3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- **DAGs and topological ordering**
3. Graphs

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Undirected graphs

Notation. $G = (V, E)$

- $V =$ nodes (or vertices).
- $E =$ edges (or arcs) between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|, m = |E|$.

$V = \{1, 2, 3, 4, 5, 6, 7, 8\}$

$E = \{1–2, 1–3, 2–3, 2–4, 2–5, 3–5, 3–7, 3–8, 4–5, 5–6, 7–8\}$

$m = 11, n = 8$
One week of Enron emails

The analysis detected an anomaly: a new e-mail address for this person, who had been "philip.allen" for 131 previous weeks.

Company leaders e-mail less frequently, leaving some communication to subordinates.

Finding Patterns In Corporate Chatter
The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010
The key variable of interest was an alter's obesity at time t_{+1}. A significant coefficient for this variable would suggest either that an alter's weight affected an ego's weight or that an ego and an alter experienced contemporaneous events affecting both their weights. We estimated these models in varied ego–alter pair types.

To evaluate the possibility that omitted variables or unobserved events might explain the associations, we examined how the type or direction of the social relationship between the ego and the alter affected the association between the ego's obesity and the alter's obesity. For example, if unobserved factors drove the association between the ego's obesity and the alter's obesity, then the directionality of friendship should not have been relevant.

We evaluated the role of a possible spread in smoking-cessation behavior as a contributor to the spread of obesity by adding variables for the smoking status of egos and alters at times t and t_{+1} to the foregoing models. We also analyzed the role of geographic distance between egos and alters by adding such a variable.
Some graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>node</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph representation: adjacency matrix

Adjacency matrix. An n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.
Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
- Two representations of each edge.
- Space is $\Theta(m + n)$.
- Checking if (u, v) is an edge takes $O(\text{degree}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.

\[\text{degree} = \text{number of neighbors of } u\]
Paths and connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_{i-1}, v_i is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Def. A cycle is a path $v_1, v_2, …, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k - 1$ nodes are all distinct.

![Cycle Diagram]

cycle $C = 1-2-4-5-3-1$
Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third:

- G is connected.
- G does not contain a cycle.
- G has $n - 1$ edges.
Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.
Phylogeny trees

Describe evolutionary history of species.
GUI containment hierarchy

Describe organization of GUI widgets.

http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Connectivity

s-t connectivity problem. Given two nodes s and t, is there a path between s and t?

s-t shortest path problem. Given two nodes s and t, what is the length of a shortest path between s and t?

Applications.
- Friendster.
- Maze traversal.
- Kevin Bacon number.
- Fewest hops in a communication network.
Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding nodes one “layer” at a time.

BFS algorithm.

- $L_0 = \{ s \}$.
- L_1 = all neighbors of L_0.
- L_2 = all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth-first search

Property. Let \(T \) be a BFS tree of \(G = (V, E) \), and let \((x, y) \) be an edge of \(G \). Then, the levels of \(x \) and \(y \) differ by at most 1.
Breadth-first search: analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency representation.

Pf.

• Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop runs $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

• Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{degree}(u)$ incident edges (u, v)
 - total time processing edges is $\sum_{u \in V} \text{degree}(u) = 2m$.

 each edge (u, v) is counted exactly twice in sum: once in $\text{degree}(u)$ and once in $\text{degree}(v)$
Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.
Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

Recolor lime green blob to blue.
Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

recolor lime green blob to blue
Connected component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \not\in R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.
- DFS = explore in a different way.
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Bipartite graphs

Def. An undirected graph \(G = (V, E) \) is **bipartite** if the nodes can be colored blue or white such that every edge has one white and one blue end.

Applications.
- Stable matching: med-school residents = blue, hospitals = white.
- Scheduling: machines = blue, jobs = white.
Testing bipartiteness

Many graph problems become:

- Easier if the underlying graph is bipartite (matching).
- Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in same layer.
- By BFS property, each edge joins two nodes in adjacent levels.
- Bipartition: white = nodes on odd levels, blue = nodes on even levels.

