### **Last Lecture**

Perspective and course review.

Top 10 scientific algorithms.

**Course evaluations.** 

Final exercises due Tuesday, May 15 at 5pm.

- Individual write-ups.
- Collaboration allowed.

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

COS 423: Theory of Algorithms

# **Theory of Algorithms**

#### Algorithm. (webster.com)

- A procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an operation.
- Broadly: a step-by-step procedure for solving a problem or accomplishing some end especially by a computer.

#### Etymology.

- algos" = Greek word for pain.
- "algor" = Latin word for to be cold.
- Abu Ja'far al-Khwarizmi's = 9th century Arab scholar.
  - his book "Al-Jabr wa-al-Muqabilah" evolved into today's high school algebra text

# Theory of Algorithms

#### A strikingly modern thought.

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise - By what course of calculation can these results be arrived at by the machine in the shortest time?"





Charles Babbage (1864)

### Why Does It Matter?

|                                           | time<br>econds) | 1.3 N <sup>3</sup> | 10 N <sup>2</sup> | 47 N log <sub>2</sub> N | 48 N           |
|-------------------------------------------|-----------------|--------------------|-------------------|-------------------------|----------------|
|                                           | 1000            | 1.3 seconds        | 10 msec           | 0.4 msec                | 0.048 msec     |
| Time to                                   | 10,000          | 22 minutes         | 1 second          | 6 msec                  | 0.48 msec      |
| solve a problem                           | 100,000         | 15 days            | 1.7 minutes       | 78 msec                 | 4.8 msec       |
| of size                                   | million         | 41 years           | 2.8 hours         | 0.94 seconds            | 48 msec        |
|                                           | 10 million      | 41 millennia       | 1.7 weeks         | 11 seconds              | 0.48 seconds   |
| Max size                                  | second          | 920                | 10,000            | 1 million               | 21 million     |
| problem                                   | minute          | 3,600              | 77,000            | 49 million              | 1.3 billion    |
| solved                                    | hour            | 14,000             | 600,000           | 2.4 trillion            | 76 trillion    |
| in one                                    | day             | 41,000             | 2.9 million       | 50 trillion             | 1,800 trillion |
| N multiplied by 10,<br>time multiplied by |                 | 1,000              | 100               | 10+                     | 10             |

### **Orders of Magnitude**

| Seconds                | Equivalent         | Meters Per<br>Second |
|------------------------|--------------------|----------------------|
| 1                      | 1 second           | 10 <sup>-10</sup>    |
| 10                     | 10 seconds         |                      |
|                        |                    | 10 <sup>-8</sup>     |
| 10 <sup>2</sup>        | 1.7 minutes        | 10 <sup>-6</sup>     |
| 10 <sup>3</sup>        | 17 minutes         | 10 <sup>-4</sup>     |
| <b>10</b> <sup>4</sup> | 2.8 hours          |                      |
| 10 <sup>5</sup>        | 1.1 days           | 10 <sup>-2</sup>     |
|                        |                    | 1                    |
| 10 <sup>6</sup>        | 1.6 weeks          | 10 <sup>2</sup>      |
| 10 <sup>7</sup>        | 3.8 months         | 10 <sup>4</sup>      |
| 10 <sup>8</sup>        | 3.1 years          | 10 <sup>6</sup>      |
| 10 <sup>9</sup>        | 3.1 decades        |                      |
| 10 <sup>10</sup>       | 3.1 centuries      | 10 <sup>8</sup>      |
| 10                     |                    |                      |
|                        | forever            | <b>D</b>             |
| 10 <sup>21</sup>       | age of<br>universe | Power<br>of 2        |
|                        |                    |                      |

| Meters Per<br>Second     | Imperial<br>Units | Example                 |
|--------------------------|-------------------|-------------------------|
| <b>10</b> <sup>-10</sup> | 1.2 in / decade   | Continental drift       |
| 10 <sup>-8</sup>         | 1 ft / year       | Hair growing            |
| 10 <sup>-6</sup>         | 3.4 in / day      | Glacier                 |
| <b>10</b> <sup>-4</sup>  | 1.2 ft / hour     | Gastro-intestinal tract |
| 10 <sup>-2</sup>         | 2 ft / minute     | Ant                     |
| 1                        | 2.2 mi / hour     | Human walk              |
| 10 <sup>2</sup>          | 220 mi / hour     | Propeller airplane      |
| 10 <sup>4</sup>          | 370 mi / min      | Space shuttle           |
| 10 <sup>6</sup>          | 620 mi / sec      | Earth in galactic orbit |
| 10 <sup>8</sup>          | 62,000 mi / sec   | 1/3 speed of light      |

|                | 2 <sup>10</sup> | thousand |
|----------------|-----------------|----------|
| Powers<br>of 2 | 2 <sup>20</sup> | million  |
|                | 2 <sup>30</sup> | billion  |
|                |                 |          |

