
Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

Reductions

Some of these lecture slides are adapted
from CLRS Chapter 31.5 and Kozen Chapter 30.

2

Contents

Contents.

■ "Linear-time reductions."

■ Undirected and directed shortest path.

■ Matrix inversion and multiplication.

■ Integer division and multiplication.

■ Sorting and convex hull.

3

Reduction

Intuitively, decision problem X reduces to problem Y if:

■ Any instance of X can be "rephrased" as an instance of Y.

■ The solution to instance of Y provides solution to instance of X.

Consequences:

■ Used to establish relative difficulty between two problems.

■ Given algorithm for Y, we can also solve X. (design algorithms)

■ If X is hard, then so is Y. (prove intractability)

4

Reduction

Problem X linearly reduces to problem Y if, given a black box that
solves Y in O(f(N)) time, we can devise an O(f(N)) algorithm for X.

Ex 1. X = PRIME linearly reduces to Y = COMPOSITE.

■ PRIME(x): Is x prime?

■ COMPOSITE(x): Is x composite?

■ To compute PRIME(x), call COMPOSITE(x) and return opposite
answer.

5

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly
reduces to directed shortest path.

■ Replace each directed arc by two undirected arcs.

■ Shortest directed path will use each arc at most once.

s

2

3

5

6 t5

10

12

15

9

12

10154

s

2

3

5

6 t5

10

12

15

9

12

104

9

10

4

15

12 12

10
1515

6

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly
reduces to directed shortest path.

■ Replace each directed arc by two undirected arcs.

■ Shortest directed path will use each arc at most once.

■ Note: reduction invalid in networks with negative cost arcs, even if
no negative cycles.

t2s 7 -4

t2s 7 -4

7 -4

7

Network Flow Running Times and Linear Time Reductions
undirected shortest path

nonnegative weights
O(m)

shortest path
nonnegative weights

O(m + n log n)

undirected shortest path
no negative cycles

O(mn + n2 log n)

shortest path
no negative cycles

O(mn)

assignment
(weighted bipartite matching)

O(mn + n2 log n)

weighted non-
bipartite matching
O(mn + n2 log n)

directed MST
O(m + n log n)

MST
undirected

O(m α(m,n) log α(m,n))

non-bipartite
matching
O(mn1/2)

bipartite matching
O(mn1/2)

max flow
bipartite DAG

O(mn log(m/ n2))

max flow
O(mn log(m/ n2))

min cut
O(mn log(m/ n2))

max flow
undirected

min cut
undirected

min cost flow
O(m2 log n + mn log2 n)

transportation
O(m2 log n + mn log2 n)

min vertex cover
bipartite
O(mn1/2)

8

Matrix Inversion

Fundamental problem in numerical analysis.

■ Intimately tied to solving system of linear equations.

■ Note: avoid explicitly taking inverses in practice.
















=
















=
















=

3

2

1

,

12

6

4

,

215

202

451

x

x

x

xbA

.
9
8

,
3
1

,
9

19

12215

6202

4451

321

321

321

321

=−==⇒

=++
=++
=++

xxx

xxx

xxx

xxx
















−==

















−
−
−−

= −−

9/8

3/1

9/19

,

18/53/218/1

6/12/16/1

18/56/118/1
11 bAxA

9

Matrix Multiplication vs. Matrix Inversion (CLR 31.5)

Matrix multiplication and inversion have same asymptotic complexity.

■ M(N) = time to multiply to N x N matrices.

■ I(N) = time to invert N x N matrix.

■ Note: we don’t know asymptotic complexity of either!

Proof (matrix multiplication linearly reduces to inversion).

■ Regularity assumption: I(3N) = O(I(N)).
! Holds if I(N) = Nα, since then I(3N) = (3N)α = 3α I(N).
! Holds if if I(N) = Θ (Nα logβ N).

■ To compute C = AB, define 3N x 3N matrix D.
















=

N

N

N

I
BI

AI
D

00

0

0
















−

−
=−

N

N

N

I
BI

ABAI
D

00

01

10

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

■ Regularity assumption: M(N + k) = O(M(N)) for 0 ≤ k < N.
! Holds if M(N) = Θ (Nα log β N) for some α ≥ 2, β ≥ 0.

■ WLOG: assume N is a power of 2.
! Pad with 0s.

■ WLOG: assume A is symmetric positive definite.
! if A is invertible, then ATA is symmetric positive definite.
! A-1 = (ATA)-1 AT.
! Only two extra matrix multiplications.







=




 −

kk I

A
I

A

0

0
0

0 1

11

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

■ To invert N x N symmetric positive definite matrix A, partition into 4
N/2 x N/2 submatrices.

