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Undirected graphs

Notation. G=(V,E)
* V=nodes (or vertices).
* E=edges (or arcs) between pairs of nodes.
+ Captures pairwise relationship between objects.
* Graph size parameters: n=1VI,m=1EI.
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‘ Vv={1,2,3,4,5,6,7,8}
S

()—) ()

E={1-2,1-3,2-3,2-4,2-5,3-5,3-7,3-8,4-5,5-6,7-8 }

m=11,n=8
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Some graph applications Graph representation: adjacency matrix

I T v representarions of saen age e ecee
edge .
» Two representations of each edge.
communication telephone, computer fiber optic cable + Space proportional to n2.

circuit gate, register, processor wire * Checking if (u,v) is an edge takes ©(1) time.
+ Identifying all edges takes ©(n2) time.

mechanical joint rod, beam, spring
financial stock, currency transactions
transportation street intersection, airport highway, airway route
internet class C network connection

game board position legal move ‘

social relationship person, actor friendship, movie cast '
neural network neuron synapse Ge o

protein network protein protein-protein interaction
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Graph representation: adjacency lists

Adjacency lists. Node-indexed array of lists.
» Two representations of each edge. o G o

* Space is O(m + n).

* Checking if (u,v) is an edge takes O(degree(u)) time.

+ Identifying all edges takes ©(m + n) time.
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Cycles

Def. A cycle is a path vi, va, ..., v in which v, =v, and k> 2.

Def. A cycle is simple if all nodes are distinct (except for v, and v,).

oo
&
OO,
SATET
©

cycle C = 1-2-4-5-3-1

Paths and connectivity

Def. A path in an undirected graph G=(V,E) is a sequence of nodes
vi, v2, ..., vk With the property that each consecutive pair v, v; is joined
by a different edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes « and v,
there is a path between u and v.

Trees

Def. An undirected graph is a tree if it is connected and does not contain
a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third:

* G is connected.

* G does not contain a cycle.

* G has n—1 edges.



Rooted trees

Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

e root r
G the parent of v

a child of v

a tree the same tree, rooted at 1

GUI containment hierarchy

Describe organization of GUI widgets.

JFrame

1ComboBox

L
| JPanel (custom content pane) I

l—|—|

JPanel JPanel
(ConversionPanel) (ConversionPanel)

JPanel JConboBox I JComboBox I JPanel
{custom) {custom)

1slider ITextField ITextField JSTider
|_I | (DecimalField) (DecimalField) |—I

http://java.sun.com/docs/books/tutorial /uiswing/overview/anatomy.html 15

Phylogeny trees

Describe evolutionary history of species.

| A\qumhm Jesiqn

JON KLEINBERG - EVA TARDOS

gut bacteria
trees
mushrooms
fish

mammals
birds
dragonflies

beetles
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Connectivity

s-t connectivity problem. Given two nodes s and ¢, is there a path between
sand t?

s-t shortest path problem. Given two nodes s and ¢, what is the length of
a shortest path between s and ¢?

Applications.
+ Friendster.
* Maze traversal.
» Kevin Bacon number.
» Fewest hops in a communication network.

Breadth-first search

Property. Let T be a BFS tree of G=(V,E), and let (x,y) be an edge of G.
Then, the levels of x and y differ by at most 1.

Lo
L
L

L

@

Breadth-first search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one “layer” at a time.

. s L, — L, — eee Ly
BFS algorithm. ~

e Ly={s}.

« L, = all neighbors of L,.

« L, = all nodes that do not belong to L, or L,, and that have an edge to a
node in L,.

+ L,,=all nodes that do not belong to an earlier layer, and that have an
edge to a node in L,.

Theorem. For each i, L; consists of all nodes at distance exactly i
from s. There is a path from s to ¢ iff r appears in some layer.

Breadth-first search: analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the
graph is given by its adjacency representation.