### What was COS 423?

Introduction to design and analysis of computer algorithms.

- Algorithmic paradigms.
- . Analyze running time of programs.
- . Understand fundamental algorithmic problems.
- . Intrinsic computational limitations.
- Models of computation.
- Critical thinking.

### **Material Covered**

#### Algorithmic paradigms.

- Divide-and-conquer.
- Greed.

5

- Dynamic programming.
- Reduction.

#### Analysis of algorithms.

- Recurrences and big Oh.
- Amortized analysis.
- Average-case analysis.

#### Other models of computation.

- On-line algorithms.
- Randomized algorithms.

#### Intractability.

- Polynomial reductions.
- . NP completeness.
- Approximation algorithms.

#### Fundamental algorithmic problems.

- Sorting and searching.
- Integer arithmetic.
- FFT.
- . MST.
- . Shortest path.
- Max flow.
- Linear programming.

### **Brief History of Algorithms**

#### 300 B. C.

Euclid's gcd algorithm.

#### 780-850 A.D.

 Abu Ja'far Mohammed Ben Musa al-Khwarizmi.

#### 1424 A.D.

•  $\pi = 3.1415926535897932...$ 

#### 1845.

• Lamé: Euclid's algorithm takes at most 1 +  $\log_{\phi}$  (n  $\sqrt{5}$ ) steps.

#### 1900.

• Hilbert's 10<sup>th</sup> problem.

#### 1910.

Pocklington: bit complexity.

#### 1920-1936.

Post, Goëdel, Church, Turing.

#### 1965.

• Edmonds: polynomial vs. exponential algorithms.

#### 1971.

Cook's Theorem, Karp reductions.

#### 20xx.

• P ≠ NP???

### Top 10 Scientific Algorithms of 20<sup>th</sup> Century

#### Computing in Science and Engineering. (January, 2000).

"the greatest influence on the development and practice of science and engineering in the 20<sup>th</sup> century"

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing."

#### -Francis Sullivan

# **Metropolis Algorithm**

Local search. Algorithm that explores the space of possible solutions in sequential fashion, moving in one step from a current solution to a "nearby" one.

- . TSP: given a tour, perturb it by exchanging order of two cities.
- VERTEX-COVER: given a vertex cover, perturb it by adding or deleting a node, so that resulting set remains a cover.

Gradient descent. Replace current solution with neighboring solution that improves objective function, until no such neighbor exists.



A funnel

A jagged funnel

# Metropolis, 1946). Through the use of random processes, this algorithm offers an efficient way to stumble toward answers to problems that are too complicated to solve exactly.

Approximate solutions to numerical problems with too many degrees of freedom.

Top 10 Scientific Algorithms of 20<sup>th</sup> Century

1. Metropolis Algorithm/ Monte Carlo method (von Neumann, Ulam,

- Approximate solutions to combinatorial optimization problems.
- Generation of random numbers.



### **Metropolis Algorithm**

Metropolis algorithm. Gradient descent, but occasionally replace current solution with "uphill" solution.

- Simulate behavior of system according to principles of statistical mechanics.
- Probability of finding a physical system in a state with energy E is proportional to Gibbs-Boltzmann function  $e^{-E/(kT)}$ , where T > 0 is temperature and k is a constant.

```
Theorem. Let f_{S}(t) be fraction
of first t steps in which state
of simulation in in state S \in \Sigma.
Then, with probability 1:
\lim_{t \to \infty} f_{S}(t) = \frac{1}{Z} e^{-E(S)/(kT)},\lim_{t \to \infty} F_{S}(t) = \sum_{S \in \Sigma} e^{-E(S)/(kT)}.
```

### **Metropolis Algorithm**

#### Simulated annealing.

- T large  $\Rightarrow$  probability of accepting an uphill move is large.
- T small  $\Rightarrow$  uphill moves are almost never accepted.
- . Idea: turn knob to control T.
- Cooling schedule: T = T(i) at iteration i.

