DIVIDE AND CONQUER II

- master theorem
- integer multiplication
- matrix multiplication
- convolution and FFT
Divide and Conquer II

- master theorem
- integer multiplication
- matrix multiplication
- convolution and FFT

Sections 4.3–4.6
Master method

Goal. Recipe for solving common divide-and-conquer recurrences:

\[
T(n) = a \cdot T \left(\frac{n}{b} \right) + f(n)
\]

with \(T(0) = 0 \) and \(T(1) = \Theta(1) \).

Terms.
- \(a \geq 1 \) is the (integer) number of subproblems.
- \(b \geq 2 \) is the (integer) factor by which the subproblem size decreases.
- \(f(n) = \) work to divide and merge subproblems.

Recursion tree.
- \(k = \log_b n \) levels.
- \(a^i = \) number of subproblems at level \(i \).
- \(n / b^i = \) size of subproblem at level \(i \).
Geometric series

Fact 1. For $r \neq 1$, \[1 + r + r^2 + r^3 + \ldots + r^{k-1} = \frac{1 - r^k}{1 - r}\]

Fact 2. For $r = 1$, \[1 + r + r^2 + r^3 + \ldots + r^{k-1} = k\]

Fact 3. For $r < 1$, \[1 + r + r^2 + r^3 + \ldots = \frac{1}{1 - r}\]
Case 1: total cost dominated by cost of leaves

Ex 1. If $T(n)$ satisfies $T(n) = 3 \cdot T(n/2) + n$, with $T(1) = 1$, then $T(n) = \Theta(n^{\log_2 3})$.

$$r = \frac{3}{2} > 1 \quad T(n) = (1 + r + r^2 + r^3 + \ldots + r^{\log_2 n}) \cdot n = \frac{r^{1+\log_2 n} - 1}{r - 1} \cdot n = 3^{\log_2 n} - 2n$$
Case 2: total cost evenly distributed among levels

Ex 2. If $T(n)$ satisfies $T(n) = 2T(n/2) + n$, with $T(1) = 1$, then $T(n) = \Theta(n \log n)$.

\[
T(n) = 2T(n/2) + n = 2^2T(n/2^2) + 2(n/2) = 2^3(n/2^3) + 2^2(n/2^2) + n
\]

\[
\vdots
\]

\[
2\log_2 n = n
\]

\[
r = 1, \quad T(n) = (1 + r + r^2 + r^3 + \ldots + r^{\log_2 n}) n = n (\log_2 n + 1)
\]
Case 3: total cost dominated by cost of root

Ex 3. If $T(n)$ satisfies $T(n) = 3 \ T(n/4) + n^5$, with $T(1) = 1$, then $T(n) = \Theta(n^5)$.

\[
T(n) = \begin{cases}
3 \ T(n/4) & n = 1 \\
3^i \ T(n/4^i) + n^5 & n = 1 + r + r^2 + r^3 + \ldots \\
\end{cases}
\]

\[
r = \frac{3}{4^5} < 1 \quad n^5 \leq T(n) \leq (1 + r + r^2 + r^3 + \ldots) n^5 \leq \frac{1}{1 - r} n^5
\]
Master theorem

Master theorem. Suppose that $T(n)$ is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a \ T\left(\frac{n}{b}\right) + f(n)$$

with $T(0) = 0$ and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^k)$.

Ex. $T(n) = 3 \ T(n/2) + 5 \ n$.
- $a = 3, \ b = 2, \ f(n) = 5 \ n, \ k = 1, \ \log_b a = 1.58\ldots$
- $T(n) = \Theta(n^{\log_2 3})$.
Master theorem

Master theorem. Suppose that $T(n)$ is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

with $T(0) = 0$ and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Ex. $T(n) = 2T(n/2) + \Theta(n \log n)$.

- $a = 2$, $b = 2$, $f(n) = 17n$, $k = 1$, $\log_b a = 1$, $p = 1$.
- $T(n) = \Theta(n \log^2 n)$.
Master theorem

Master theorem. Suppose that $T(n)$ is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

with $T(0) = 0$ and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $a \cdot f(n/b) \leq c \cdot f(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Ex. $T(n) = 3 \cdot T(n/2) + n^2$.

- $a = 3$, $b = 2$, $f(n) = n^2$, $k = 2$, $\log_b a = 1.58\ldots$
- Regularity condition: $3 \cdot (n/2)^2 \leq c \cdot n^2$ for $c = 3/4$.
- $T(n) = \Theta(n^5)$.

"regularity condition" holds if $f(n) = \Theta(n^k)"
Master theorem. Suppose that $T(n)$ is a function on the non-negative integers that satisfies the recurrence

$$T(n) = a \ T\left(\frac{n}{b}\right) + f(n)$$

with $T(0) = 0$ and $T(1) = \Theta(1)$, where n/b means either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then,

Case 1. If $f(n) = O(n^k)$ for some constant $k < \log_b a$, then $T(n) = \Theta(n^k)$.

Case 2. If $f(n) = \Theta(n^k \log^p n)$ for $k = \log_b a$, then $T(n) = \Theta(n^k \log^{p+1} n)$.

Case 3. If $f(n) = \Omega(n^k)$ for some constant $k > \log_b a$, and if $a \ f(n/b) \leq c \ f(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Pf sketch.

- Use recursion tree to sum up terms (assuming n is an exact power of b).
- Three cases for geometric series.
- Deal with floors and ceilings.
Master theorem need not apply

Gaps in master theorem.
- Number of subproblems must be a constant.
 \[T(n) = nT(n/2) + n^2 \]
- Number of subproblems must be \(\geq 1 \).
 \[T(n) = \frac{1}{2} T(n/2) + n^2 \]
- Non-polynomial separation between \(f(n) \) and \(n^{\log_b a} \).
 \[T(n) = 2T(n/2) + \frac{n}{\log n} \]
- \(f(n) \) is not positive.
 \[T(n) = 2T(n/2) - n^2 \]
- Regularity condition does not hold.
 \[T(n) = T(n/2) + n(2 - \cos n) \]
Akra–Bazzi theorem

Desiderata. Generalizes master theorem to divide-and-conquer algorithms where subproblems have substantially different sizes.