! Note: B and S (Schur complement) are symmetric positive
definite since A is.

T

TT

CBCDS

SBCS

SCBBCSCBB
A

1

111

111111
1

−

−−−

−−−−−−
−

−=







−

−+=






=

DC
CBA

T

21
111

3

1
111

2

1
1

1
1

2

11
1

PPCBSCBP

PSCBSP

PDCCBDS

PCCCBP

BCCBP

TT

T

T

×==
×==

−=−=
×==
×==

−−−

−−−

−

−

−−

12

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

■ Running time.
! 4 half-size matrix multiplications.
! 2 half-size matrix inversions.
! 2 half-size matrix addition, subtraction.

))((

))(()2/(2

)()2/(4)2/(2)(2

NMO
NMONI

NONMNINI

=
+=

++=

13

Integer Arithmetic

Fundamental questions.

■ Is integer addition easier than integer multiplication?

■ Is integer multiplication easier than integer division?

■ Is integer division easier than integer multiplication?

Addition

Operation

O(N)

Upper Bound

Ω(N)

Lower Bound

Multiplication O(N log N log log N) Ω(N)

Division O(N log N log log N) Ω(N)

14

Warmup: Squaring vs. Multiplication

Integer multiplication: given two N-digit integer s and t, compute st.

Integer squaring: given an N-digit integer s, compute s2.

Theorem. Integer squaring and integer multiplication have the same
asymptotic complexity.

Proof.

■ Squaring linearly reduces to multiplication.
– trivial: multiply s and s

■ Multiplication linearly reduces to squaring.
– regularity assumption: S(N+1) = O(S(N))

))((222
2
1 tstsst −−+=

15

Integer Division (See Kozen, Chapter 30)

Integer division: given two integers s and t of at most N digits each,
compute the quotient q and remainder r:

■ q = s / t , r = s mod t.

■ Alternatively, s = qt +r, 0 ≤ r < t.

Example.

■ s = 1000, t = 110 ⇒ q = 9, r = 10.

■ s = 4905648605986590685, t = 100 ⇒ r = 85.

We show integer division linearly reduces to integer multiplication.

16

Integer Division: "Grade-School"

Divide two integers, each
is N bits or less.

■ q = s / t
■ r = s mod t.

Running time. O(N2).

■ O(N) per iteration + recursive calls.

■ Denominator increases by factor of 2 each iteration.
– s < 2N and does not change
– 1 ≤ t ≤ s throughout

⇒ O(N) recursive calls

IF (s < t)
RETURN (0, t)

(q’, r’) ← IntegerDivision(s, 2t)

IF (r’ < t)
RETURN(2q’, r’)

ELSE
RETURN (2q’ + 1, r’ - t)

(q, r) = IntegerDivision (s, t)

17

Integer Division: "Grade-School"

The algorithm correctly compute q = s / t , r = s mod t.

Proof by reverse induction.

■ Base case: t > s.

■ Inductive step: algorithm computes q’, r’ such that

– q’ = s / 2t , r’ = s mod 2t.
– s = q’ (2t) + r’, 0 ≤ r’ < 2t.

■ Goal: show




+′

<′′
=





otherwise12

 if2

q

trq

t
s





 ′

+′=





 ′+′

=





t
r

q

t
rtq

t
s

2

)2(

18

Newton’s Method

Given a differentiable function f(x), find a value x* such that f(x*) = 0.

Newton’s method.

■ Start with initial guess x0.

■ Compute a sequence of approximations:

■ Equivalent to finding line of tangent to curve y = f(x) at xi and
taking xi+1 to be point where line crosses x-axis.

.
)(
)(

1
i

i
ii xf

xf
xx

′
−=+

xi

xi+1

19

Newton’s Method

Convergence of Newton’s method.

■ Not guaranteed to converge to a root x*.

■ If function is well-behaved, and x0 sufficiently close to x* then
Newton’s method converges quadratically.

– number of bits of accuracy doubles at each iteration

Applications.

■ Computing square roots:

■ Finding min / max of function.
! Extends to multivariate case.

■ Cornerstone problem in continuous optimization.

■ Interior point methods for linear programming.

)(

)(

2
1

1

2

ix
t

ii xx
xtxf

+=
−=

+

20

Integer Division: Newton’s Method

Our application of Newton’s method.

■ We will use exact binary arithmetic and obtain exact solution.

■ Approximately compute x = 1 / t using Newton’s method.

■ We’ll show exact answer is either s x or s x.

Theorem: given a O(M(N)) algorithm for multiplying two N-digit
integers, there exists an O(M(N)) algorithm for dividing two integers,
each of which is at most N-digits.