#### Physical analog.

- Take solid and raise it to high temperature, we do not expect it to maintain a nice crystal structure.
- Take a molten solid and freeze it very abruptly, we do not expect to get a perfect crystal either.
- Annealing: cool material gradually from high temperature, allowing it to reach equilibrium at succession of intermediate lower temperatures.

# Top 10 Scientific Algorithms of 20<sup>th</sup> Century

- 2. Simplex Method for Linear Programming (Dantzig 1947). An elegant solution to a common problem in planning and decision-making: max {cx :  $Ax \le b$ ,  $x \ge 0$ }.
- . One of most successful algorithms of all time.
- Dominates world of industry.





# Top 10 Scientific Algorithms of 20th Century

- **3.** Krylov Subspace Iteration Method (Hestenes, Stiefel, Lanczos, 1950). A technique for rapidly solving Ax = b where A is a huge n x n matrix.
- . Conjugate gradient method for symmetric positive definite systems.
- . GMRES, CGSTAB for non-symmetric systems.

| Con | pute $r^{(0)} = b - A x^{(0)}$ for some initial guess $x^{(0)}$ |
|-----|-----------------------------------------------------------------|
| for | i = 1, 2,                                                       |
|     | solve $M z^{(i-1)} = r^{(i-1)}$                                 |
|     | $p_{i-1} = r^{(i-1)^T} z^{(i-1)}$                               |
|     |                                                                 |
|     | if i = 1                                                        |
|     | $p^{(1)} = z^{(0)}$                                             |
|     | else                                                            |
|     | $\beta_{i-1} = \rho_{i-1}/\rho_{i-2}$                           |
|     | $y(i) = x^{(i-1)} + \beta_{i-1} y^{(i-1)}$                      |
|     | endif                                                           |
|     | $a^{(i)} = Ap^{(i)}$                                            |
|     |                                                                 |
|     | $\alpha_i = \rho_{i-1} / p^{(i)^T} q^{(i)}$                     |
|     | $x^{(i)} = x^{(i-1)} + \alpha_i p^{(i)}$                        |
|     | $r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)}$                        |
|     |                                                                 |
|     | check convergence; continue if necessary                        |
| end |                                                                 |

**Preconditioned Conjugate Gradient** 

### Top 10 Scientific Algorithms of 20<sup>th</sup> Century

4. Decompositional Approach to Matrix Computations (Householder, 1951). A suite of technique for numerical linear algebra that led to efficient matrix packages.

- Factor matrices into triangular, diagonal, orthogonal, tri-diagonal, and other forms.
- . Analysis of rounding errors.
- Applications to least squares, eigenvalues, solving systems of linear equations.
- LINPACK, EISPACK.



### **Top 10 Scientific Algorithms of 20th Century**

# **5.** Fortran Optimizing Compiler (Backus, 1957). Turns high-level code into efficient computer-readable code.

 Among single most important events in history of computing: scientists could program computer without learning assembly.

| Fortran Code                 |
|------------------------------|
| 500 C = 0.0                  |
| C *** START LOOP ***         |
| DO 540 I=L,K                 |
| F = S*RV1(I)                 |
| RV1(I) = C*RV1(I)            |
| IF (ABS(F).LE.EPS) GO TO 550 |
| G = W(I)                     |
| H = SQRT(F*F+G*G)            |
| W(I) = H                     |
| C = G/H                      |
| S = -F/H                     |
| 510 CONTINUE                 |



### Top 10 Scientific Algorithms of 20th Century

6. QR Algorithm for Computing Eigenvalues (Francis 1959). Another crucial matrix operation made swift and practical.

• Eigenvalues are arguably most important numbers associated with matrices.

 $\mathbf{A}\,\mathbf{x} = \lambda\,\mathbf{x}$ 

 Differential equations, population growth, building bridges, quantum mechanics, Markov chains, web search, graph theory.