Theorem. [Akra–Bazzi] Given constants $a_i > 0$ and $0 < b_i \leq 1$, functions $h_i(n) = O(n / \log^2 n)$ and $g(n) = O(n^c)$, if the function $T(n)$ satisfies the recurrence:

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n + h_i(n)) + g(n)$$

Then $T(n) = \Theta\left(n^p \left(1 + \int_1^n \frac{g(u)}{u^{p+1}} du\right)\right)$ where p satisfies $\sum_{i=1}^{k} a_i b_i^p = 1$.

Ex. $T(n) = 7/4 \ T([n/2]) + T([3/4 \ n]) + n^2$, with $T(0) = 0$ and $T(1) = 1$.

- $a_1 = 7/4, \ b_1 = 1/2, \ a_2 = 1, \ b_2 = 3/4 \Rightarrow \ p = 2$.
- $h_1(n) = \lfloor 1/2 \ n \rfloor - 1/2 \ n, \ h_2(n) = \lfloor 3/4 \ n \rfloor - 3/4 \ n$.
- $g(n) = n^2 \Rightarrow T(n) = \Theta(n^2 \log n)$.

Divide and Conquer II

- master theorem
- integer multiplication
- matrix multiplication
- convolution and FFT
Integer addition

Addition. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a + b \).

Subtraction. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a - b \).

Grade-school algorithm. \(\Theta(n) \) bit operations.

![Addition Example](image)

Remark. Grade-school addition and subtraction algorithms are asymptotically optimal.
Integer multiplication

Multiplication. Given two n-bit integers a and b, compute $a \times b$.

Grade-school algorithm. $\Theta(n^2)$ bit operations.

```
  1 1 0 1 0 1 0 1
x 0 1 1 1 1 1 0 1
  1 1 0 1 0 1 0 1
  0 0 0 0 0 0 0 0
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  1 1 0 1 0 1 0 1
  0 0 0 0 0 0 0 0
  0 1 1 0 1 0 0 0
  0 0 0 0 0 0 0 1
```

Conjecture. [Kolmogorov 1952] Grade-school algorithm is optimal.

Theorem. [Karatsuba 1960] Conjecture is wrong.
Divide-and-conquer multiplication

To multiply two \(n \)-bit integers \(x \) and \(y \):

- Divide \(x \) and \(y \) into low- and high-order bits.
- Multiply four \(\frac{1}{2}n \)-bit integers, recursively.
- Add and shift to obtain result.

\[
m = \left\lfloor \frac{n}{2} \right\rfloor
\]
\[
a = \left\lfloor \frac{x}{2^m} \right\rfloor \quad b = x \mod 2^m
\]
\[
c = \left\lfloor \frac{y}{2^m} \right\rfloor \quad d = y \mod 2^m
\]

\[
(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd
\]

Ex. \(x = 10001101 \) \quad \(y = 11100001 \)

\[
\begin{align*}
a & \quad b \\
\hline
\text{Ex.} & \quad \text{Ex.} \\
\hline
(2^m a + b) (2^m c + d) & = 2^{2m} ac + 2^m (bc + ad) + bd
\end{align*}
\]
Divide-and-conquer multiplication

\[
\text{MULTIPLY} \ (x, y, n)
\]

\[
\text{IF} \ (n = 1) \\
\text{RETURN} \ x \times y.
\]

\[
\text{ELSE} \\
m \leftarrow \lceil n / 2 \rceil. \\
a \leftarrow \lfloor x / 2^m \rfloor; \quad b \leftarrow x \mod 2^m.
\]

\[
c \leftarrow \lfloor y / 2^m \rfloor; \quad d \leftarrow y \mod 2^m.
\]

\[
e \leftarrow \text{MULTIPLY} \ (a, c, m).
\]

\[
f \leftarrow \text{MULTIPLY} \ (b, d, m).
\]

\[
g \leftarrow \text{MULTIPLY} \ (b, c, m).
\]

\[
h \leftarrow \text{MULTIPLY} \ (a, d, m).
\]

\[
\text{RETURN} \ 2^{2m} e + 2^m (g + h) + f.
\]
Divide-and-conquer multiplication analysis

Proposition. The divide-and-conquer multiplication algorithm requires $\Theta(n^2)$ bit operations to multiply two n-bit integers.

Pf. Apply case 1 of the master theorem to the recurrence:

$$T(n) = 4T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n^2)$$
Karatsuba trick

To compute middle term $bc + ad$, use identity:

$$bc + ad = ac + bd - (a - b)(c - d)$$

$$m = \lfloor n / 2 \rfloor$$

$$a = \lfloor x / 2^m \rfloor \quad b = x \mod 2^m$$

$$c = \lfloor y / 2^m \rfloor \quad d = y \mod 2^m$$

$$(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

$$= 2^{2m} ac + 2^m (ac + bd - (a - b)(c - d)) + bd$$

Bottom line. Only three multiplications of $n/2$-bit integers.
Karatsuba multiplication

Karatsuba-Multiply \((x, y, n)\)

IF \((n = 1)\)

RETURN \(x \times y.\)

