4. **Greedy Algorithms II**

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
4. **Greedy Algorithms II**

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Single-pair shortest path problem

Problem. Given a digraph $G = (V, E)$, edge lengths $\ell_e \geq 0$, source $s \in V$, and destination $t \in V$, find a shortest directed path from s to t.

![Diagram of a digraph with labeled edges and nodes.](image)

length of path = 9 + 4 + 1 + 11 = 25
Single-source shortest paths problem

Problem. Given a digraph $G = (V, E)$, edge lengths $\ell_e \geq 0$, source $s \in V$, find a shortest directed path from s to every node.
Q. Which kind of shortest path problem?
A. Single-destination shortest paths problem.
Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined $d[u] = \text{length of a shortest } s \to u \text{ path.}$

- Initialize $S \leftarrow \{ s \}$, $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} \left(d[u] + \ell_e \right)
$$

the length of a shortest path from s to some node u in explored part S, followed by a single edge $e = (u, v)$.
Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined $d[u] =$ length of a shortest $s \rightarrow u$ path.

- Initialize $S \leftarrow \{ s \}$, $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \not\in S$ which minimizes $\pi(v) = \min_{e = (u,v) : u \in S} d[u] + \ell_e$

 add v to S, and set $d[v] \leftarrow \pi(v)$.
- To recover path, set $\text{pred}[v] \leftarrow e$ that achieves min.

![Diagram of Dijkstra's algorithm](image)

the length of a shortest path from s to some node u in explored part S, followed by a single edge $e = (u, v)$
Dijkstra’s algorithm: proof of correctness

Invariant. For each node $u \in S : d[u] = \text{length of a shortest } s \rightarrow u \text{ path.}

Pf. [by induction on $|S|$]

Base case: $|S| = 1$ is easy since $S = \{ s \}$ and $d[s] = 0.$

Inductive hypothesis: Assume true for $|S| \geq 1.$

- Let v be next node added to $S,$ and let (u, v) be the final edge.
- A shortest $s \rightarrow u$ path plus (u, v) is an $s \rightarrow v$ path of length $\pi(v)$.
- Consider any other $s \rightarrow v$ path $P.$ We show that it is no shorter than $\pi(v)$.
- Let $e = (x, y)$ be the first edge in P that leaves $S,$ and let P' be the subpath to x.
- The length of P is already $\geq \pi(v)$ as soon as it reaches y:

$$\ell(P) \geq \ell(P') + \ell_e \geq d[x] + \ell_e \geq \pi(y) \geq \pi(v) \quad \blacksquare$$

- non-negative lengths
- inductive hypothesis
- definition of $\pi(y)$
- Dijkstra chose v instead of y
Critical optimization 1. For each unexplored node $v \notin S$:
explicitly maintain $\pi[v]$ instead of computing directly from definition

$$\pi(v) = \min_{u \in S, (u, v) \in E} \{ d[u] + l_e \}$$

• For each $v \notin S$: $\pi(v)$ can only decrease (because S only increases).

• More specifically, suppose u is added to S and there is an edge $e = (u, v)$
leaving u. Then, it suffices to update:

$$\pi[v] \leftarrow \min \{ \pi[v], \pi[u] + l_e \}$$

recall: for each $u \in S$,
$\pi[u] = d[u] = \text{length of shortest } s \rightarrow u \text{ path}$

Critical optimization 2. Use a min-oriented priority queue (PQ)
to choose an unexplored node that minimizes $\pi[v]$.
Dijkstra’s algorithm: efficient implementation

Implementation.

- Algorithm stores $\pi[v]$ for each node v.
- Priority queue stores unexplored nodes, using $\pi[\cdot]$ as priorities.
- Once u is deleted from the PQ, $\pi[u]$ = length of a shortest $s \rightarrow u$ path.

```
Dijkstra (V, E, \ell, s)

Create an empty priority queue pq.

Foreach $v \neq s$: $\pi[v] \leftarrow \infty$, $\text{pred}[v] \leftarrow \text{null}$; $\pi[s] \leftarrow 0$.

Foreach $v \in V$: Insert(pq, $v$, $\pi[v]$).

While Is-Not-Empty(pq)

    $u \leftarrow \text{Del-Min}(pq)$.

    Foreach edge $e = (u, v) \in E$ leaving $u$:

        If $\pi[v] > \pi[u] + \ell_e$

            Decrease-Key(pq, $v$, $\pi[u] + \ell_e$).

            $\pi[v] \leftarrow \pi[u] + \ell_e$; $\text{pred}[v] \leftarrow e$.
```
Dijkstra’s algorithm: which priority queue?