Initialize 
$$A_0 = A$$
  
FOR k = 0, 1, 2, ...  
Factor  $A_k = Q_k R_k$   
Compute  $A_k = R_k Q_k$ 

$$A_{k+1} = R_k Q_k$$
  
=  $Q_k^{-1} Q_k R_k Q_k$   
=  $Q_k^{-1} A_k Q_k$   
 $\Rightarrow A_{k+1}$  and  $A_k$  have same eigenvalues

Under fairly general conditions,  $A_k$  converges to diagonal or upper triangular matrix with eigenvalues on main diagonal.

# Web Search

AltaVista text-based search for '+censorship +net' might yield tens of thousands of hits, ordered as follows:

- www.epic.org/free speech/action
- www.zepa.net/hypermail/asfar/1998/07/0466.html
- <u>www.eserver.org/internet/censorship.html</u>
- www.tiac.net/users/sojourn/censor0596.html
- www.anatomy.usyd.edu.au/danny/usenet/aus.net.news/

Abundance problem: number of pages that can be returned as relevant is far too large for human to digest.

Observation: not many useful pages here.

### Web Search

#### Some "authoritative" pages (obtained from Kleinberg algorithm):

- www.eff.org (Electronic Frontier Foundation)
- www.cdt.org (Center for Democracy and Technology)
- www.vtw.org (Voters Telecommunications Watch)
- (American Civil Liberties Union) www.aclu.org

#### Authoritative page: need quantitative definition.

- Non-trivial problem: query for "search engine" unlikely to report Yahoo, Excite, or AltaVista since they do not use the term.
- Yahoo solution: legion of human catalogers.
- Elegant solution (Kleinberg, Google): use latent human judgment implicit in hyperlink structure of Web.
  - page p points to q: creator of page p confers authority on q
  - pitfalls: navigational links, relevance vs. popularity

# **Hubs and Authorities**

Good hub: page that points to many good authorities. Good authority: page pointed to by many good hubs.

#### Iterative algorithm: authority weights x(p), and hub weights y(p).

- Set authority weights x(p) = 1, and hub weights y(p) = 1 for all p.
- Repeat following two operations (and then re-normalize x and y to have unit norm):



# **Hubs and Authorities**

#### Theorem (Kleinberg, 1997). The iterates x(p) and y(p) converge to the principal eigenvectors of A<sup>T</sup>A and AA<sup>T</sup>, where A is the adjacency matrix of the (directed) Web subgraph.

- . Algorithm is essentially "Power method" for computing principal eigenvector.
- Can use any eigenvector algorithm, e.g., QR algorithm.

### Web Search: Clustering

#### Principal eigenvector.

www2.ecst.csuhcico.edu/.../jaguar.html

(404 Not Found)

www.mcc.ac.uk/dlms/.../du/.../jaguar.html

(Jaguar Page)

#### 2<sup>nd</sup> non-principal eigenvector: positive components.

- www.jaguarsnfl.com
- (Jacksonville Jaguars NFL)
- www.nando.net/.../jax.htm (Jacksonville Jaguars Home Page)

#### 3<sup>rd</sup> non-principal eigenvector: positive components.

- www.jaguarvehicles.com
- (Jaguar Cars Global Home Page) (The Jaguar Collection)
- www.collection.co.uk

23

### Web Search: Clustering

Top 10 Scientific Algorithms of 20<sup>th</sup> Century

2<sup>nd</sup> non-principal eigenvector: positive components.

- <u>www.caral.org/abortion.html</u> (Abortion and Reproductive Rights)
- <u>www.plannedparenthood.org</u> (Welcome to Planned Parenthood)
- <u>www.gynpages.com</u>

www.prochoice.org/naf

- (Abortion Clinics Online) (National Abortion Federation)
- 2<sup>nd</sup> non-principal eigenvector: negative components.
- www.awinc.com/.../lifenet.htm
- (LifeWEB)
- www.worldvillage.com/.../peter.htm
  - (Healing After Abortion)
     (Pro-Life Advocate)
- www.members.aol.com/pladvocate
- www.catholic.net/.../abortion.html

 $x_{n+1} = a x_n (1 - x_n)$ 

special case when n = 2.



• Simplify Feynman diagram calculations in quantum field theory.

9. Integer Relation Detection (Ferguson, Forcade, 1977). Given real numbers x<sub>1</sub>, ..., x<sub>n</sub>, find integers a<sub>1</sub>, ..., a<sub>n</sub> (not

all 0 if they exist) such that  $a_1x_1 + \dots + a_nx_n = 0$ ?