ELSE

\[m \leftarrow \lfloor n / 2 \rfloor.\]

\[a \leftarrow \lfloor x / 2^m \rfloor; \quad b \leftarrow x \mod 2^m.\]

\[c \leftarrow \lfloor y / 2^m \rfloor; \quad d \leftarrow y \mod 2^m.\]

\[e \leftarrow \text{Karatsuba-Multiply} \ (a, c, m).\]

\[f \leftarrow \text{Karatsuba-Multiply} \ (b, d, m).\]

\[g \leftarrow \text{Karatsuba-Multiply} \ (a - b, c - d, m).\]

RETURN \(2^{2m} e + 2^m (e + f - g) + f.\)
Karatsuba analysis

Proposition. Karatsuba’s algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

Pf. Apply Case 1 of the master theorem to the recurrence:

$$T(n) = 3T(n/2) + \Theta(n) \implies T(n) = \Theta(n^{\log_2 3}) = O(n^{1.585})$$

Practice. Faster than grade-school algorithm for about 320–640 bits.
Integer arithmetic reductions

Integer multiplication. Given two \(n \)-bit integers, compute their product.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Arithmetic</th>
<th>Running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer multiplication</td>
<td>(a \times b)</td>
<td>(M(n))</td>
</tr>
<tr>
<td>integer division</td>
<td>(a / b, a \mod b)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square</td>
<td>(a^2)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square root</td>
<td>(\lfloor \sqrt{a} \rfloor)</td>
<td>(\Theta(M(n)))</td>
</tr>
</tbody>
</table>

integer arithmetic problems with the same complexity \(M(n) \) as integer multiplication
History of asymptotic complexity of integer multiplication

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>brute force</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>1962</td>
<td>Karatsuba–Ofman</td>
<td>$\Theta(n^{1.585})$</td>
</tr>
<tr>
<td>1963</td>
<td>Toom–3, Toom–4</td>
<td>$\Theta(n^{1.465}), \Theta(n^{1.404})$</td>
</tr>
<tr>
<td>1966</td>
<td>Toom–Cook</td>
<td>$\Theta(n^{1 + \varepsilon})$</td>
</tr>
<tr>
<td>1971</td>
<td>Schönhage–Strassen</td>
<td>$\Theta(n \log n \log \log n)$</td>
</tr>
<tr>
<td>2007</td>
<td>Fürer</td>
<td>$n \log n 2^{O(\log^*n)}$</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

Remark. GNU Multiple Precision Library uses one of five different algorithms depending on size of operands.
Divide and Conquer II

- master theorem
- integer multiplication
- matrix multiplication
- convolution and FFT
Dot product

Dot product. Given two length-n vectors a and b, compute $c = a \cdot b$.

Grade-school. $\Theta(n)$ arithmetic operations.

\[a \cdot b = \sum_{i=1}^{n} a_i b_i \]

\[
\begin{array}{ccc}
0.70 & 0.20 & 0.10 \\
0.30 & 0.40 & 0.30 \\
\end{array}
\]

\[a \cdot b = (0.70 \times 0.30) + (0.20 \times 0.40) + (0.10 \times 0.30) = 0.32 \]

Remark. Grade-school dot product algorithm is asymptotically optimal.
Matrix multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute $C = AB$. Grade-school. $\Theta(n^3)$ arithmetic operations.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \times \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

\[
\begin{bmatrix}
.59 & .32 & .41 \\
.31 & .36 & .25 \\
.45 & .31 & .42
\end{bmatrix}
= \begin{bmatrix}
.70 & .20 & .10 \\
.30 & .60 & .10 \\
.50 & .10 & .40
\end{bmatrix} \times \begin{bmatrix}
.80 & .30 & .50 \\
.10 & .40 & .10 \\
.10 & .30 & .40
\end{bmatrix}
\]

Q. Is grade-school matrix multiplication algorithm asymptotically optimal?
Block matrix multiplication

\[
C_{11} = A_{11} \times B_{11} + A_{12} \times B_{21} = \begin{bmatrix}
0 & 1 \\
4 & 5
\end{bmatrix} \times \begin{bmatrix}
16 & 17 \\
20 & 21
\end{bmatrix} + \begin{bmatrix}
2 & 3 \\
6 & 7
\end{bmatrix} \times \begin{bmatrix}
24 & 25 \\
28 & 29
\end{bmatrix} = \begin{bmatrix}
152 & 158 \\
504 & 526
\end{bmatrix}
\]
Matrix multiplication: warmup

To multiply two n-by-n matrices A and B:

- Divide: partition A and B into $\frac{1}{2}n$-by-$\frac{1}{2}n$ blocks.
- Conquer: multiply 8 pairs of $\frac{1}{2}n$-by-$\frac{1}{2}n$ matrices, recursively.
- Combine: add appropriate products using 4 matrix additions.

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \times \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
\begin{align*}
C_{11} &= (A_{11} \times B_{11}) + (A_{12} \times B_{21}) \\
C_{12} &= (A_{11} \times B_{12}) + (A_{12} \times B_{22}) \\
C_{21} &= (A_{21} \times B_{11}) + (A_{22} \times B_{21}) \\
C_{22} &= (A_{21} \times B_{12}) + (A_{22} \times B_{22})
\end{align*}
\]

Running time. Apply case 1 of Master Theorem.

\[
T(n) = 8T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^3)
\]
Strassen’s trick

Key idea. multiply 2-by-2 blocks with only 7 multiplications. (plus 11 additions and 7 subtractions)

\[
\begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix} \times \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C_{11} = P_5 + P_4 - P_2 + P_6
\]

\[
C_{12} = P_1 + P_2
\]

\[
C_{21} = P_3 + P_4
\]

\[
C_{22} = P_1 + P_5 - P_3 - P_7
\]

Pf.
\[
C_{12} = P_1 + P_2
\]
\[
= A_{11} \times (B_{12} - B_{22}) + (A_{11} + A_{12}) \times B_{22}
\]
\[
= A_{11} \times B_{12} + A_{12} \times B_{22}. \checkmark
\]
Strassen’s algorithm

\textbf{STRASSEN}(n, A, B)

\textbf{IF} \hspace{1em} (n = 1) \hspace{1em} \textbf{RETURN} \hspace{1em} A \times B.

