4. Greedy Algorithms II

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo
4. Greedy Algorithms II

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,
$$

add v to S; set $d(v) = \pi(v)$.

![Graph example for Dijkstra's algorithm](image)
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_{e},
$$

add v to S; set $d(v) = \pi(v)$.

![Graph Diagram]

- $0 + 4 = 4$
- $0 + 8 = 8$
- $0 + 16 = 16$
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

- Initialize $S = \{s\}, \ d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e ,
$$

add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

• Initialize $S = \{ s \}$, $d(s) = 0$.
• Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

![Diagram of Dijkstra's algorithm demonstration](image-url)
4. Greedy Algorithms II

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \not\in S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S