4. **Greedy Algorithms II**

- Dijkstra’s algorithm
- Minimum spanning trees
- Prim, Kruskal, Boruvka
- Single-link clustering
- Min-cost arborescences

Single-pair shortest path problem

Problem. Given a digraph $G = (V, E)$, edge lengths $\ell_e \geq 0$, source $s \in V$, and destination $t \in V$, find a shortest directed path from s to t.

![Diagram of a digraph with shortest path highlighted](image1)

Example.

![Diagram of a digraph with shortest path highlighted](image2)

- **Source** s and **destination** t.
- **Path length:** $9 + 4 + 1 + 11 = 25$

Single-source shortest paths problem

Problem. Given a digraph $G = (V, E)$, edge lengths $\ell_e \geq 0$, source $s \in V$, find a shortest directed path from s to every node.

![Diagram of a digraph with shortest-paths tree](image3)

Shortest-paths tree
Q. Which kind of shortest path problem?
A. Single-destination shortest paths problem.

Dijkstra’s algorithm (for single-source shortest paths problem)

Greedy approach. Maintain a set of explored nodes S for which algorithm has determined $d[u] =$ length of a shortest $s \rightarrow u$ path.

- Initialize $S \leftarrow \{ s \}$, $d[s] \leftarrow 0$.
- Repeatedly choose unexplored node $v \notin S$ which minimizes
 $$\pi(v) = \min_{e = (u,v) : u \in S} (d[u] + \ell_e)$$

 the length of a shortest path from s to some node u in explored part S, followed by a single edge $e = (u,v)$

 add v to S, and set $d[v] \leftarrow \pi(v)$.
- To recover path, set $\text{pred}[v] \leftarrow e$ that achieves min.

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in LaTeX.
- Urban traffic planning.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Dijkstra’s algorithm: proof of correctness

Invariant. For each node \(u \in S \): \(d[u] = \) length of a shortest \(s \rightarrow u \) path.

Prf. [by induction on \(|S| \)]

Base case: \(|S| = 1 \) is easy since \(S = \{ s \} \) and \(d[s] = 0 \).

Inductive hypothesis: Assume true for \(|S| \geq 1 \).

- Let \(v \) be next node added to \(S \), and let \((u, v) \) be the final edge.
- A shortest \(s \rightarrow u \) path plus \((u, v) \) is an \(s \rightarrow v \) path of length \(\pi(v) \).
- Consider any other \(s \rightarrow v \) path \(P \). We show that it is no shorter than \(\pi(v) \).
- Let \(e = (x, y) \) be the first edge in \(P \) that leaves \(S \), and let \(P' \) be the subpath to \(x \).
- The length of \(P \) is already \(\geq \pi(v) \) as soon as it reaches \(y \):

\[
\ell(P) \geq \ell(P') + \ell_e \geq d[y] + \ell_e \geq \pi(y) \geq \pi(v) .
\]

Dijkstra’s algorithm: efficient implementation

Critical optimization 1. For each unexplored node \(v \notin S \), explicitly maintain \(\pi[v] \) instead of computing directly from definition

\[
\pi(v) = \min_{e = (u, v) : u \in S} \ d[u] + \ell_e
\]

- For each \(v \notin S \), \(\pi(v) \) can only decrease (because \(S \) only increases).
- More specifically, suppose \(u \) is added to \(S \) and there is an edge \(e = (u, v) \) leaving \(u \). Then, it suffices to update:

\[
\pi[v] \leftarrow \min \{ \pi[v], \pi[u] + \ell_e \}
\]

Critical optimization 2. Use a min-oriented priority queue \((PQ) \) to choose an unexplored node that minimizes \(\pi[v] \).

Dijkstra’s algorithm: which priority queue?

Performance. Depends on \(PQ \):
- Array implementation optimal for dense graphs. \(\Theta(n^2) \) edges
- Binary heap much faster for sparse graphs. \(\Theta(n \log n) \) edges
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but probably not worth implementing.