Performance. Depends on PQ: \(n \) INSERT, \(n \) DELETE-MIN, \(\leq m \) DECREASE-KEY.

- Array implementation optimal for dense graphs. \(\Theta(n^2) \) edges
- Binary heap much faster for sparse graphs. \(\Theta(n) \) edges
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci/Brodal best in theory, but probably not worth implementing.

<table>
<thead>
<tr>
<th>priority queue</th>
<th>INSERT</th>
<th>DELETE-MIN</th>
<th>DECREASE-KEY</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>d–way heap (Johnson 1975)</td>
<td>(O(d \log_d n))</td>
<td>(O(d \log_d n))</td>
<td>(O(\log_d n))</td>
<td>(O(m \log_{\min} n))</td>
</tr>
<tr>
<td>Fibonacci heap (Fredman–Tarjan 1984)</td>
<td>(O(1))</td>
<td>(O(\log n)) (^\dagger)</td>
<td>(O(1)) (^\dagger)</td>
<td>(O(m + n \log n))</td>
</tr>
<tr>
<td>Brodal queue (Brodal 1996)</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
<td>(O(m + n \log n))</td>
</tr>
</tbody>
</table>

\(^\dagger \) amortized
Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems:

- Shortest paths in undirected graphs: \(d(v) \leq d(u) + \ell(u, v) \).
- Maximum capacity paths: \(d(v) \geq \min \{ \pi(u), c(u, v) \} \).
- Maximum reliability paths: \(d(v) \geq d(u) \times \gamma(u, v) \).
- ...

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).
4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Cycles and cuts

Def. A **path** is a sequence of edges which connects a sequence of nodes.

Def. A **cycle** is a path with no repeated nodes or edges other than the starting and ending nodes.

\[
\text{cycle } C = \{ (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) \}
\]
Cycles and cuts

Def. A **cut** is a partition of the nodes into two nonempty subsets S and $V - S$.

Def. The **cutset** of a cut S is the set of edges with exactly one endpoint in S.

cutset $D = \{(3,4), (3,5), (5,6), (5,7), (8,7)\}
Proposition. A cycle and a cutset intersect in an even number of edges.

\[
\text{cutset } D = \{ (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) \} \\
\text{cycle } C = \{ (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) \} \\
\text{intersection } C \cap D = \{ (3, 4), (5, 6) \}
\]
Proposition. A cycle and a cutset intersect in an even number of edges.

Pf. [by picture]
Spanning tree definition

Def. Let $H = (V, T)$ be a subgraph of an undirected graph $G = (V, E)$. H is a **spanning tree** of G if H is both acyclic and connected.

Graph $G = (V, E)$

spanning tree $H = (V, T)$
A TREE WITH A CYCLE
Spanning tree properties

Proposition. Let $H = (V, T)$ be a subgraph of an undirected graph $G = (V, E)$. Then, the following are equivalent:

- H is a **spanning tree** of G.
- H is acyclic and connected.
- H is connected and has $n - 1$ edges.
- H is acyclic and has $n - 1$ edges.
- H is minimally connected: removal of any edge disconnects it.
- H is maximally acyclic: addition of any edge creates a cycle.
- H has a unique simple path between every pair of nodes.

Diagram:

- **Graph** $G = (V, E)$
- **Spanning Tree** $H = (V, T)$
Minimum spanning tree (MST)

Def. Given a connected, undirected graph $G = (V, E)$ with edge costs c_e, a minimum spanning tree (V, T) is a spanning tree of G such that the sum of the edge costs in T is minimized.

![Graph with edge costs](image)

Cayley’s theorem. There are n^{n-2} spanning trees of complete graph on n vertices.

MST cost $= 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$

can’t solve by brute force
Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).
Fundamental cycle. Let $H = (V, T)$ be a spanning tree of $G = (V, E)$.

- Adding any non-tree edge $e \in E$ to T forms unique cycle C.
- Deleting any edge $f \in C$ from $T \cup \{e\}$ results in a spanning tree.

Observation. If $c_e < c_f$, then (V, T) is not an MST.
Fundamental cutset

Fundamental cutset. Let $H = (V, T)$ be a spanning tree of $G = (V, E)$.
- Deleting any tree edge f from T divides nodes of spanning tree into two connected components. Let D be cutset.
- Adding any edge $e \in D$ to $T - \{f\}$ results in a spanning tree.

