 
flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow 
in the original network and pushes local flow excess toward the sink along what are estimated to be 
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as 
any other known method on dense. graphs, achieving an O(n)) time bound on an n-vertex graph. By 
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm 
running in O(nm log(n’/m)) time on an n-vertex, m-edge graph. This is as fast as any known method 
for any graph density and faster on graphs of moderate density. The algorithm also admits efticient 
distributed and parallel implementations. A parallel implementation running in O(n’log n) time using 
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin 
algorithm, which also uses n processors but requires O(n’) space. 

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non- 
numerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory-graph algorithms; 
network problems 

General Terms: Algorithms, Design, Theory, Verification 
Additional Key Words and Phrases: Dynamic trees, maximum-flow problem 

1. Introduction 
The problem of finding a maximum flow in a directed graph with edge capacities 
arises in many settings in operations research and other fields, and efficient 
algorithms for the problem have received a great deal of attention. Extensive 

A preliminary version of this paper appeared in the Proceedings of the 18th Annual ACM Symposium 
on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York, 1986, pp. 136-146. 
The work of A. V. Goldberg was supported by a Fannie and John Hertz Foundation Fellowship and by 
the Advanced Research Projects Agency of the Department of Defense under contract NO00 14-80-C- 
0622. The work of R. E. Tarjan was partially supported by the National Science Foundation under 
grant DCR-8605962 and the Office of Naval Research under Contract N00014-87-K-0467. 
Authors’ present addresses: A. V. Goldberg, Department of Computer Science, Stanford University, 
Stanford, CA 94305; R. E. Tarjan, AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 
07974-2070. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 
0 1988 ACM 0004-541 l/88/1000-0921 $01.50 

Journal of the Association for Computing Machinery. Vol. 35, No. 4. October 1988, pp. 921-940. 

Maximum-flow algorithms:  practice

Caveat.  Worst-case running time is generally not useful for predicting or 

comparing max-flow algorithm performance in practice. 

 

Best in practice.  Push–relabel method with gap relabeling: O(m3/2) in practice.
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A b s t r a c t  

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in 
obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements 
have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed 
in the recent years and to assess their utility on the empirical front. However, our study differs from previous studies in 
several ways. Whereas previous studies focus primarily on CPU time analysis, our analysis goes further and provides 
detailed insight into algorithmic behavior. It not only observes how algorithms behave but also tries to explain why 
algorithms behave that way. We have limited our study to the best previous maximum flow algorithms and some of the 
recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms and five 
classes of networks. The augmenting path algorithms tested by us include Dinic's algorithm, the shortest augmenting path 
algorithm, and the capacity-scaling algorithm. The preflow-push algorithms tested by us include Karzanov's algorithm, three 
implementations of Goldberg-Tarjan's algorithm, and three versions of Ahuja-Orlin-Tarjan's excess-scaling algorithms. 
Among many findings, our study concludes that the preflow-push algorithms are substantially faster than other classes of 
algorithms, and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the growth rate in 
the computational time is O(n LS) on four out of five of our problem classes. Further, in contrast to the results of the 
worst-case analysis of maximum flow algorithms, our study finds that the time to perform relabel operations (or constructing 
the layered networks) takes at least as much computation time as that taken by augmentations and/or  pushes. © 1997 
Published by Elsevier Science B.V. 

1. I n t r o d u c t i o n  

The maximum flow problem is one of  the most 
fundamental problems in network optimization. Its 
intuitive appeal,  mathematical simplicity, and wide 
applicabil i ty has made it a popular research topic 

* Corresponding author. 

0377-2217/97/$17.00 © 1997 Published by Elsevier Science B.V. All 
PII S0377-2217(96)00269-X 

among mathematicians,  operations researchers and 
computer  scientists. 

The maximum flow problem arises in a wide 
variety of  situations. It occurs directly in problems as 
diverse as the flow of  commodit ies  in pipeline net- 
works,  parallel machine scheduling, distributed com- 
puting on multi-processor computers,  matrix round- 
ing problems,  the baseball  el imination problem, and 
the statistical security of  data. The maximum flow 

rights reserved. 

On Implement ing  Push-Re labe l  M e t h o d  
for the M a x i m u m  Flow Problem 

Boris V. Cherkassky 1 and Andrew V. Goldberg 2 

1 Central Institute for Economics and Mathematics, 
Krasikova St. 32, 117418, Moscow, Russia 

cher@eemi.msk.su 
2 Computer Science Department, Stanford University 

Stanford, CA 94305, USA 
goldberg ~cs. stanford, edu 

Abst rac t .  We study efficient implementations of the push-relabel method 
for the maximum flow problem. The resulting codes are faster than the 
previous codes, and much faster on some problem families. The speedup 
is due to the combination of heuristics used in our implementations. We 
also exhibit a family of problems for which the running time of all known 
methods seem to have a roughly quadratic growth rate. 