<table>
<thead>
<tr>
<th>priority queue</th>
<th>INSERT</th>
<th>DELETE-MIN</th>
<th>DECREASE-KEY</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>binary heap</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(m \log n))</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>(O(d \log_d n))</td>
<td>(O(d \log_d n))</td>
<td>(O(\log_d n))</td>
<td>(O(m \log_d n))</td>
</tr>
</tbody>
</table>
| Fibonacci heap (Fredman–Tarjan 1984) | \(O(1) \) | \(O(\log n) \) | \(O(1) \) \(

† amortized
Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems:

• Shortest paths in undirected graphs: \(d(v) \leq d(u) + \ell(u, v) \).
• Maximum capacity paths: \(d(v) \geq \min \{ \pi(u), c(u, v) \} \).
• Maximum reliability paths: \(d(v) \geq d(u) \times \gamma(u, v) \).

• ...

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).

4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

Section 6.1

The moral implications of implementing shortest path algorithms

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

cycle \(C = \{ (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) \} \)
Cycles and cuts

Def. A cut is a partition of the nodes into two nonempty subsets S and $V - S$.

Def. The cutset of a cut S is the set of edges with exactly one endpoint in S.

![Diagram of a graph with a cut S and cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }]

Cycle–cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

![Diagram of a cycle C and cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) } with intersection C ∩ D = { (3, 4), (5, 6) }]

Spanning tree definition

Def. Let $H = (V, T)$ be a subgraph of an undirected graph $G = (V, E)$. H is a spanning tree of G if H is both acyclic and connected.

![Diagram of a graph G and spanning tree H = (V, T)]
Spanning tree properties

Proposition. Let \(H = (V, T) \) be a subgraph of an undirected graph \(G = (V, E) \). Then, the following are equivalent:

- \(H \) is a spanning tree of \(G \).
- \(H \) is acyclic and connected.
- \(H \) is connected and has \(n-1 \) edges.
- \(H \) is acyclic and has \(n-1 \) edges.
- \(H \) is minimally connected: removal of any edge disconnects it.
- \(H \) is maximally acyclic: addition of any edge creates a cycle.
- \(H \) has a unique simple path between every pair of nodes.

Minimum spanning tree (MST)

Def. Given a connected, undirected graph \(G = (V, E) \) with edge costs \(c_{e} \), a minimum spanning tree \((V, T) \) is a spanning tree of \(G \) such that the sum of the edge costs in \(T \) is minimized.

\[
\text{MST cost} = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
\]

Cayley’s theorem. The complete graph on \(n \) nodes has \(n^{n-2} \) spanning trees.

Applications

MST is fundamental problem with diverse applications.

- Dithering.
- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, computer, road).
Fundamental cycle

Fundamental cycle. Let \(H = (V, T) \) be a spanning tree of \(G = (V, E) \).

- For any non-tree-edge \(e \in E: T \cup \{ e \} \) contains a unique cycle, say \(C \).
- For any edge \(f \in C: T \cup \{ e \} - \{ f \} \) is a spanning tree.

Observation. If \(c_e < c_f \), then \((V, T)\) is not an MST.

![Graph G = (V, E) spanning tree H = (V, T)](image)

Fundamental cutset

Fundamental cutset. Let \(H = (V, T) \) be a spanning tree of \(G = (V, E) \).

- For any tree edge \(f \in T: T - \{ f \} \) contains two connected components. Let \(D \) be corresponding cutset.
- For any edge \(e \in D: T - \{ f \} \cup \{ e \} \) is a spanning tree.

Observation. If \(c_e < c_f \), then \((V, T)\) is not an MST.

![Graph G = (V, E) spanning tree H = (V, T)](image)

Greedy algorithm: proof of correctness

Color invariant. There exists an MST \((V, T^*)\) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Base case. No edges colored \(\Rightarrow \) every MST satisfies invariant.

Red rule.

- Let \(C \) be a cycle with no red edges.
- Select an uncolored edge of \(C \) of max weight and color it red.

Blue rule.

- Let \(D \) be a cutset with no blue edges.
- Select an uncolored edge in \(D \) of min weight and color it blue.

Greedy algorithm.

- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once \(n - 1 \) edges colored blue.
Greedy algorithm: proof of correctness

Color invariant. There exists an MST (V, T^*) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.
- let D be chosen cutset, and let f be edge colored blue.
- if $f \in T^*$, then T^* still satisfies invariant.
- Otherwise, consider fundamental cycle C by adding f to T^*.
- let $e \in C$ be another edge in D.
- e is uncolored and $c_e \geq c_f$ since
 - $e \in T^* \Rightarrow e$ not red
 - blue rule $\Rightarrow e$ not blue and $c_e \geq c_f$
- Thus, $T^* \cup \{f\} - \{e\}$ satisfies invariant.

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.
- Suppose edge e is left uncolored.
- Blue edges form a forest.
- Case 1: both endpoints of e are in same blue tree.
 \Rightarrow apply red rule to cycle formed by adding e to blue forest.

Greedy algorithm: proof of correctness

Color invariant. There exists an MST (V, T^*) containing all of the blue edges and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.
- let C be chosen cycle, and let e be edge colored red.
- if $e \notin T^*$, then T^* still satisfies invariant.
- Otherwise, consider fundamental cutset D by deleting e from T^*.
- let $f \in D$ be another edge in C.
- f is uncolored and $c_f \geq c_e$ since
 - $f \notin T^* \Rightarrow f$ not blue
 - red rule $\Rightarrow f$ not red and $c_f \geq c_e$
- Thus, $T^* \cup \{f\} - \{e\}$ satisfies invariant.

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.
- Suppose edge e is left uncolored.
- Blue edges form a forest.
- Case 1: both endpoints of e are in same blue tree.
 \Rightarrow apply red rule to cycle formed by adding e to blue forest.
- Case 2: both endpoints of e are in different blue trees.
 \Rightarrow apply blue rule to cutset induced by either of two blue trees.
4. Greedy Algorithms II

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences

Prim’s algorithm

Initialize S = any node, T = \emptyset.
Repeat $n - 1$ times:
- Add to T a min-weight edge with one endpoint in S.
- Add new node to S.

Theorem. Prim’s algorithm computes an MST.

Pf. Special case of greedy algorithm (blue rule repeatedly applied to S). □

Kruskal’s algorithm

Consider edges in ascending order of weight:
- Add to tree unless it would create a cycle.

Theorem. Kruskal’s algorithm computes an MST.

Pf. Special case of greedy algorithm.
- Case 1: both endpoints of e in same blue tree.
 - color red by applying red rule to unique cycle.
- Case 2. If both endpoints of e are in different blue trees.
 - color blue by applying blue rule to cutset defined by either tree. □

Prim’s algorithm: implementation

Theorem. Prim’s algorithm can be implemented to run in $O(m \log n)$ time.

Pf. Implementation almost identical to Dijkstra’s algorithm.

Kruskal’s algorithm: implementation

Create an empty priority queue pq.

$S \leftarrow \emptyset$, $T \leftarrow \emptyset$.

$s \leftarrow$ any node in V.

FOR each $v \neq s$:

$\pi[v] \leftarrow \infty$, $\text{pred}[v] \leftarrow \text{null}$; $\pi[s] \leftarrow 0$.

FOR each $v \in V$:

INSERT(pq, v, $\pi[v]$).

WHILE IS-NOT-EMPTY(pq)

$u \leftarrow \text{DEL-MIN}(pq)$.

$S \leftarrow S \cup \{u\}$, $T \leftarrow T \cup \{\text{pred}(u)\}$.

FOR each edge $e = (u, v) \in E$ with $v \notin S$:

If $c_e < \pi[v]$

DECREASE-KEY(pq, v, c_e).

$\pi[v] \leftarrow c_e$, $\text{pred}[v] \leftarrow e$.

Kruskal’s algorithm: implementation

Theorem. Kruskal’s algorithm can be implemented to run in $O(m \log m)$ time.
- Sort edges by weight.
- Use union-find data structure to dynamically maintain connected components.

Kruskal (V, E, c)

SORT m edges by weight so that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$.

$T \leftarrow \emptyset$.