Partition A and B into 2-by-2 block matrices.

\begin{align*}
P_1 & \leftarrow \text{STRASSEN} \left(n/2, A_{11}, (B_{12} - B_{22}) \right). \\
P_2 & \leftarrow \text{STRASSEN} \left(n/2, (A_{11} + A_{12}), B_{22} \right). \\
P_3 & \leftarrow \text{STRASSEN} \left(n/2, (A_{21} + A_{22}), B_{11} \right). \\
P_4 & \leftarrow \text{STRASSEN} \left(n/2, A_{22}, (B_{21} - B_{11}) \right). \\
P_5 & \leftarrow \text{STRASSEN} \left(n/2, (A_{11} + A_{22}) \times (B_{11} + B_{22}) \right). \\
P_6 & \leftarrow \text{STRASSEN} \left(n/2, (A_{12} - A_{22}) \times (B_{21} + B_{22}) \right). \\
P_7 & \leftarrow \text{STRASSEN} \left(n/2, (A_{11} - A_{21}) \times (B_{11} + B_{12}) \right).
\end{align*}

\begin{align*}
C_{11} &= P_1 + P_5 - P_4 + P_2 + P_6. \\
C_{12} &= P_1 + P_2. \\
C_{21} &= P_3 + P_4. \\
C_{22} &= P_1 + P_5 - P_3 - P_7.
\end{align*}

\textbf{RETURN} \hspace{1em} C.
Analysis of Strassen’s algorithm

Theorem. Strassen’s algorithm requires $O(n^{2.81})$ arithmetic operations to multiply two n-by-n matrices.

Pf. Apply case 1 of the master theorem to the recurrence:

$$T(n) = 7T(n/2) + \Theta(n^2) \Rightarrow T(n) = \Theta(n^{\log_2 7}) = O(n^{2.81})$$

Q. What if n is not a power of 2?

A. Could pad matrices with zeros.

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 10 & 11 & 12 & 0 \\ 13 & 14 & 15 & 0 \\ 16 & 17 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 84 & 90 & 96 & 0 \\ 201 & 216 & 231 & 0 \\ 318 & 342 & 366 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
Strassen’s algorithm: practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm when \(n \) is “small.”

Common misperception. “Strassen’s algorithm is only a theoretical curiosity.”

- Apple reports 8x speedup on G4 Velocity Engine when \(n \approx 2,048 \).
- Range of instances where it’s useful is a subject of controversy.
Linear algebra reductions

Matrix multiplication. Given two n-by-n matrices, compute their product.

<table>
<thead>
<tr>
<th>problem</th>
<th>linear algebra</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix multiplication</td>
<td>$A \times B$</td>
<td>$\text{MM}(n)$</td>
</tr>
<tr>
<td>matrix inversion</td>
<td>A^{-1}</td>
<td>$\Theta(\text{MM}(n))$</td>
</tr>
<tr>
<td>determinant</td>
<td>$</td>
<td>A</td>
</tr>
<tr>
<td>system of linear equations</td>
<td>$Ax = b$</td>
<td>$\Theta(\text{MM}(n))$</td>
</tr>
<tr>
<td>LU decomposition</td>
<td>$A = LU$</td>
<td>$\Theta(\text{MM}(n))$</td>
</tr>
<tr>
<td>least squares</td>
<td>$\min |Ax - b|_2$</td>
<td>$\Theta(\text{MM}(n))$</td>
</tr>
</tbody>
</table>

Numerical linear algebra problems with the same complexity $\text{MM}(n)$ as matrix multiplication.
Fast matrix multiplication: theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] \(\Theta(n^{\log_2 7}) = O(n^{2.807}) \)

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft–Kerr 1971] \(\Theta(n^{\log_2 6}) = O(n^{2.59}) \)

Q. Multiply two 3-by-3 matrices with 21 scalar multiplications?
A. Unknown. \(\Theta(n^{\log_3 21}) = O(n^{2.77}) \)

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]
 - Two 20-by-20 matrices with 4,460 scalar multiplications. \(O(n^{2.805}) \)
 - Two 48-by-48 matrices with 47,217 scalar multiplications. \(O(n^{2.7801}) \)
 - A year later. \(O(n^{2.7799}) \)
 - December 1979. \(O(n^{2.521813}) \)
 - January 1980. \(O(n^{2.521801}) \)
History of asymptotic complexity of matrix multiplication

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>brute force</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>1969</td>
<td>Strassen</td>
<td>$O(n^{2.808})$</td>
</tr>
<tr>
<td>1978</td>
<td>Pan</td>
<td>$O(n^{2.796})$</td>
</tr>
<tr>
<td>1979</td>
<td>Bini</td>
<td>$O(n^{2.780})$</td>
</tr>
<tr>
<td>1981</td>
<td>Schöhage</td>
<td>$O(n^{2.522})$</td>
</tr>
<tr>
<td>1982</td>
<td>Romani</td>
<td>$O(n^{2.517})$</td>
</tr>
<tr>
<td>1982</td>
<td>Coppersmith–Winograd</td>
<td>$O(n^{2.496})$</td>
</tr>
<tr>
<td>1986</td>
<td>Strassen</td>
<td>$O(n^{2.479})$</td>
</tr>
<tr>
<td>1989</td>
<td>Coppersmith–Winograd</td>
<td>$O(n^{2.376})$</td>
</tr>
<tr>
<td>2010</td>
<td>Strother</td>
<td>$O(n^{2.3737})$</td>
</tr>
<tr>
<td>2011</td>
<td>Williams</td>
<td>$O(n^{2.3727})$</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>$O(n^{2+\varepsilon})$</td>
</tr>
</tbody>
</table>

number of floating-point operations to multiply two n-by-n matrices
Divide and Conquer II