1 I n t r o d u c t i o n  

The rnaximum flow problem is a classical combinatorial problem that  comes up 
in a wide variety of applications. In this paper we study implementations of the 
push-rdabel [13, 17] method for the problem. 

The basic methods for the maximum flow problem include the network sim- 
plex method of Dantzig [6, 7], the augmenting path method of Ford and F~lker- 
son [12], the blocking flow method of Dinitz [10], and the push-relabel method 
of Goldberg and Tarjan [14, 17]. (An earlier algorithm of Cherkassky [5] has 
many features of the push-relabel method.) The best theoretical time bounds 
for the maximum flow problem, based on the latter method, are as follows. An 
algorithm of Goldberg and Tarjan [17] runs in O(nm log(n2/m)) time, an algo- 
r i thm of King et. al. [21] runs in O(nm + n TM) time for any constant e > 0, 
an algorithm of Cheriyan et. al. [3] runs in O(nm + (n logn)  2) time with high 
probability, and an algorithm of Ahuja et. al. [1] runs in O ( a m  log (~ - -~  + 2 ) )  
time. 

Prior to the push-relabel method, several studies have shown that  Dinitz' 
algorithm [10] is in practice superior to other methods, including the network 
simplex method [6, 7], Ford-giflkerson algorithm [11, 12], Karzanov's algorithm 
[20], and Tarjan's algorithm [23]. See e.g. [18]. Several recent studies (e.g. [2, 

* Andrew V. Goldberg was supported in part by NSF Grant CCR-9307045 and a 
grant from Powell Foundation. This work was done while Boris V. Cherkassky was 
visiting Stanford University Computer Science Department and supported by the 
above-mentioned NSF and Powell Foundation grants. 
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Computer vision.  Different algorithms work better for some dense 

problems that arise in applications to computer vision.
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VERMA, BATRA: MAXFLOW REVISITED 1

MaxFlow Revisited:
An Empirical Comparison of Maxflow
Algorithms for Dense Vision Problems

Tanmay Verma
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Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] is no longer the fastest algorithm available, especially
for dense graphs.

1 Introduction

Over the past two decades, algorithms for finding the maximum amount of flow possible in
a network (or max-flow) have become the workhorses of modern computer vision and ma-
chine learning – from optimal (or provably-approximate) inference in sophisticated discrete
models [6, 11, 27, 30, 32] to enabling real-time image processing [38, 39].

Perhaps the most prominent role of max-flow is due to the work of Hammer [23] and
Kolmogorov and Zabih [27], who showed that a fairly large class of energy functions – sum
of submodular functions on pairs of boolean variables – can be efficiently and optimally
minimized via a reduction to max-flow. Max-flow also plays a crucial role in approximate
minimization of energy functions with multi-label variables [4, 6], triplet or higher order
terms [26, 27, 35, 37], global terms [30], and terms encoding label costs [11, 32].

Given the wide applicability, it is important to ask which max-flow algorithm should be
used. There are numerous algorithms for max-flow with different asymptotic complexities
and practical run-time behaviour. For an extensive list, we refer the reader to surveys in the
literature [2, 7]. Broadly speaking, there are three main families of max-flow algorithms:

1. Augmenting-Path (AP) variants: algorithms [5, 13, 14, 17, 21] that maintain a valid
flow during the algorithm, i.e. always satisfying the capacity and flow-conservation
constraints.

© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for

Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov∗

Abstract

After [15, 31, 19, 8, 25, 5] minimum cut/maximum flow algorithms on graphs emerged as

an increasingly useful tool for exact or approximate energy minimization in low-level vision.

The combinatorial optimization literature provides many min-cut/max-flow algorithms with

different polynomial time complexity. Their practical efficiency, however, has to date been

studied mainly outside the scope of computer vision. The goal of this paper is to provide an

experimental comparison of the efficiency of min-cut/max flow algorithms for applications

in vision. We compare the running times of several standard algorithms, as well as a

new algorithm that we have recently developed. The algorithms we study include both

Goldberg-Tarjan style “push-relabel” methods and algorithms based on Ford-Fulkerson

style “augmenting paths”. We benchmark these algorithms on a number of typical graphs

in the contexts of image restoration, stereo, and segmentation. In many cases our new

algorithm works several times faster than any of the other methods making near real-time

performance possible. An implementation of our max-flow/min-cut algorithm is available

upon request for research purposes.