Observation. If $c_e < c_f$, then (V, T) is not an MST.
The greedy algorithm

Red rule.
- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max weight and color it red.

Blue rule.
- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.
- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once $n – 1$ edges colored blue.
Greedy algorithm: proof of correctness

Color invariant. There exists an MST \((V, T^*)\) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Base case. No edges colored \(\Rightarrow\) every MST satisfies invariant.
Greedy algorithm: proof of correctness

Color invariant. There exists an MST \((V, T^*)\) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

- let \(D\) be chosen cutset, and let \(f\) be edge colored blue.
- if \(f \in T^*\), then \(T^*\) still satisfies invariant.
- Otherwise, consider fundamental cycle \(C\) by adding \(f\) to \(T^*\).
- let \(e \in C\) be another edge in \(D\).
- \(e\) is uncolored and \(c_e \geq c_f\) since
 - \(e \in T^* \Rightarrow e\) not red
 - blue rule \(\Rightarrow e\) not blue and \(c_e \geq c_f\)
- Thus, \(T^* \cup \{f\} - \{e\}\) satisfies invariant.
Greedy algorithm: proof of correctness

Color invariant. There exists an MST \((V, T^*)\) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

- let \(C\) be chosen cycle, and let \(e\) be edge colored red.
- if \(e \notin T^*\), then \(T^*\) still satisfies invariant.
- Otherwise, consider fundamental cutset \(D\) by deleting \(e\) from \(T^*\).
- let \(f \in D\) be another edge in \(C\).
- \(f\) is uncolored and \(c_e \geq c_f\) since
 - \(f \notin T^* \Rightarrow f\) not blue
 - red rule \(\Rightarrow f\) not red and \(c_e \geq c_f\)
- Thus, \(T^* \cup \{f\} - \{e\}\) satisfies invariant. □
Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

- Suppose edge \(e \) is left uncolored.
- Blue edges form a forest.
- Case 1: both endpoints of \(e \) are in same blue tree.
 \[\Rightarrow \text{ apply red rule to cycle formed by adding } e \text{ to blue forest.} \]

![Diagram of Case 1](attachment:case1.png)
Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

- Suppose edge \(e \) is left uncolored.
- Blue edges form a forest.
- Case 1: both endpoints of \(e \) are in same blue tree.
 \[\Rightarrow \] apply red rule to cycle formed by adding \(e \) to blue forest.
- Case 2: both endpoints of \(e \) are in different blue trees.
 \[\Rightarrow \] apply blue rule to cutset induced by either of two blue trees. □

![Case 2](image-url)
4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Prim’s algorithm

Initialize $S = \text{any node}$, $T = \emptyset$.

Repeat $n - 1$ times:

- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

Theorem. Prim’s algorithm computes an MST.

Pf. Special case of greedy algorithm (blue rule repeatedly applied to S). □
Prim’s algorithm: implementation

Theorem. Prim’s algorithm can be implemented to run in \(O(m \log n)\) time.

Pf. Implementation almost identical to Dijkstra’s algorithm.

PRIM \((V, E, c)\)

Create an empty priority queue pq.

\[
S \leftarrow \emptyset, \ T \leftarrow \emptyset.
\]

\[
s \leftarrow \text{any node in } V.
\]

\[
\text{FOREACH } v \neq s : \ \pi[v] \leftarrow \infty, \ pred[v] \leftarrow \text{null}; \ \pi[s] \leftarrow 0.
\]

\[
\text{FOREACH } v \in V : \ \text{INSERT}(pq, v, \pi[v]).
\]

WHILE **IS-NOT-EMPTY** \((pq)\)

\[
u \leftarrow \text{DEL-MIN}(pq).
\]

\[
S \leftarrow S \cup \{u\}, \ T \leftarrow T \cup \{\text{pred}[u]\}.
\]

\[
\text{FOREACH edge } e = (u, v) \in E \text{ with } v \not\in S:
\]

\[
\text{IF } c_e < \pi[v]
\]

\[
\text{DECREASE-KEY}(pq, v, c_e).
\]

\[
\pi[v] \leftarrow c_e; \ \text{pred}[v] \leftarrow e.
\]
Kruskal’s algorithm

Consider edges in ascending order of weight:
- Add to tree unless it would create a cycle.

Theorem. Kruskal’s algorithm computes an MST.