FOREACH $v \in V$: **MAKE-SET**(v).

FOR $i = 1$ to m

$(u, v) \leftarrow e_i$.

IF **FIND-SET**(u) \neq **FIND-SET**(v)

$T \leftarrow T \cup \{ e_i \}$.

UNION(u, v).

RETURN T.

Reverse-delete algorithm

Consider edges in descending order of weight:
- Remove edge unless it would disconnect the graph.

Theorem. The reverse-delete algorithm computes an MST.

Pf. Special case of greedy algorithm.
- Case 1: removing edge e does not disconnect graph.
 - apply red rule to cycle C formed by adding e to existing path between its two endpoints
 - any edge in C with larger weight would have been deleted when considered
- Case 2: removing edge e disconnects graph.
 - apply blue rule to cutset D induced by either component.

Fact. [Thorup 2000] Can be implemented to run in $O(m \log n (\log \log n)^3)$ time.

Review: the greedy MST algorithm

Red rule.
- Let C be a cycle with no red edges.
- Select an uncolored edge of C of max weight and color it red.

Blue rule.
- Let D be a cutset with no blue edges.
- Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.
- Apply the red and blue rules (non-deterministically!) until all edges are colored. The blue edges form an MST.
- Note: can stop once $n-1$ edges colored blue.

Theorem. The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete, ...

Borůvka’s algorithm

Repeat until only one tree.
- Apply blue rule to cutset corresponding to each blue tree.
- Color all selected edges blue.

Theorem. Borůvka’s algorithm computes the MST.

Pf. Special case of greedy algorithm (repeatedly apply blue rule).
Borůvka’s algorithm: implementation

Theorem. Borůvka’s algorithm can be implemented to run in $O(m \log n)$ time.

Pf.
- To implement a phase in $O(m)$ time:
 - compute connected components of blue edges
 - for each edge $(u, v) \in E$, check if u and v are in different components; if so, update each component’s best edge in cutset
- At most $\log_2 n$ phases since each phase (at least) halves total # trees.

Borůvka’s algorithm on planar graphs

Theorem. Borůvka’s algorithm runs in $O(n)$ time on planar graphs.

Pf.
- To implement a Borůvka phase in $O(n)$ time:
 - use contraction version of algorithm
 - in planar graphs, $m \leq 3n - 6$.
 - graph stays planar when we contract a blue tree
- Number of nodes (at least) halves.
- At most $\log_2 n$ phases: $cn + cn / 2 + cn / 4 + cn / 8 + \ldots = O(n)$.

Borůvka–Prim algorithm

Theorem. The Borůvka–Prim algorithm computes an MST and can be implemented to run in $O(m \log \log n)$ time.

Pf.
- Correctness: special case of the greedy algorithm.
- The $\log_2 \log_2 n$ phases of Borůvka’s algorithm take $O(m \log \log n)$ time; resulting graph has at most $n / \log_2 n$ nodes and m edges.
- Prim’s algorithm (using Fibonacci heaps) takes $O(m + n)$ time on a graph with $n / \log_2 n$ nodes and m edges.

\[
O \left(m + \frac{n}{\log n} \log \left(\frac{n}{\log n} \right) \right)
\]
Does a linear-time MST algorithm exist?

Remark 1. $O(m)$ randomized MST algorithm. [Karger–Klein–Tarjan 1995]
Remark 2. $O(m)$ MST verification algorithm. [Dixon–Rauch–Tarjan 1992]

Deterministic Compare-based MST Algorithms

<table>
<thead>
<tr>
<th>Year</th>
<th>Worst Case</th>
<th>Discovered By</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>$O(m \log \log n)$</td>
<td>Yao</td>
</tr>
<tr>
<td>1976</td>
<td>$O(m \log \log n)$</td>
<td>Cheriton–Tarjan</td>
</tr>
<tr>
<td>1984</td>
<td>$O(m \log^* n)$ $O(m + n \log n)$</td>
<td>Fredman–Tarjan</td>
</tr>
<tr>
<td>1986</td>
<td>$O(m \log (\log^* n))$</td>
<td>Gabow–Galil–Spencer–Tarjan</td>
</tr>
<tr>
<td>1997</td>
<td>$O(m \alpha(n) \log \alpha(n))$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2000</td>
<td>$O(m \alpha(n))$</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2002</td>
<td>Asymptotically optimal</td>
<td>Pettie–Ramachandran</td>
</tr>
<tr>
<td>20xx</td>
<td>$O(m)$</td>
<td>???</td>
</tr>
</tbody>
</table>