- master theorem
- integer multiplication
- matrix multiplication
- convolution and FFT
Fourier analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any (sufficiently smooth) periodic function can be expressed as the sum of a series of sinusoids.

\[y(t) = \frac{2}{\pi} \sum_{k=1}^{N} \frac{\sin kt}{k} \quad N = 100 \]
Euler’s identity

Euler’s identity. \(e^{ix} = \cos x + i \sin x. \)

Sinusoids. Sum of sine and cosines = sum of complex exponentials.
Time domain vs. frequency domain

Signal. [touch tone button 1]
\[y(t) = \frac{1}{2} \sin(2\pi \cdot 697 \, t) + \frac{1}{2} \sin(2\pi \cdot 1209 \, t) \]

Time domain.

Frequency domain.

Reference: Cleve Moler, Numerical Computing with MATLAB
Time domain vs. frequency domain

Signal. [recording, 8192 samples per second]

![Signal waveform](image1)

Magnitude of discrete Fourier transform.

![Magnitude of FFT](image2)

Reference: Cleve Moler, Numerical Computing with MATLAB
Fast Fourier transform

FFT. Fast way to convert between time-domain and frequency-domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.

“If you speed up any nontrivial algorithm by a factor of a million or so the world will beat a path towards finding useful applications for it.” — Numerical Recipes
Applications.

- Optics, acoustics, quantum physics, telecommunications, radar, control systems, signal processing, speech recognition, data compression, image processing, seismology, mass spectrometry, ...
- Digital media. [DVD, JPEG, MP3, H.264]
- Medical diagnostics. [MRI, CT, PET scans, ultrasound]
- Numerical solutions to Poisson’s equation.
- Integer and polynomial multiplication.
- Shor’s quantum factoring algorithm.
- ...

“The FFT is one of the truly great computational developments of [the 20th] century. It has changed the face of science and engineering so much that it is not an exaggeration to say that life as we know it would be very different without the FFT.”

— Charles van Loan
Fast Fourier transform: brief history

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.

An Algorithm for the Machine Calculation of Complex Fourier Series

By James W. Cooley and John W. Tukey

An efficient method for the calculation of the interactions of a 2^n factorial experiment was introduced by Yates and is widely known by his name. The generalization to 3^n was given by Box et al. [1]. Good [2] generalized these methods and gave elegant algorithms for which one class of applications is the calculation of Fourier series. In their full generality, Good’s methods are applicable to certain problems in which one must multiply an N-vector by an $N \times N$ matrix which can be factored into m sparse matrices, where m is proportional to log N. This results in a procedure requiring a number of operations proportional to $N \log N$ rather than N^2.

paper published only after IBM lawyers decided not to set precedent of patenting numerical algorithms (conventional wisdom: nobody could make money selling software!)

Importance not fully realized until advent of digital computers.
Polynomials: coefficient representation

Polynomial. [coefficient representation]

\[A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1} \]

\[B(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1} \]

Add. \(O(n) \) arithmetic operations.

\[A(x) + B(x) = (a_0 + b_0) + (a_1 + b_1)x + \cdots + (a_{n-1} + b_{n-1})x^{n-1} \]

Evaluate. \(O(n) \) using Horner’s method.

\[A(x) = a_0 + (x(a_1 + x(a_2 + \cdots + x(a_{n-2} + x(a_{n-1})))) \cdots) \]

Multiply (convolve). \(O(n^2) \) using brute force.

\[A(x) \times B(x) = \sum_{i=0}^{2n-2} c_i x^i, \text{ where } c_i = \sum_{j=0}^{i} a_j b_{i-j} \]
DENONSTRATIO NOVA
THEOREMATIS
OMNEM FUNCTIONEM ALGEBRAICAM
RATIONALEM INTEGRAM
VNIVS VARIABILIS
IN FACTORES REALES PRIMI VEL SECUNDI GRADVS
RESOLVI POSSE

AVCTORE
CAROLO FRIDERICI GAVS
HELMSTADII
APVD C. G. FLECKEISEN. 1799

1. Quaelibet aequatio algebraica determinata reduci potest ad formam $x^m + Ax^{m-1} + Bx^{m-2} + \text{etc.}$ $+M=0$, ita vt m sit numerus integer positius. Si partem primam huius aequationis per X denotamus, aequationique $X=0$ per plures valores inaequales ipsius x satisfieri supponimus, puta ponendo $x=a$, $x=b$, $x=c$ etc. functio X per productum e factoribus $x-a$, $x-b$, $x-c$ etc. duisibilis erit. Vice versa, si productum e pluribus factoribus simplicibus $x-a$, $x-b$, $x-c$ etc. functionem X metitur: aequationi $X=0$ satisfiet, aequando ipsam x cuiuscunque quantitatum a, b, c etc. Denique si X producto ex m factoribus talibus simplicibus aequalis est (siue omnes diversi sint, siue quidam ex ipsis identici): alii factores simplices praeter hos functionem X metiri non poterunt. Quamobrem aequatio m^{th} gradus plures quam m radices habere nequit; simul vero patet, aequationem m^{th} gradus pauciores radices habere posse, etsi X in m factores simplices resolubiles sit:

“New proof of the theorem that every algebraic rational integral function in one variable can be resolved into real factors of the first or the second degree.”
Polynomials: point-value representation

Fundamental theorem of algebra. A degree n polynomial with complex coefficients has exactly n complex roots.