Pf. Special case of greedy algorithm.
- Case 1: both endpoints of e in same blue tree.
 \Rightarrow color red by applying red rule to unique cycle.
- Case 2. If both endpoints of e are in different blue trees.
 \Rightarrow color blue by applying blue rule to cutset defined by either tree. •
Kruskal’s algorithm: implementation

Theorem. Kruskal’s algorithm can be implemented to run in $O(m \log m)$ time.

- Sort edges by weight.
- Use **union–find** data structure to dynamically maintain connected components.

Kruskal (V, E, c)

Sort m edges by weight so that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$.

$T \leftarrow \emptyset$.

For each $v \in V$ **do** **make-set**(v).

For $i = 1$ **to** m

$(u, v) \leftarrow e_i$.

If **find-set**(u) \neq **find-set**(v) **then**

$T \leftarrow T \cup \{e_i\}$.

Union(u, v).

Return T.

are u and v in same component?

make u and v in same component
Reverse-delete algorithm

Consider edges in descending order of weight:
- Remove edge unless it would disconnect the graph.

Theorem. The reverse-delete algorithm computes an MST.
Pf. Special case of greedy algorithm.
- Case 1: removing edge e does not disconnect graph.
 \Rightarrow apply red rule to cycle C formed by adding e to existing path
 between its two endpoints

- Case 2: removing edge e disconnects graph.
 \Rightarrow apply blue rule to cutset D induced by either component.

Fact. [Thorup 2000] Can be implemented to run in $O(m \log n (\log \log n)^3)$ time.
Review: the greedy MST algorithm

Red rule.
- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max weight and color it red.

Blue rule.
- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.
- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once $n – 1$ edges colored blue.

Theorem. The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete, ...
Borůvka’ s algorithm

Repeat until only one tree.
• Apply blue rule to cutset corresponding to each blue tree.
• Color all selected edges blue.

Theorem. Borůvka’s algorithm computes the MST.

Pf. Special case of greedy algorithm (repeatedly apply blue rule). □
Borůvka’s algorithm: implementation

Theorem. Borůvka’s algorithm can be implemented to run in $O(m \log n)$ time.

Pf.

• To implement a phase in $O(m)$ time:
 - compute connected components of blue edges
 - for each edge $(u, v) \in E$, check if u and v are in different components; if so, update each component’s best edge in cutset

• At most $\log_2 n$ phases since each phase (at least) halves total # trees. •
Borůvka’s algorithm: implementation

Node contraction version.
- After each phase, contract each blue tree to a single supernode.
- Delete parallel edges (keeping only cheapest one) and self loops.
- Borůvka phase becomes: take cheapest edge incident to each node.

graph G

contract nodes 2 and 5

delete parallel edges and self loops
Borůvka’s algorithm on planar graphs

Theorem. Borůvka’s algorithm runs in $O(n)$ time on planar graphs.

Pf.

- To implement a Borůvka phase in $O(n)$ time:
 - use contraction version of algorithm
 - in planar graphs, $m \leq 3n - 6$.
 - graph stays planar when we contract a blue tree
- Number of nodes (at least) halves.
- At most $\log_2 n$ phases: $cn + cn/2 + cn/4 + cn/8 + \ldots = O(n)$. □

![Diagram of planar and not planar graphs](https://via.placeholder.com/150)
Borůvka–Prim algorithm

• Run Borůvka (contraction version) for $\log_2 \log_2 n$ phases.
• Run Prim on resulting, contracted graph.

Theorem. The Borůvka–Prim algorithm computes an MST and can be implemented to run in $O(m \log \log n)$ time.

Pf.
• Correctness: special case of the greedy algorithm.
• The $\log_2 \log_2 n$ phases of Borůvka’s algorithm take $O(m \log \log n)$ time; resulting graph has at most $n / \log_2 n$ nodes and m edges.
• Prim’s algorithm (using Fibonacci heaps) takes $O(m + n)$ time on a graph with $n / \log_2 n$ nodes and m edges. \[O \left(m + \frac{n}{\log n} \log \left(\frac{n}{\log n} \right) \right) \]
Does a linear-time MST algorithm exist?