4. **Greedy Algorithms II**

- Dijkstra’s algorithm
- Minimum spanning trees
- Prim, Kruskal, Boruvka
- Single-link clustering
- Min-cost arborescences

Clustering

Goal. Given a set U of n objects labeled $p_1, ..., p_n$, partition into clusters so that objects in different clusters are far apart.

Applications.

- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.
- ...

Clustering of Maximum Spacing

k-clustering. Divide objects into k non-empty groups.

Distance function. Numeric value specifying “closeness” of two objects.

- $d(p_i, p_j) = 0$ iff $p_i = p_j$ [identity of indiscernibles]
- $d(p_i, p_j) \geq 0$ [non-negativity]
- $d(p_i, p_j) = d(p_j, p_i)$ [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.
Greedy clustering algorithm

"Well-known" algorithm in science literature for single-linkage k-clustering:

- Form a graph on the node set U, corresponding to n clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat $n - k$ times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal’s algorithm (except we stop when there are k connected components).

Alternative. Find an MST and delete the $(k - 1)$ longest edges.

Greedy clustering algorithm: analysis

Theorem. Let C^* denote the clustering C^*_1, \ldots, C^*_k formed by deleting the $k - 1$ longest edges of an MST. Then, C^* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C_1, \ldots, C_k.

- The spacing of C^* is the length d^* of the $(k - 1)$th longest edge in MST.
- Let p_i and p_j be in the same cluster in C^*, say C^*_r, but different clusters in C, say C_s and C_t.
- Some edge (p, q) on $p_i - p_j$ path in C^*, spans two different clusters in C.
- Edge (p, q) has length $\leq d^*$ since it wasn’t deleted.
- Spacing of C is $\leq d^*$ since p and q are in different clusters.

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

4. **Greedy Algorithms II**

- Dijkstra’s algorithm
- minimum spanning trees
- Prim, Kruskal, Boruvka
- single-link clustering
- min-cost arborescences
Arborescences

Def. Given a digraph $G = (V, E)$ and a root $r \in V$, an arborescence (rooted at r) is a subgraph $T = (V, F)$ such that
- T is a spanning tree of G if we ignore the direction of edges.
- There is a directed path in T from r to each other node $v \in V$.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).

Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

Min-cost arborescence problem

Problem. Given a digraph G with a root node r and with a nonnegative cost $c_e \geq 0$ on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1. G has an arborescence rooted at r.

Assumption 2. No edge enters r (safe to delete since they won’t help).

Simple greedy approaches do not work

Observations. A min-cost arborescence need not:
- Be a shortest-paths tree.
- Include the cheapest edge (in some cut).
- Exclude the most expensive edge (in some cycle).
A sufficient optimality condition

Property. For each node $v \neq r$, choose one cheapest edge entering v and let F^* denote this set of $n-1$ edges. If (V, F^*) is an arborescence, then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node $v \neq r$ and (V, F^*) is the cheapest way to make these choices. •

Reduced costs

Def. For each $v \neq r$, let $y(v)$ denote the min cost of any edge entering v. The **reduced cost** of an edge (u, v) is $c'(u, v) = c(u, v) - y(v) \geq 0$.

Observation. T is a min-cost arborescence in G using costs c iff T is a min-cost arborescence in G using reduced costs c'.

Pf. Each arborescence has exactly one edge entering v.

Edmonds branching algorithm: intuition

Intuition. Recall F^* is a set of cheapest edges entering v for each $v \neq r$.