Index Terms — Energy minimization, graph algorithms, minimum cut, maximum

flow, image restoration, segmentation, stereo, multi-camera scene reconstruction.

∗Yuri Boykov is with the Computer Science Department at the University of Western Ontario, Canada,
yuri@csd.uwo.ca. Vladimir Kolmogorov is with Microsoft Research, Cambridge, England, vnk@microsoft.com.
This work was mainly done while the authors were with Siemens Corp. Research, Princeton, NJ.

Maximum-flow algorithms:  Matlab
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Maximum-flow algorithms:  Google
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7.  NETWORK FLOW I

‣ max-flow and min-cut problems 

‣ Ford–Fulkerson algorithm 

‣ max-flow min-cut theorem 

‣ capacity-scaling algorithm 

‣ shortest augmenting paths 

‣ Dinitz’ algorithm 

‣ simple unit-capacity networks



Which max-flow algorithm to use for bipartite matching? 

A. Ford–Fulkerson:  O(m n C).

B. Capacity scaling:  O(m2 log C).

C. Shortest augmenting path:  O(m2  n).

D. Dinitz’ algorithm:  O(m n2).
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Network flow:  quiz 7

SIAM J. CoMavx.
Vol. 4, No. 4, December 1975

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

SHIMON EVEN" AND R. ENDRE TARJAN:I:

Abstract. An algorithm of Dinic for finding the maximum flow in a network is described. It is
then shown that if the vertex capacities are all equal to one, the algorithm requires at most O(IV[ 1/2 IEI)
time, and if the edge capacities are all equal to one, the algorithm requires at most O(I VI 2/3. IEI) time.
Also, these bounds are tight for Dinic’s algorithm.

These results are used to test the vertex connectivity of a graph in O(IVI 1/z. IEI 2) time and the
edge connectivity in O(I V[ 5/3. IEI) time.

Key words. Dinic’s algorithm, maximum flow, connectivity, vertex connectivity, edge connec-
tivity

1. Network flow. Let G(V, E) be a finite directed graph, where V is the set of
vertices and E is the set of edges. Each edge e is assigned.a capacity c(e) >= O.
One of the vertices, s, is called the source, and another, t, is called the sink. We seek
a flow function f(e) on the edges such that for every e, c(e) >= f(e) >= 0 and such
that the total flow which enters a vertex, other than s or t, will equal the total
flow which leaves the vertex. Of all such flows, we want one for which the net total
flow which emanates from s is maximum.

This well-known network flow problem [1] was recently reexamined. A
solution in O(n5) steps, where n is the number ofvertices, was produced by Edmonds
and Karp [2] in 1969. A solution in O(I VI 2" IE]) steps was published in Russian by
Dinic [3] in 1970.

In this section we present a solution in O(IVI 2. IEI), essentially the same as
Dinic’s. (This version was discovered independently by S. Even and J. Hopcroft.)

The algorithm runs in phases, at most IVI in number. We start with zero
flow; that is, f(e) 0 for every e E. In each phase, the flow is increased. New
phases are applied until no increase is possible. At that point, the proof of maxi-
mality is the same as that of Ford and Fulkerson [1], and it will not be repeated
here. However, the algorithm up to that point is not a restriction of the freedom
allowed by the Ford and Fulkerson algorithm--as is the case with the Edmonds
and Karp algorithm. The computation within each phase is through a different
method of labeling and path finding.

Assume that we have a present flow f(e). An edge is usable in the forward
direction iff(e) < c(e), and it is usable in the backward direction iff(e) > 0. Clearly,
an edge may be usable in both directions.

Each phase starts with a breadth-first search from s. That is, we start by label-
ing s with 0; i.e., 2(s) 0. Next, we label with all unlabeled vertices which are
reachable from s via a single usable edge, where the usable direction is from s to

Received by the editors June 27, 1974, and in revised form November 15, 1974.
-Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel. On

leave of absence from the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Parts of this work were completed during the summers of 1972 and 1973 while he visited the
Department of Computer Science, Cornell University, Ithaca, New York.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720.
The work of this author was supported in part by the National Science Foundation under Grant
NSF-GJ-35604X, and by a Miller Research Fellowship.
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we’ll show that  Dinitz’ algorithm runs 
in O(m n1/2) time for bipartite matching

Simple unit-capacity networks

Def.  A flow network is a simple unit-capacity network if: 

・Every edge has capacity 1. 