Pf.
* Easy to prove O(n2) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs <n times
- when we consider node u, there are <n incident edges (u, v),
and we spend O(1) processing each edge

* Actually runs in O(m + n) time:
- when we consider node u, there are degree(u) incident edges (u, v)
- total time processing edges is 2, ¢, degree(u) = 2m. =

each edge (u, v) is counted exactly twice
in sum: once in degree(u) and once in degree(v)

20



Connected component

Connected component. Find all nodes reachable from s.

Connected component containing node 1={1,2,3,4,5,6,7,8 }.

21

Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

* Node: pixel.

+ Edge: two neighboring lime pixels.

» Blob: connected component of lime pixels.
recolor lime green blob to blue

‘860 Tux Paint
u@ 1 o o o o
Lines ' Shapes Mot Fip
o o o o
Abcﬁ. ==
Text \Magic, Blur ' Blocks
A /& o o o o
Undo ' Redo Negativé| Fade
o o o o
Eraser | Now Chalk | Drip
@ o o o o
o Gave Thick | Thin
;llﬂ( & ‘HII’

i S
€ood™ Bl ne

w Click in the picture to fill that area with color.
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Flood fill

Flood fill. Given lime green pixel in an image, change color of entire blob of
neighboring lime pixels to blue.

* Node: pixel.

+ Edge: two neighboring lime pixels.

» Blob: connected component of lime pixels.
recolor lime green blob to blue

ﬁe?ﬁ Tux Paint
42
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Connected component
Connected component. Find all nodes reachable from s.
R

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v¢R
Add v to R

Endwhile it’s safe to add v

Theorem. Upon termination, R is the connected component containing s.
* BFS = explore in order of distance from s.
» DFS = explore in a different way.

22
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Testing bipartiteness

Many graph problems become:
 Easier if the underlying graph is bipartite (matching).
» Tractable if the underlying graph is bipartite (independent set).

Before attempting to design an algorithm, we need to understand structure
of bipartite graphs.

@:ve (v
<> =

another drawing of G

27

Bipartite graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored
blue or white such that every edge has one white and one blue end.

Applications.

» Stable matching: med-school residents = blue, hospitals = white.
+ Scheduling: machines = blue, jobs = white.

a bipartite graph

26

An obstruction to bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd-length cycle.

Pf. Not possible to 2-color the odd-length cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)

28



Bipartite graphs

Lemma. Let G be a connected graph, and let L,, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

L L, Ly L L, L

Case (i) Case (ii)
29

Bipartite graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (ii)
+ Suppose (x,y) is an edge with x, y in same level L;.
* Let z =lca(x,y) = lowest common ancestor.
 Let L, be level containing z.
» Consider cycle that takes edge from x to y,
then path from y to z, then path from z to x.
* Its lengthis 1 + (j—i) + (j—i), whichis odd. =
s i

(x,y)  path from path from
ytoz zto x

Layer L; °

31

Bipartite graphs

Lemma. Let G be a connected graph, and let L,, ..., L, be the layers produced
by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
» Suppose no edge joins two nodes in same layer.
» By BFS property, each edge joins two nodes in adjacent levels.
+ Bipartition: white = nodes on odd levels, blue = nodes on even levels.

L L Ls

Case (i)

The only obstruction to bipartiteness

Corollary. A graph G is bipartite iff it contains no odd-length cycle.

@ @h o

bipartite not bipartite
(2-colorable) (not 2-colorable)

30
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Directed graphs
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World wide web

Web graph.

* Node: web page.
» Edge: hyperlink from one page to another (orientation is crucial).

* Modern search engines exploit hyperlink structure to rank web pages

by importance.
cnn.com

timewarner.com

novell.com cnnsi.com

netscape.com

hbo.com

gameofthrones.com
35

Notation. G=(V,E).

* Edge (u,v) leaves node u and enters node v.

Ex. Web graph: hyperlink points from one web page to another.

+ Orientation of edges is crucial.
* Modern web search engines exploit hyperlink structure to rank web

pages by importance.

Road network

Node = intersection; edge = one-way street.
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Political blogosphere graph

Node = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
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Some directed graph applications

directed graph “ directed edge

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection one-way street

web page hyperlink
species predator-prey relationship
synset hypernym
task precedence constraint
bank transaction
person placed call
person infection
board position legal move
journal article citation
object pointer
class inherits from

code block jump

39

Ecological food web

Food web graph.
» Node = species.
» Edge = from prey to predator.

