4. Greedy Algorithms II

- Prim's algorithm demo
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Graph visualization of Prim's algorithm](image)
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.

Repeat $n - 1$ times:

- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.

![Graph with Prim's algorithm tree highlighted]
Prim's algorithm demo

Initialize $S = \text{any node}$.

Repeat $n - 1$ times:

- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.

![Graph demonstration of Prim's algorithm](image)
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = $ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Prim's algorithm diagram]

1 6 8 13

11 10 9
Prim's algorithm demo

Initialize \(S = \) any node.
Repeat \(n - 1 \) times:
 • Add to tree the min weight edge with one endpoint in \(S \).
 • Add new node to \(S \).
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Graph](image-url)
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Diagram of Prim's algorithm](image-url)
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 - Add to tree the min weight edge with one endpoint in S.
 - Add new node to S.
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n - 1$ times:
 - Add to tree the min weight edge with one endpoint in S.
 - Add new node to S.

![Graph with weights](image-url)