Corollary. A degree $n - 1$ polynomial $A(x)$ is uniquely specified by its evaluation at n distinct values of x.

\[y_j = A(x_j) \]
Polynomials: point-value representation

Polynomial. [point-value representation]

\[A(x) : (x_0, y_0), \ldots, (x_{n-1}, y_{n-1}) \]
\[B(x) : (x_0, z_0), \ldots, (x_{n-1}, z_{n-1}) \]

Add. \(O(n)\) arithmetic operations.

\[A(x) + B(x) : (x_0, y_0 + z_0), \ldots, (x_{n-1}, y_{n-1} + z_{n-1}) \]

Multiply (convolve). \(O(n)\), but need \(2n - 1\) points.

\[A(x) \times B(x) : (x_0, y_0 \times z_0), \ldots, (x_{2n-1}, y_{2n-1} \times z_{2n-1}) \]

Evaluate. \(O(n^2)\) using Lagrange’s formula.

\[A(x) = \sum_{k=0}^{n-1} y_k \frac{\prod_{j \neq k} (x - x_j)}{\prod_{j \neq k} (x_k - x_j)} \]
Converting between two representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

<table>
<thead>
<tr>
<th>representation</th>
<th>multiply</th>
<th>evaluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>point-value</td>
<td>$O(n)$</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Goal. Efficient conversion between two representations \Rightarrow all ops fast.
Converting between two representations: brute force

Coefficient ⇒ point-value. Given a polynomial \(a_0 + a_1 x + ... + a_{n-1} x^{n-1} \), evaluate it at \(n \) distinct points \(x_0, ..., x_{n-1} \).

\[
\begin{bmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 \vdots \\
 a_{n-1}
\end{bmatrix}
\]

Running time. \(O(n^2) \) for matrix-vector multiply (or \(n \) Horner’s).
Converting between two representations: brute force

Point-value ⇒ coefficient. Given \(n \) distinct points \(x_0, \ldots, x_{n-1} \) and values \(y_0, \ldots, y_{n-1} \), find unique polynomial \(a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \), that has given values at given points.

\[
\begin{bmatrix}
 y_0 \\
 y_1 \\
 y_2 \\
 \vdots \\
 y_{n-1}
\end{bmatrix}
=
\begin{bmatrix}
 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\
 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}
\end{bmatrix}
\begin{bmatrix}
 a_0 \\
 a_1 \\
 a_2 \\
 \vdots \\
 a_{n-1}
\end{bmatrix}
\]

Vandermonde matrix is invertible iff \(x_i \) distinct

Running time. \(O(n^3) \) for Gaussian elimination.

or \(O(n^{2.3727}) \) via fast matrix multiplication
Decimation in frequency. Break up polynomial into low and high powers.

- \(A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7. \)
- \(A_{low}(x) = a_0 + a_1x + a_2x^2 + a_3x^3. \)
- \(A_{high}(x) = a_4 + a_5x + a_6x^2 + a_7x^3. \)
- \(A(x) = A_{low}(x) + x^4 A_{high}(x). \)

Decimation in time. Break up polynomial into even and odd powers.

- \(A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7. \)
- \(A_{even}(x) = a_0 + a_2x + a_4x^2 + a_6x^3. \)
- \(A_{odd}(x) = a_1 + a_3x + a_5x^2 + a_7x^3. \)
- \(A(x) = A_{even}(x^2) + x A_{odd}(x^2). \)
Coefficient to point-value representation: intuition

Coefficient \Rightarrow point-value. Given a polynomial $a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$, evaluate it at n distinct points x_0, \ldots, x_{n-1}.

we get to choose which ones!

Divide. Break up polynomial into even and odd powers.

- $A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + a_6 x^6 + a_7 x^7$.
- $A_{even}(x) = a_0 + a_2 x + a_4 x^2 + a_6 x^3$.
- $A_{odd}(x) = a_1 + a_3 x + a_5 x^2 + a_7 x^3$.
- $A(x) = A_{even}(x^2) + x A_{odd}(x^2)$.
- $A(-x) = A_{even}(x^2) - x A_{odd}(x^2)$.

Intuition. Choose two points to be ± 1.

- $A(1) = A_{even}(1) + 1 A_{odd}(1)$.
 Can evaluate polynomial of degree $\leq n$ at 2 points by evaluating two polynomials of degree $\leq \frac{1}{2} n$ at 1 point.
- $A(-1) = A_{even}(1) - 1 A_{odd}(1)$.

Coefficient to point-value representation: intuition

Coefficient ⇒ point-value. Given a polynomial \(a_0 + a_1x + \ldots + a_{n-1}x^{n-1} \), evaluate it at \(n \) distinct points \(x_0, \ldots, x_{n-1} \). ← we get to choose which ones!

Divide. Break up polynomial into even and odd powers.

- \(A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7 \).
- \(A_{\text{even}}(x) = a_0 + a_2x + a_4x^2 + a_6x^3 \).
- \(A_{\text{odd}}(x) = a_1 + a_3x + a_5x^2 + a_7x^3 \).
- \(A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2) \).
- \(A(-x) = A_{\text{even}}(x^2) - x A_{\text{odd}}(x^2) \).

Intuition. Choose four complex points to be \(\pm 1, \pm i \).

- \(A(1) = A_{\text{even}}(1) + 1 A_{\text{odd}}(1) \).
- \(A(-1) = A_{\text{even}}(1) - 1 A_{\text{odd}}(1) \).
- \(A(i) = A_{\text{even}}(-1) + i A_{\text{odd}}(-1) \).
- \(A(-i) = A_{\text{even}}(-1) - i A_{\text{odd}}(-1) \).

Can evaluate polynomial of degree \(\leq n \) at 4 points by evaluating two polynomials of degree \(\leq \frac{1}{2}n \) at 2 point.
Coefficient ⇒ point-value. Given a polynomial \(a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \), evaluate it at \(n \) distinct points \(x_0, \ldots, x_{n-1} \).