[
A Sl
M P vole great egret

fox g ~ &
. | blue-gil fish

p

3

earthworm

algae (magnified)
cattalls

Reference: http://www.twingroves.district96.k12.il.us, -/SalGraphics, .giff

Graph search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s~t shortest path problem. Given two nodes s and ¢,
what is the length of a shortest path from sto ¢?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s,
either directly or indirectly.

38
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Strong connectivity

Def. Nodes u and v are mutually reachable if there is both a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.
Pf. <= Path from u to v: concatenate u~s path with s~v path.
Path from v to u: concatenate v~s path with s~u path. =

\

ok if paths overlap

41

Strong components

Def. A strong component is a maximal subset of mutually reachable
nodes.

Theorem. [Tarjan 1972] Can find all strong components in O(m + n) time.

J. Compur.
. No.2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN{

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
K,V + kE + kyfor some constants k,, k., and ks, where V is the number of vertices and E is the number

of edges of the graph being examined. 5

Strong connectivity: algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.

Pf.

Pick any node s.

Run BFS from s in G.
Run BFS from s in Greverse,
Return true iff all nodes reached in both BFS executions.
Correctness follows immediately from previous lemma. =

reverse orientation of every edge in G

N

strongly connected

not strongly connected
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» DAGs and topological ordering
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Directed acyclic graphs

Def. A DAG is a directed graph that contains no directed cycles.

Def. A topological order of a directed graph G =(V,E) is an ordering of its
nodes as v;,v,, ..., v, so that for every edge (v, v,) we have i <.

N

a DAG a topological ordering

45

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. [by contradiction]

» Suppose that G has a topological order v, v,, ...,v, and that G also has a
directed cycle C. Let’s see what happens.

+ Let v, be the lowest-indexed node in C, and let v; be the node just
before v; thus (v;,v) is an edge.

* By our choice of i, we have i <.

+ On the other hand, since (v, ) is an edge and v, v,, ..., v, is a topological
order, we must have j<i, a contradiction. =

® O @O0 O O 0O O 0O @

the supposed topological order: vy, ..., v,

47

Precedence constraints

Precedence constraints. Edge (v, v,) means task v; must occur before v;.

Applications.
- Course prerequisite graph: course v; must be taken before v,
+ Compilation: module v; must be compiled before v,
- Pipeline of computing jobs: output of job v; needed to determine input
of job v;.

46

Directed acyclic graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

48



Directed acyclic graphs

Lemma. If G is a DAG, then G has a node with no entering edges.

Pf. [by contradiction]

.

Suppose that G is a DAG and every node has at least one entering edge.
Let’s see what happens.

Pick any node v, and begin following edges backward from v. Since v
has at least one entering edge (u,v) we can walk backward to u.

Then, since u has at least one entering edge (x, u), we can walk
backward to x.

Repeat until we visit a node, say w, twice.

Let C denote the sequence of nodes encountered between successive
visits tow. Cis a cycle. =

W@—’O—@—'@—'@

49

Topological sorting algorithm: running time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

+ Maintain the following information:

- count(w) = remaining number of incoming edges
- S=set of remaining nodes with no incoming edges

* Initialization: O(@m + n) via single scan through graph.
* Update: to delete v

- remove v from §

- decrement count(w) for all edges from v to w;
and add w to S if count(w) hits 0

- this is O(1) per edge =

51

Directed acyclic graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf.

.

.

[by induction on n]

Base case: true if n=1.

Given DAG on n > 1 nodes, find a node v with no entering edges.
G-{v}is aDAG, since deleting v cannot create cycles.

By inductive hypothesis, G- { v} has a topological ordering.

Place v first in topological ordering; then append nodes of G- { v}
in topological order. This is valid since v has no entering edges.

To compute a topological ordering of G:

Find a node v with no incoming edges and order it first
Delete v from G

Recursively compute a topological ordering of G—{v}

and append this order after v

[>]

DAG

'
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