<table>
<thead>
<tr>
<th>year</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$O(m \log \log n)$</td>
<td>Yao</td>
</tr>
<tr>
<td>1976</td>
<td>$O(m \log \log n)$</td>
<td>Cheriton–Tarjan</td>
</tr>
<tr>
<td>1984</td>
<td>$O(m \log^* n)$, $O(m + n \log n)$</td>
<td>Fredman–Tarjan</td>
</tr>
<tr>
<td>1986</td>
<td>$O(m \log (\log^* n))$</td>
<td>Gabow–Galil–Spencer–Tarjan</td>
</tr>
<tr>
<td>1997</td>
<td>$O(m \alpha(n) \log \alpha(n))$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2000</td>
<td>$O(m \alpha(n))$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2002</td>
<td>optimal</td>
<td>Pettie–Ramachandran</td>
</tr>
<tr>
<td>20xx</td>
<td>$O(m)$</td>
<td>???</td>
</tr>
</tbody>
</table>

Remark 1. $O(m)$ randomized MST algorithm. [Karger–Klein–Tarjan 1995]

Remark 2. $O(m)$ MST verification algorithm. [Dixon–Rauch–Tarjan 1992]
4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Clustering

Goal. Given a set U of n objects labeled p_1, \ldots, p_n, partition into clusters so that objects in different clusters are far apart.

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.
- ...
Clustering of maximum spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Numeric value specifying “closeness” of two objects.
- $d(p_i, p_j) = 0$ iff $p_i = p_j$ [identity of indiscernibles]
- $d(p_i, p_j) \geq 0$ [non-negativity]
- $d(p_i, p_j) = d(p_j, p_i)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.
Greedy clustering algorithm

“Well-known” algorithm in science literature for single-linkage k-clustering:
- Form a graph on the node set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat $n - k$ times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal’s algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the $k - 1$ longest edges.
Greedy clustering algorithm: analysis

Theorem. Let C^* denote the clustering C^*_{1}, \ldots, C^*_{k} formed by deleting the $k – 1$ longest edges of an MST. Then, C^* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C_1, \ldots, C_k.
- The spacing of C^* is the length d^* of the $(k – 1)^{st}$ longest edge in MST.
- Let p_i and p_j be in the same cluster in C^*, say C^*_r, but different clusters in C, say C_s and C_t.
- Some edge (p, q) on $p_i – p_j$ path in C^*_r spans two different clusters in C.
- Edge (p, q) has length $\leq d^*$ since it wasn’t deleted.
- Spacing of C is $\leq d^*$ since p and q are in different clusters. □
Dendrogram of cancers in human

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group
4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Def. Given a digraph $G = (V, E)$ and a root $r \in V$, an arborescence (rooted at r) is a subgraph $T = (V, F)$ such that

- T is a spanning tree of G if we ignore the direction of edges.
- There is a directed path in T from r to each other node $v \in V$.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).

Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).
Arborescences

Def. Given a digraph $G = (V, E)$ and a root $r \in V$, an arborescence (rooted at r) is a subgraph $T = (V, F)$ such that

- T is a spanning tree of G if we ignore the direction of edges.
- There is a directed path in T from r to each other node $v \in V$.

Proposition. A subgraph $T = (V, F)$ of G is an arborescence rooted at r iff T has no directed cycles and each node $v \neq r$ has exactly one entering edge.

Pf.

\Rightarrow If T is an arborescence, then no (directed) cycles and every node $v \neq r$ has exactly one entering edge—the last edge on the unique $r \rightarrow v$ path.

\Leftarrow Suppose T has no cycles and each node $v \neq r$ has one entering edge.

- To construct an $r \rightarrow v$ path, start at v and repeatedly follow edges in the backward direction.
- Since T has no directed cycles, the process must terminate.
- It must terminate at r since r is the only node with no entering edge. □
Min-cost arborescence problem

Problem. Given a digraph G with a root node r and with a nonnegative cost $c_e \geq 0$ on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1. G has an arborescence rooted at r.

Assumption 2. No edge enters r (safe to delete since they won’t help).
Simple greedy approaches do not work

Observations. A min-cost arborescence need not:
 • Be a shortest-paths tree.
 • Include the cheapest edge (in some cut).
 • Exclude the most expensive edge (in some cycle).
A sufficient optimality condition

Property. For each node $v \neq r$, choose one cheapest edge entering v and let F^* denote this set of $n - 1$ edges. If (V, F^*) is an arborescence, then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node $v \neq r$ and (V, F^*) is the cheapest way to make these choices. □
A sufficient optimality condition

Property. For each node $v \neq r$, choose one cheapest edge entering v and let F^* denote this set of $n - 1$ edges. If (V, F^*) is an arborescence, then it is a min-cost arborescence.

Note. F^* may not be an arborescence (since it may have directed cycles).
Reduced costs

Def. For each \(v \neq r \), let \(y(v) \) denote the min cost of any edge entering \(v \). The **reduced cost** of an edge \((u, v)\) is \(c'(u, v) = c(u, v) - y(v) \geq 0 \).