4<sup>th</sup> bifurcation points of logistic map.

PSLQ algorithm generalizes Euclid's algorithm:

Find coefficients of polynomial satisfied by 3<sup>rd</sup> and

- Compute  $n^{th}$  bit of  $\pi$  without computing previous bits.
- Experimental mathematics.

# Top 10 Scientific Algorithms of 20th Century

- 7. Quicksort (Hoare, 1962). Given N items over a totally order universe, rearrange them in increasing order.
- O(N log N) instead of O(N<sup>2</sup>).
- . Efficient handling of large databases.

8. Fast Fourier Transform (Cooley, Tukey 1965). Perhaps the most ubiquitous algorithm in use today, it breaks down waveforms (like sound) into periodic components.

• O(N log N) instead of O(N<sup>2</sup>).



# Top 10 Scientific Algorithms of 20<sup>th</sup> Century

**10. Fast Multipole Method (Greengard, Rokhlin, 1987).** Accurate calculations of the motions of N particles interacting via gravitational or electrostatic forces.

- Central problem in computational physics.
- O(N) instead of O(N<sup>2</sup>).



Celestial mechanics, protein folding, etc.



A Quad-Tree



### Kevin's Lifetime Achievement Award

**11.** Newton's method (Newton, 16xx). Given a differentiable function f(x), find a value x\* such that  $f(x^*) = 0$ .

- Start with initial guess x<sub>0</sub>.
- Compute a sequence of approximations:  $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$ .
- Equivalent to finding line of tangent to curve y = f(x) at x<sub>i</sub> and taking x<sub>i+1</sub> to be point where line crosses x-axis.



### Kevin's Lifetime Achievement Award

# **11.** Newton's method (Newton, 16xx). Given a differentiable function f(x), find a value $x^*$ such that $f(x^*) = 0$ .

- Tabulating square roots, etc.
- Solving systems of nonlinear equations:  $x_{i+1} = x_i J^{-1}(x_i) f(x_i)$ .
- Continuous optimization:  $x_{i+1} = x_i H^{-1}(x_i) \nabla f(x_i)$ .
- Integer division.
- Interior point algorithms.



### **Kevin's Non-Scientific Honorable Mention**

**12.** Depth first search (Tarjan). Learn properties of a graph by systematically examing each of its vertices and edges.

- Connectivity.
- Cycle detection.
- . Bipartiteness.
- 2-SAT, 2-colorability.
- Topological sort.
- . Transitive closure.
- Euler tour.
- Bi-connectivity.
- . Strong connectivity.
- Planarity.

# **Kevin's Non-Scientific Honorable Mention**

### **RSA Public-Key Cryptosystem**

#### Key generation.

- Select two large prime numbers p and q at random.
- Compute n = pq, and  $\phi = (p-1)(q-1)$ .
- . Choose integer e that is relatively prime to  $\boldsymbol{\varphi}.$
- Compute d such that  $d e \equiv e d \equiv 1 \pmod{\phi}$ .
- Publish (e, n) as public key.
- Keep (d, n) as secret key.

p = 11, q = 29n = 319,  $\phi$  = 280 e = 3, d = 187 M = 100

### **RSA Public-Key Cryptosystem**

M < n

#### Bob sends message M to Alice.

- Bob obtains Alice's public key (e, n) from Internet.
- Bob computes C = M<sup>e</sup> (mod n).

#### Alice receives message C.

- Alice uses her secret key (d, n).
- Alice computes M' = C<sup>d</sup> (mod n).

#### Why does it work? Need M = M'. Intuitively.

- M'≡ C<sup>d</sup> (mod n) ≡ M<sup>ed</sup> (mod n)
  - $\equiv$  M Recall: e d  $\equiv$  1 (mod  $\phi$ ).
- Argument not rigorous because of mod.
  - rigorous argument uses fact that p and q are prime and  $\varphi$  = (p-1)(q-1)

# **RSA Example**

#### Parameters.

- p = 47, q = 79, n = 3713, φ = 3588
   e = 17, d = 3377
- M = 2003

| <b>2003</b> <sup>17</sup>                | (mod 3713) |
|------------------------------------------|------------|
| = 2003 <sup>16</sup> * 2003 <sup>1</sup> | (mod 3713) |
| = 3157 * 2003                            | (mod 3713) |
| = 6323471                                | (mod 3713) |
| = 232                                    |            |