2
1 2

1
)(

iii txxx
x

txf

−=

−=

+

21

Integer Division: Newton’s Method Example

Compute: 1 / 7.
■ x0 = 0.1

■ x1 = 0.13

■ x2 = 0.1417

■ x3 = 0.142847770

■ x4 = 0.14285714224218970

■ x5 = 0.14285714285714285449568544449737

■ x6 = 0.1428571428571428571428571428571428080902311386
7839307631644158170

■ x7 = 0.1428571428571428571428571428571428571428571428571
428571428571428571260140220318020240406844673408393

Compute 123456 / 7.
■ 123456 * x5 = 17636.57142857142824461934223586731072000

■ Correct answer is either 17636 or 17637.

2
1 2

1
)(

iii txxx
x

txf

−=

−=

+

1

1

2

4

9

17

34

67

22

Integer Division: Newton’s Method

Arbitrary precision rational x.

Choose x to be unique fractional power of
2 in interval (1/2t, 1/t].

WHILE (s – s x t ≥ t)

x ← 2x – tx 2

IF (s - s x  t < t)

q = s x 

ELSE

q = s x , r = s - qt

r = s - qt

(q, r) = NewtonIntegerDivision (s, t)

23

Analysis

L1:

Proof by induction on i.

■ Base case:

■ Inductive hypothesis:

.
1

2
1

210 t
xxx

t
≤≤≤≤< L

.
1

2
1

0 t
x

t
≤<

.
1

2
1

10 t
xxx

t i ≤≤≤≤< L

i

i

iii

x

ttx

xtxx

=
−≥
−=+

))/1(2(

)2(1

t

ttxt

ttxtx

xtxx

i

ii

iii

/1

/1)/1(

/1/12

2

2

2

2
1

≤
+−−=

+−−=
−=+

24

Analysis

L2: Sequence of Newton iterations converges quadratically to 1 / t.
Iterate xi is approximates 1 / t to 2i significant bits of accuracy.

Proof by induction on i.

■ Base case:

■ Inductive hypothesis:

02
1

x
t

<

12

2

2

2

2
1

2

1
2

1

)1(

)2(11

+

+

=






<

−=
−−=−

i

i

iii

i

xt

xtxtxt

iixt
22

1
1 <−

.
2

1
1

2iitx <−

25

Analysis

L3: Algorithm terminates after O(log N) steps.

■ By L2, after k = log2 log2 (s / t)  steps, we have:
Note: 2k = O(N), k = O(log N).

L4: Algorithm returns correct answer.

■ By L1, xk ≤ 1 / t.

■ Combining with proof of L3:

■ This implies, s / t  is either s xk  or  s xk  ;
the remainder can be found by subtraction.

10 <−≤ ksx
t
s

.
2

1
1

2 s
t

tx kk ≤<−

26

Analysis

Theorem: Newton’s method does integer division in O(M(N)) time,
where M(N) is the time to do multiply two N-digit integers.

■ By L3, 2k = O(N), and the number of iterations is O(log N).

■ Each Newton iteration involves two multiplications, one addition,
and one subtraction.

■ Technical fact (not proved here): algorithm still works if we only
keep track of 2i significant digits in iteration i.

! Bottleneck operation = multiplications.
! 2M(1) + 2M(2) + 2M(4) + . . . + 2M(2k) = O(M(N)).

2
1 2

1
)(

iii txxx
x

txf

−=

−=

+

27

Integer Arithmetic

Theorem: The following integer operations have the same asymptotic
bit complexity.

■ Multiplication.

■ Squaring.

■ Division.

■ Reciprocal: N-significant bit approximation of 1/s. 






 −

s

N 122

28

Sorting and Convex Hull

Sorting.

■ Given N distinct integers, rearrange in increasing order.

Convex hull.

■ Given N points in the plane, find their convex hull in counter-
clockwise order.

! Find shortest fence enclosing N points.

29

Sorting and Convex Hull

Sorting.

■ Given N distinct integers, rearrange in increasing order.

Convex hull.

■ Given N points in the plane, find their convex hull in counter-
clockwise order.

Lower bounds.

■ Recall, under comparison-based model of computation, sorting N
items requires Ω(N log N) comparisons.

■ We show sorting linearly reduces to convex hull.

■ Hence, finding convex hull of N points requires Ω(N log N)
comparisons.

30

Sorting Reduces to Convex Hull

Sorting instance:

Convex hull instance.

Key observation.

■ Region {x : x2 ≥ x} is convex ⇒
all points are on hull.

■ Counter-clockwise order of
convex hull (starting at point
with most negative x) yields
items in sorted order.

),(,),,(),,(22
22

2
11 NN xxxxxx K

Nxxx ,,, 21 K

f(x) = x2

)2,(ixix

)2,(jxjx