・Every node (other than s or t) has exactly one entering edge, 

or exactly one leaving edge, or both. 

 

Property.  Let G be a simple unit-capacity network and let f be a 0–1 flow. 

Then, residual network Gf is also a simple unit-capacity network. 

 

Ex.  Bipartite matching.
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1

1

1

node capacity = 1

Simple unit-capacity networks

Shortest-augmenting-path algorithm. 

・Normal augmentation:  length of shortest path does not change. 

・Special augmentation:  length of shortest path strictly increases. 

 

Theorem.  [Even–Tarjan 1975]  In simple unit-capacity networks, 

Dinitz’ algorithm computes a maximum flow in O(m n1/2) time. 

Pf. 

・Lemma 1.  Each phase of normal augmentations takes O(m) time. 

・Lemma 2.  After n1/2 phases, val( f )  ≥  val( f *)  –  n1/2. 

・Lemma 3.  After ≤ n1/2 additional augmentations, flow is optimal.  ▪   
 

Lemma 3.  After ≤ n1/2 additional augmentations, flow is optimal. 

Pf.  Each augmentation increases flow value by at least 1.  ▪  
 

Lemma 1 and Lemma 2.  Ahead.
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Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

construct level graph

level graph LG

within a phase, length of shortest 
augmenting path does not change



Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

advance

level graph LG

Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

augment

level graph LG

remove from level graph 
all edges in augmenting path

Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

advance

level graph LG

Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

retreat

level graph LG



Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

advance

level graph LG

Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

augment

level graph LG

Simple unit-capacity networks

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node.
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s t

end of phase (length of shortest augmenting path has increased)

level graph LG

Simple unit-capacity networks:  analysis

Phase of normal augmentations. 

・Construct level graph LG. 

・Start at s, advance along an edge in LG until reach t or get stuck. 

・If reach t, augment flow; update LG; and restart from s. 

・If get stuck, delete node from LG and go to previous node. 

 

Lemma 1.  A phase of normal augmentations takes O(m) time. 

Pf. 

・O(m) to create level graph LG. 

・O(1) per edge (each edge involved in at most one advance, retreat, and 

augmentation). 

・O(1) per node (each node deleted at most once).  ▪
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Consider running advance–retreat algorithm in a unit-capacity network 
(but not necessarily a simple one). What is running time?  

A. O(m).

B. O(m3/2). 

C. O(m n).

D. May not terminate.
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Network flow:  quiz 8

useful for this 
week’s homework!

both indegree and outdegree 
of a node can be larger than 1

Lemma 2.  After n1/2 phases, val( f )  ≥  val( f *)  –  n1/2. 

・After n1/2 phases, length of shortest augmenting path is >  n1/2. 

・Thus, level graph has ≥ n1/2 levels (not including levels for s or t ). 

・Let 1  ≤  h ≤  n1/2 be a level with min number of nodes  ⇒  ⎢Vh ⎢ ≤  n1/2.

Vh

Simple unit-capacity networks:  analysis
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s t

Vn1/2 V1

level graph LG for flow f

Simple unit-capacity networks:  analysis

Lemma 2.  After n1/2 phases, val( f )  ≥  val( f *)  –  n1/2. 

・After n1/2 phases, length of shortest augmenting path is >  n1/2. 

・Thus, level graph has ≥ n1/2 levels (not including levels for s or t ). 

・Let 1  ≤  h ≤  n1/2 be a level with min number of nodes  ⇒  ⎢Vh ⎢ ≤  n1/2. 

・Let A  =  {v : ℓ(v) <  h} ∪ {v : ℓ(v) = h and v has ≤ 1 outgoing residual edge}.

・capf (A, B)  ≤  ⎢Vh ⎢  ≤   n1/2   ⇒   val( f )  ≥  val( f *)  –  n1/2.  ▪
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s t

residual edges
residual network Gf

A

Vn1/2 VhV1

unit-capacity 
simple network

Simple unit-capacity networks:  review

Theorem.  [Even–Tarjan 1975]  In simple unit-capacity networks, 

Dinitz’ algorithm computes a maximum flow in O(m n1/2) time. 

Pf. 

・Lemma 1.  Each phase takes O(m) time. 

・Lemma 2.  After n1/2 phases, val( f )  ≥  val( f *)  –  n1/2. 

・Lemma 3.  After ≤ n1/2 additional augmentations, flow is optimal.  ▪   
 

Corollary.  Dinitz’ algorithm computes max-cardinality bipartite matching 

in O(m n1/2) time.
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