- Now, all edges in F^* have 0 cost with respect to costs $c'(u, v)$.
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F^* contains a cycle C, can afford to use as many edges in C as desired.
 - Contract nodes in C to a supernode (removing any self-loops).
 - Recursively solve problem in contracted network G' with costs $c'(u, v)$.
Edmonds branching algorithm: intuition

Intuition. Recall $F^* = \text{set of cheapest edges entering } v$ for each $v \neq r$.
- Now, all edges in F^* have 0 cost with respect to costs $c(u, v)$.
- If F^* does not contain a cycle, then it is a min-cost arborescence.
- If F^* contains a cycle C, can afford to use as many edges in C as desired.
- Contract nodes in C to a supernode (removing any self-loops).
- Recursively solve problem in contracted network G' with costs $c'(u, v)$.

Edmonds branching algorithm

Edmonds-BRANCHING (G, r, c)

FOREACH $v \neq r$

\[y(v) \leftarrow \min \text{ cost of an edge entering } v. \]

\[c'(u, v) \leftarrow c'(u, v) - y(v) \text{ for each edge } (u, v) \text{ entering } v. \]

FOREACH $v \neq r$: choose one 0-cost edge entering v and let F^* be the resulting set of edges.

- **IF** F^* forms an arborescence, **RETURN** $T = (V, F^*)$.
- **ELSE**
 - $C \leftarrow$ directed cycle in F^*.
 - Contract C to a single supernode, yielding $G' = (V', E')$.
 - $T' \leftarrow$ **Edmonds-BRANCHING** (G', r, c')
 - **Extend** T' to an arborescence T in G by adding all but one edge of C.
 - **RETURN** T.

Edmonds branching algorithm: key lemma

Q. What could go wrong?

A.
- Min-cost arborescence in G' has exactly one edge entering a node in C (since C is contracted to a single node)
- But min-cost arborescence in G might have more edges entering C.

Edmonds branching algorithm

Q. Can something go wrong?

A.
- Min-cost arborescence in G' has exactly one edge entering a node in C (since C is contracted to a single node)
- But min-cost arborescence in G might have more edges entering C.

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-cost arborescence rooted at r that has exactly one edge entering C.

Proof. Let T be a min-cost arborescence rooted at r.

- **Case 0.** T has no edges entering C.
 - Since T is an arborescence, there is an $r \rightarrow v$ path fore each node v.
 - It implies at least one edge enters C.\[\Rightarrow \]

- **Case 1.** T has exactly one edge entering C.
 - T satisfies the lemma.

- **Case 2.** T has more than one edge that enters C.
 - We construct another min-cost arborescence T' that has exactly one edge entering C.\[\Rightarrow \]
Edmonds branching algorithm: key lemma

Case 2 construction of T'.
- Let (a, b) be an edge in T entering C that lies on a shortest path from r.
- We delete all edges of T that enter a node in C except (a, b).
- We add in all edges of C except the one that enters b.

Claim. T' is a min-cost arborescence.
- The cost of T' is at most that of T since we add only 0-cost edges.
- T' has exactly one edge entering each node $v \neq r$.
- T' has no directed cycles.

Edmonds branching algorithm: analysis

Pf. [by induction on number of nodes in G]
- If the edges of F^* form an arborescence, then min-cost arborescence.
- Otherwise, we use reduced costs, which is equivalent.
- After contracting a 0-cost cycle C to obtain a smaller graph G', the algorithm finds a min-cost arborescence T' in G' (by induction).
- Key lemma: there exists a min-cost arborescence T in G that corresponds to T'.

Theorem. The greedy algorithm can be implemented to run in $O(mn)$ time.
Pf.
- At most n contractions (since each reduces the number of nodes).
- Finding and contracting the cycle C takes $O(m)$ time.
- Transforming T' into T takes $O(m)$ time.

Min-cost arborescence

Theorem. [Gabow–Galil–Spencer–Tarjan 1985] There exists an $O(m + n \log n)$ time algorithm to compute a min-cost arborescence.

Min-cost arborescence

Theorem. [Gabow–Galil–Spencer–Tarjan 1985] There exists an $O(m + n \log n)$ time algorithm to compute a min-cost arborescence.