![Graph](Image)
Bipartite graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

• Suppose $\langle x, y \rangle$ is an edge with x, y in same level L_j.
• Let $z = lca(x, y) = \text{lowest common ancestor}$.
• Let L_i be level containing z.
• Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
• Its length is $1 + (j - i) + (j - i)$, which is odd. ▪
The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Directed graphs

Notation. \(G = (V, E) \).
- Edge \((u, v)\) leaves node \(u\) and enters node \(v\).

Ex. Web graph: hyperlink points from one web page to another.
- Orientation of edges is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Web graph.

- Node: web page.
- Edge: hyperlink from one page to another (orientation is crucial).
- Modern search engines exploit hyperlink structure to rank web pages by importance.
Road network

Node = intersection; edge = one-way street.
Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
Ecological food web

Food web graph.
- Node = species.
- Edge = from prey to predator.

Some directed graph applications

<table>
<thead>
<tr>
<th>directed graph</th>
<th>node</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relationship</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>
Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s–t shortest path problem. Given two nodes s and t, what is the length of a shortest path from s to t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Strong connectivity

Def. Nodes u and v are **mutually reachable** if there is both a path from u to v and also a path from v to u.

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. \Leftarrow Path from u to v: concatenate $u \rightarrow s$ path with $s \rightarrow v$ path.

Path from v to u: concatenate $v \rightarrow s$ path with $s \rightarrow u$ path. \blacksquare

ok if paths overlap
Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G_{reverse}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma. ■

[Diagram of strongly connected and not strongly connected graphs]
Strong components

Def. A strong component is a maximal subset of mutually reachable nodes.

Theorem. [Tarjan 1972] Can find all strong components in $O(m + n)$ time.
3. **Graphs**

- basic definitions and applications
- graph connectivity and graph traversal
- testing bipartiteness
- connectivity in directed graphs
- DAGs and topological ordering
Directed acyclic graphs

Def. A **DAG** is a directed graph that contains no directed cycles.

Def. A **topological order** of a directed graph $G = (V, E)$ is an ordering of its nodes as v_1, v_2, \ldots, v_n so that for every edge (v_i, v_j) we have $i < j$.

![a DAG](image1)

![a topological ordering](image2)
Precedence constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\).
- Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

- Suppose that G has a topological order v_1, v_2, \ldots, v_n and that G also has a directed cycle C. Let’s see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, v_2, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. □

```
the directed cycle C
```

```
the supposed topological order: v_1, ..., v_n
```
Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

- Suppose that G is a DAG and every node has at least one entering edge. Let’s see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one entering edge (u, v) we can walk backward to u.
- Then, since u has at least one entering edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle.

\[\begin{array}{c}
\text{Directed acyclic graphs} \\
\text{Lemma. If } G \text{ is a DAG, then } G \text{ has a node with no entering edges.} \\
Pf. [by contradiction] \\
\quad \text{- Suppose that } G \text{ is a DAG and every node has at least one entering edge. Let’s see what happens.} \\
\quad \text{- Pick any node } v, \text{ and begin following edges backward from } v. \text{ Since } v \text{ has at least one entering edge } (u, v) \text{ we can walk backward to } u. \\
\quad \text{- Then, since } u \text{ has at least one entering edge } (x, u), \text{ we can walk backward to } x. \\
\quad \text{- Repeat until we visit a node, say } w, \text{ twice.} \\
\quad \text{- Let } C \text{ denote the sequence of nodes encountered between successive visits to } w. \text{ } C \text{ is a cycle.}
\end{array} \]
Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. [by induction on n]

- Base case: true if $n = 1$.
- Given DAG on $n > 1$ nodes, find a node v with no entering edges.
- $G – \{v\}$ is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G – \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G – \{v\}$
- in topological order. This is valid since v has no entering edges. □

To compute a topological ordering of G:

1. Find a node v with no incoming edges and order it first
2. Delete v from G
3. Recursively compute a topological ordering of $G – \{v\}$
4. and append this order after v
Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - $\text{count}(w) =$ remaining number of incoming edges
 - $S =$ set of remaining nodes with no incoming edges
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}(w)$ for all edges from v to w;
 and add w to S if $\text{count}(w)$ hits 0
- this is $O(1)$ per edge