Key idea. Choose \(x_k = \omega^k \) where \(\omega \) is principal \(n^{th} \) root of unity.

\[
\begin{bmatrix}
 y_0 \\
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_{n-1}
\end{bmatrix} =
\begin{bmatrix}
 1 & 1 & 1 & 1 & \cdots & 1 \\
 1 & \omega^1 & \omega^2 & \omega^3 & \cdots & \omega^{n-1} \\
 1 & \omega^2 & \omega^4 & \omega^6 & \cdots & \omega^{2(n-1)} \\
 1 & \omega^3 & \omega^6 & \omega^9 & \cdots & \omega^{3(n-1)} \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n-1}
\end{bmatrix}
\]
Roots of unity

Def. An \(n^{th} \) root of unity is a complex number \(x \) such that \(x^n = 1 \).

Fact. The \(n^{th} \) roots of unity are: \(\omega^0, \omega^1, \ldots, \omega^{n-1} \) where \(\omega = e^{2\pi i / n} \).

Pf. \((\omega^k)^n = (e^{2\pi i k / n})^n = (e^{\pi i})^{2k} = (-1)^{2k} = 1 \).

Fact. The \(\frac{1}{2}n^{th} \) roots of unity are: \(\nu^0, \nu^1, \ldots, \nu^{n/2-1} \) where \(\nu = \omega^2 = e^{4\pi i / n} \).
Fast Fourier transform

Goal. Evaluate a degree \(n - 1 \) polynomial \(A(x) = a_0 + ... + a_{n-1} x^{n-1} \) at its \(n^{th} \) roots of unity: \(\omega^0, \omega^1, \ldots, \omega^{n-1} \).

Divide. Break up polynomial into even and odd powers.

- \(A_{\text{even}}(x) = a_0 + a_2x + a_4x^2 + ... + a_{n-2}x^{n/2-1} \).
- \(A_{\text{odd}}(x) = a_1 + a_3x + a_5x^2 + ... + a_{n-1}x^{n/2-1} \).
- \(A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2) \).

Conquer. Evaluate \(A_{\text{even}}(x) \) and \(A_{\text{odd}}(x) \) at the \(\frac{1}{2}n^{th} \) roots of unity: \(\nu^0, \nu^1, \ldots, \nu^{n/2-1} \).

Combine.

- \(A(\omega^k) = A_{\text{even}}(\nu^k) + \omega^k A_{\text{odd}}(\nu^k), \quad 0 \leq k < n/2 \)
- \(A(\omega^{k+\frac{1}{2}n}) = A_{\text{even}}(\nu^k) - \omega^k A_{\text{odd}}(\nu^k), \quad 0 \leq k < n/2 \)

\(\nu^k = (\omega^k)^2 \)

\(\omega^{k+\frac{1}{2}n} = -\omega^k \)
FFT: implementation

\[
\text{FFT} \left(n, a_0, a_1, a_2, \ldots, a_{n-1} \right)
\]

IF \(n = 1 \)** RET**\(\text{URN} \ a_0.\)

\((e_0, e_1, \ldots, e_{n/2-1}) \leftarrow \text{FFT} \left(n / 2, a_0, a_2, a_4, \ldots, a_{n-2} \right).\)

\((d_0, d_1, \ldots, d_{n/2-1}) \leftarrow \text{FFT} \left(n / 2, a_1, a_3, a_5, \ldots, a_{n-1} \right).\)

FOR \(k = 0 \) ** TO ** \(n / 2 – 1.\)

\(\omega^k \leftarrow e^{2\pi i k / n}.\)

\(y_k \leftarrow e_k + \omega^k d_k.\)

\(y_{k + n/2} \leftarrow e_k - \omega^k d_k.\)

RETURN \((y_0, y_1, y_2, \ldots, y_{n-1}).\)
FFT: summary

Theorem. The FFT algorithm evaluates a degree \(n - 1 \) polynomial at each of the \(n^{th} \) roots of unity in \(O(n \log n) \) steps and \(O(n) \) extra space.

Pf. \(T(n) = 2T(n/2) + \Theta(n) \implies T(n) = \Theta(n \log n) \)

assumes \(n \) is a power of 2

\[O(n \log n) \]

\[a_0, a_1, \ldots, a_{n-1} \quad \xrightarrow{? \ ? \ ?} \quad (x_0, y_0), \ldots, (x_{n-1}, y_{n-1}) \]

coefficient representation

point-value representation
FFT: recursion tree

a₀, a₁, a₂, a₃, a₄, a₅, a₆, a₇

inverse perfect shuffle

a₀, a₂, a₄, a₆

a₀, a₄

a₀

000

a₄

100

a₂, a₆

a₂

010

a₆

110

a₁, a₅

a₁

001

a₅

101

a₃, a₇

a₃

011

a₇

111

“bit-reversed” order
Inverse discrete Fourier transform

Point-value ⇒ coefficient. Given n distinct points x_0, \ldots, x_{n-1} and values y_0, \ldots, y_{n-1}, find unique polynomial $a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$, that has given values at given points.

$$
\begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
a_3 \\
\vdots \\
a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega^1 & \omega^2 & \omega^3 & \ldots & \omega^{n-1} \\
1 & \omega^2 & \omega^4 & \omega^6 & \ldots & \omega^{2(n-1)} \\
1 & \omega^3 & \omega^6 & \omega^9 & \ldots & \omega^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \ldots & \omega^{(n-1)(n-1)}
\end{bmatrix}
^{-1}
\begin{bmatrix}
y_0 \\
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_{n-1}
\end{bmatrix}
$$