#### Modular exponentiation.

- 2003<sup>17</sup> (mod 3713)
  - = 134454746427671370568340195448570911966902998629125654163 (mod 3713) = 232

#### Efficient alternative (repeated squaring).

- 2003<sup>1</sup> (mod 3713) = 2003
- 2003<sup>2</sup> (mod 3713) = 4,012,009 (mod 3713) = 1969
- $2003^4 \pmod{3713} = 1969^2 \pmod{3713} = 589$
- $\therefore$  2003<sup>8</sup> (mod 3713) = 589<sup>2</sup> (mod 3713) = 1612
- 2003<sup>16</sup> (mod 3713) = 3157

# **RSA Details**

#### How large should n = pq be?

- . 1,024 bits for long term security.
- . Too small  $\Rightarrow$  easy to break.
- Too large  $\Rightarrow$  time consuming to encrypt/decrypt.

#### How to choose large "random" prime numbers?

- Miller-Rabin procedure checks whether x is prime. Usually!
  - Guess, and use subroutine to check.
- Number theory  $\,\Rightarrow\,$  n /  $\log_e$  n prime numbers between 2 and n.
  - $\mathscr{I}$  Primes are plentiful:  $4.3 \times 10^{97}$  with  $\leq 100$  digits.

#### How to compute d efficiently?

- Existence guaranteed since  $gcd(e, \phi) = 1$ .
- . Fancy version of Euclid's algorithm.

|                      | Where to go from Here?                            |          |
|----------------------|---------------------------------------------------|----------|
|                      |                                                   | Course:  |
| COS 415:             | Applied Discrete Optimization                     | Instruct |
| COS 451:             | Computational Geometry                            | TAs:     |
| COS 487:             | Theory of Computation                             | Lecture  |
| COS 496:             | Cryptography                                      | Time:    |
| COS 521:<br>COS 524: | Advanced Algorithms<br>Combinatorial Optimization | Fill out |
| COS 525:             | Mathematical Analysis of Algorithms               | . Sect   |
| COS 528:             | Data Structures and Graph Algorithms              | . Sect   |
| COS 551:             | Genomics and Computational Biology                | . Sect   |
| ORF 307, 522:        | Linear Programming                                | All ansv |
| ORF 547:             | Dynamic Programming                               |          |
|                      |                                                   |          |
|                      | 37                                                |          |

### **Course Evaluations**

| Course:     | COS 423                    |  |
|-------------|----------------------------|--|
| Instructor: | Kevin Wayne                |  |
| TAs:        | Edith Elkind, Sumeet Sobti |  |
| Lecture:    | 1                          |  |
| Time:       | MW 1:30-2:50               |  |

#### with a #2 pencil:

- tion I: Lectures.
- tion VI: Readings.
- ction VII: Papers, reports, problem sets, examinations.
- tion VIII: General.

wers are confidential.

 $\equiv$  **M** (1) <sup>k(q-1)</sup>

(trivially true if M = 0)

= M

 $\mathbf{M}^{ed} \equiv \mathbf{M}$ 

Finally. •  $M^{ed} \equiv M$  (mod p)

(mod p)

(mod q)

(mod pq)  $\overline{}$ 

n



#### **RSA Public-Key Cryptosystem** Why does it work? Rigorously. • M' = C<sup>d</sup> (mod n) = M<sup>ed</sup> (mod n) Now, since $\phi = (p-1)(q-1)$ and $e d \equiv 1 \pmod{\phi}$ • ed = 1 + k(p-1)(q-1) for some integer k. Fermat's Little Theorem A little manipulation. • $M^{ed} \equiv M M^{(p-1) k(q-1)}$ (mod p)

if p is prime, then for all  $a \neq 0$  $a^{p-1} \equiv 1 \pmod{p}$ 

#### **Chinese Remainder Theorem**

| if p, q prime then for all x, a                                                                  |
|--------------------------------------------------------------------------------------------------|
| x ≡ a (mod pq) ⇔                                                                                 |
| $\mathbf{x} \equiv \mathbf{a} \pmod{\mathbf{p}}, \mathbf{x} \equiv \mathbf{a} \pmod{\mathbf{q}}$ |