Observation. \(T \) is a min-cost arborescence in \(G \) using costs \(c \) iff \(T \) is a min-cost arborescence in \(G \) using reduced costs \(c' \).

Pf. Each arborescence has exactly one edge entering \(v \).
Edmonds branching algorithm: intuition

Intuition. Recall $F^* = \text{set of cheapest edges entering } v \text{ for each } v \neq r$.

- Now, all edges in F^* have 0 cost with respect to costs $c'(u, v)$.
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F^* contains a cycle C, can afford to use as many edges in C as desired.
- **Contract nodes** in C to a supernode (removing any self-loops).
- Recursively solve problem in contracted network G' with costs $c'(u, v)$.

![Graph Illustration](image-url)
Edmonds branching algorithm: intuition

Intuition. Recall $F^* = \text{set of cheapest edges entering } v \text{ for each } v \neq r$.

- Now, all edges in F^* have 0 cost with respect to costs $c'(u, v)$.
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F^* contains a cycle C, can afford to use as many edges in C as desired.

- **Contract nodes** in C to a supernode (removing any self-loops).
- Recursively solve problem in contracted network G' with costs $c'(u, v)$.
Edmonds branching algorithm

EDMONDS-BRANCHING \((G, r, c)\)

FOREACH \(v \neq r\)

\[y(v) \leftarrow \text{min cost of an edge entering } v. \]

\[c'(u, v) \leftarrow c'(u, v) - y(v) \text{ for each edge } (u, v) \text{ entering } v. \]

FOREACH \(v \neq r\): choose one 0-cost edge entering \(v\) and let \(F^*\) be the resulting set of edges.

IF \(F^*\) forms an arborescence, **RETURN** \(T = (V, F^*)\).

ELSE

\[C \leftarrow \text{directed cycle in } F^*. \]

Contract \(C\) to a single supernode, yielding \(G' = (V', E')\).

\[T' \leftarrow \text{EDMONDS-BRANCHING}(G', r, c') \]

Extent \(T'\) to an arborescence \(T\) in \(G\) by adding all but one edge of \(C\).

RETURN \(T\).
Q. What could go wrong?

A.

- Min-cost arborescence in G' has exactly one edge entering a node in C (since C is contracted to a single node)
- But min-cost arborescence in G might have more edges entering C.

min–cost arborescence in G
Edmonds branching algorithm: key lemma

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-cost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.
Since T is an arborescence, there is an $r \rightarrow v$ path for each node $v \Rightarrow$ at least one edge enters C.

Case 1. T has exactly one edge entering C.
T satisfies the lemma.

Case 2. T has more than one edge that enters C.
We construct another min-cost arborescence T' that has exactly one edge entering C.
Edmonds branching algorithm: key lemma

Case 2 construction of T'.

- Let (a, b) be an edge in T entering C that lies on a shortest path from r.
- We delete all edges of T that enter a node in C except (a, b).
- We add in all edges of C except the one that enters b.
Edmonds branching algorithm: key lemma

Case 2 construction of T'.

- Let (a, b) be an edge in T entering C that lies on a shortest path from r.
- We delete all edges of T that enter a node in C except (a, b).
- We add in all edges of C except the one that enters b.

Claim. T' is a min-cost arborescence.

- The cost of T' is at most that of T since we add only 0-cost edges.
- T' has exactly one edge entering each node $v \neq r$.
- T' has no directed cycles.

(T had no cycles before; no cycles within C; now only (a, b) enters C)

(path from r to C uses only one node in C)

(T is an arborescence rooted at r)

(and the only path in T' to a is the path from r to a (since any path must follow unique entering edge back to r))
Edmonds branching algorithm: analysis

Pf. [by induction on number of nodes in G]

- If the edges of F^* form an arborescence, then min-cost arborescence.
- Otherwise, we use reduced costs, which is equivalent.
- After contracting a 0-cost cycle C to obtain a smaller graph G', the algorithm finds a min-cost arborescence T' in G' (by induction).
- Key lemma: there exists a min-cost arborescence T in G that corresponds to T'.

Theorem. The greedy algorithm can be implemented to run in $O(mn)$ time.

Pf.

- At most n contractions (since each reduces the number of nodes).
- Finding and contracting the cycle C takes $O(m)$ time.
- Transforming T' into T takes $O(m)$ time.
Min-cost arborescence

Theorem. [Gabow–Galil–Spencer–Tarjan 1985] There exists an $O(m + n \log n)$ time algorithm to compute a min-cost arborescence.