Inverse DFT

Fourier matrix inverse (F_n^{-1})
Inverse discrete Fourier transform

Claim. Inverse of Fourier matrix F_n is given by following formula:

$$G_n = \frac{1}{n} \begin{bmatrix}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & \omega^{-1} & \omega^{-2} & \omega^{-3} & \ldots & \omega^{-(n-1)} \\
1 & \omega^{-2} & \omega^{-4} & \omega^{-6} & \ldots & \omega^{-2(n-1)} \\
1 & \omega^{-3} & \omega^{-6} & \omega^{-9} & \ldots & \omega^{-3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{-(n-1)} & \omega^{-(n-1)+2} & \omega^{-(n-1)+3} & \ldots & \omega^{-(n-1)(n-1)}
\end{bmatrix}$$

F_n / \sqrt{n} is a unitary matrix

Consequence. To compute inverse FFT, apply same algorithm but use $\omega^{-1} = e^{-2\pi i / n}$ as principal n^{th} root of unity (and divide the result by n).
Inverse FFT: proof of correctness

Claim. F_n and G_n are inverses.

Pf.

\[
\left(F_n \, G_n \right)_{kk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{kj} \omega^{-jk'} = \frac{1}{n} \sum_{j=0}^{n-1} \omega^{(k-k')j} = \begin{cases}
1 & \text{if } k = k' \\
0 & \text{otherwise}
\end{cases}
\]

summation lemma (below)

Summation lemma. Let ω be a principal n^{th} root of unity. Then

\[
\sum_{j=0}^{n-1} \omega^{kj} = \begin{cases}
n & \text{if } k \equiv 0 \mod n \\
0 & \text{otherwise}
\end{cases}
\]

Pf.

- If k is a multiple of n then $\omega^k = 1$ \Rightarrow series sums to n.
- Each n^{th} root of unity ω^k is a root of $x^n - 1 = (x - 1)(1 + x + x^2 + \ldots + x^{n-1})$.
- if $\omega^k \neq 1$ we have: $1 + \omega^k + \omega^{k(2)} + \ldots + \omega^{k(n-1)} = 0$ \Rightarrow series sums to 0. ■
Inverse FFT: implementation

Note. Need to divide result by n.

INVERSE-FFT $(n, y_0, y_1, y_2, \ldots, y_{n-1})$

IF $(n = 1)$ **RETURN** y_0.

$(e_0, e_1, \ldots, e_{n/2-1}) \leftarrow \text{INVERSE-FFT} (n / 2, y_0, y_2, y_4, \ldots, y_{n-2})$.

$(d_0, d_1, \ldots, d_{n/2-1}) \leftarrow \text{INVERSE-FFT} (n / 2, y_1, y_3, y_5, \ldots, y_{n-1})$.

FOR $k = 0$ **TO** $n / 2 - 1$.

$\omega^k \leftarrow e^{-2\pi ik/n}$.

$a_k \leftarrow (e_k + \omega^k d_k)$.

$a_{k + n/2} \leftarrow (e_k - \omega^k d_k)$.

RETURN $(a_0, a_1, a_2, \ldots, a_{n-1})$.

switch roles of a_i **and** y_i
Theorem. The inverse FFT algorithm interpolates a degree $n - 1$ polynomial given values at each of the n^{th} roots of unity in $O(n \log n)$ steps.

assumes n is a power of 2
Polynomial multiplication

Theorem. Can multiply two degree $n - 1$ polynomials in $O(n \log n)$ steps.

Pf.

- Pad with 0s to make n a power of 2.

Diagram:

- **Coefficient representation**
 - $a_0, a_1, \ldots, a_{n-1}$
 - $b_0, b_1, \ldots, b_{n-1}$

- 2 FFTs
 - $O(n \log n)$

- 2 point-value multiplications
 - $O(n)$

- Inverse FFT
 - $O(n \log n)$

- **Coefficient representation**
 - $c_0, c_1, \ldots, c_{2n-2}$

- $A(\omega^0), ..., A(\omega^{2n-1})$
- $B(\omega^0), ..., B(\omega^{2n-1})$
- $C(\omega^0), ..., C(\omega^{2n-1})$
FFT in practice?
FFT in practice

Fastest Fourier transform in the West. [Frigo–Johnson]
- Optimized C library.
- Features: DFT, DCT, real, complex, any size, any dimension.
- Won 1999 Wilkinson Prize for Numerical Software.
- Portable, competitive with vendor-tuned code.

Implementation details.
- Core algorithm is nonrecursive version of Cooley–Tukey.
- Instead of executing predetermined algorithm, it evaluates your hardware and uses a special-purpose compiler to generate an optimized algorithm catered to “shape” of the problem.
- Runs in \(O(n \log n)\) time, even when \(n\) is prime.
- Multidimensional FFTs.

http://www.fftw.org
Integer multiplication, redux

Integer multiplication. Given two n-bit integers $a = a_{n-1} \ldots a_1 a_0$ and $b = b_{n-1} \ldots b_1 b_0$, compute their product $a \cdot b$.

Convolution algorithm.

- Form two polynomials.

 $A(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_{n-1} x^{n-1}$

- Note: $a = A(2)$, $b = B(2)$.

 $B(x) = b_0 + b_1 x + b_2 x^2 + \cdots + b_{n-1} x^{n-1}$

- Compute $C(x) = A(x) \cdot B(x)$.

- Evaluate $C(2) = a \cdot b$.

- Running time: $O(n \log n)$ complex arithmetic operations.

Theory. [Schönhage–Strassen 1971] $O(n \log n \log \log n)$ bit operations.

Theory. [Fürer 2007] $n \log n \ 2^{O(\log^* n)}$ bit operations.

Practice. [GNU Multiple Precision Arithmetic Library]

It uses brute force, Karatsuba, and FFT, depending on the size of n.