Reductions

Some of these lecture slides are adapted

Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne

from CLRS Chapter 31.5 and Kozen Chapter 30.

Contents

Contents.

. "Linear-time reductions."

. Undirected and directed shortest path.
Matrix inversion and multiplication.
Integer division and multiplication.

. Sorting and convex hull.

Reduction

Intuitively, decision problem X reduces to problem Y if:
. Any instance of X can be "rephrased" as an instance of VY.
. The solution to instance of Y provides solution to instance of X.

Consequences:
. Used to establish relative difficulty between two problems.
. Given algorithm for Y, we can also solve X. (design algorithms)
If Xis hard, then so is Y. (prove intractability)

Reduction

Problem X linearly reduces to problem Y if, given a black box that
solves Y in O(f(N)) time, we can devise an O(f(N)) algorithm for X.

Ex 1. X = PRIME linearly reduces to Y = COMPOSITE.
. PRIME(X): Is x prime?
. COMPOSITE(x): Is x composite?

. To compute PRIME(x), call COMPOSITE(x) and return opposite
answer.

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly
reduces to directed shortest path.

. Replace each directed arc by two undirected arcs.
. Shortest directed path will use each arc at most once.

10 4 15 15 10
®—— > —é 12 ® 12\®

@~ 9 »G

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly
reduces to directed shortest path.

. Replace each directed arc by two undirected arcs.
. Shortest directed path will use each arc at most once.

. Note: reduction invalid in networks with negative cost arcs, even if
no negative cycles.

O—"—@—+—@

Network Flow Running Times and Linear Time Reductions

MST undirected shortest path
undirected nonnegative weights
O(m a(m,n) log a(m,n)) O(m)

shortest path directed MST

min vertex cover . . . nonnegative weights O(m +nlog n)
bipartite <« bipartite matching O(m + n log n)
o(mn*2) O(mn¥2)

non-bipartite
matching

12
) shortest path

min cut R max flow no negative cycles
undirected undirected O(mn) undirected shortest path
no negative cycles
l X O(mn + n?log n)
. assignment
min cut max flow <« bi;;g?:(itfeIOI;VAG (weighted bipartite mgtching)

O(mn log(m/ n?)] O(mn log(m/ n?) o(mn log(m/ n?)) o(mn +n2lo

weighted non-
bipartite matching

O(mn + n?log n)
min cost flow

¢ > transportation
O(m?log n +mn log? n)

O(m?log n +mn log? n)

Matrix Inversion

Fundamental problem in numerical analysis.
. Intimately tied to solving system of linear equations.
. Note: avoid explicitly taking inverses in practice.

Do+ 5 o4 = 4 7540 BB oD
2%, + 0x, + 2x3 = 6 A= 0 25 b=gbQpg X=X,
5X, + 1x, + 2x; = 12 B 12 HeH HxsH
a x1=§, x2=—1, x3=§.
9 3 9
1/18 -1/6 5/18 io/9]
Al=g1/6 -1/2 1/6 x=Ab=[r1/3Q
Hi/18 2/3 -s5/18H Hero H

Matrix Multiplication vs. Matrix Inversion (CLR 31.5)

Matrix multiplication and inversion have same asymptotic complexity.
. M(N) =time to multiply to N x N matrices.

. I(N) =timeto invert N x N matrix.

. Note: we don’t know asymptotic complexity of either!

Proof (matrix multiplication linearly reduces to inversion).

. Regularity assumption: 1(3N) = O(I(N)).
Holds if I(N) = N9 since then I(3N) = (3N)* =39 [(N).
Holds if if IN) = © (N® logPN).

. To compute C = AB, define 3N x 3N matrix D.

N A 0f Ov -A AB[
D=0 Iy BQO| |Dt=go0 Iy -BQO

Ho o 1wH H o A

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).
. Regularity assumption: M(N + k) = O(M(N)) for 0<k <N.
Holds if M(N) =© (N® log BN) for somea =2, B=0.

. WLOG: assume N is a power of 2.
Pad with 0s.

Eg Ii%z EAol IOKE

. WLOG: assume A is symmetric positive definite.

if Ais invertible, then ATA is symmetric positive definite.

& Al=(ATA)TAT,
Only two extra matrix multiplications.

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

. Toinvert N x N symmetric positive definite matrix A, partition into 4
N/2 x N/2 submatrices.

Note: B and S (Schur complement) are symmetric positive
definite since A is.

e %‘1 +BC'sCcB™" - B_1CTS_1E

-
A=E ‘;H -sicp? st
s=D-cB!CT
p, = cB™? = cxB™*
P, = cB'CT = CxP
S = D-cBlcT = D-P
P, = s’'cB™ = S'xp

P, = B'C'S™cB? = P xP,

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).
. Running time.
4 half-size matrix multiplications.
2 half-size matrix inversions.
2 half-size matrix addition, subtraction.

I(N) 2I(N12) + 4M(N/2) + O(N?)
21(N/2) + O(M(N))

O(M(N))

Integer Arithmetic

Fundamental questions.
. Isinteger addition easier than integer multiplication?
. Is integer multiplication easier than integer division?
. Is integer division easier than integer multiplication?

Operation Upper Bound Lower Bound
Addition O(N) Q(N)
Multiplication O(N log N log log N) Q(N)
Division O(N log N log log N) Q(N)

Warmup: Squaring vs. Multiplication

Integer multiplication: given two N-digit integer s and t, compute st.
Integer squaring: given an N-digit integer s, compute s2.

Theorem. Integer squaring and integer multiplication have the same
asymptotic complexity.

Proof.
. Squaring linearly reduces to multiplication.

—trivial: multiply s and s

. Multiplication linearly reduces to squaring.
- regularity assumption: S(N+1) = O(S(N))

st=1((s+1)*-s*-1%)

Integer Division (See Kozen, Chapter 30)

Integer division: given two integers s and t of at most N digits each,
compute the quotient g and remainder r:

. g=0/t0, r=smodt.
. Alternatively,s=qt +r,0<r <t.

Example.

. $=1000,t=110 0 q=9,r=10.
. s = 4905648605986590685, t = 100 O r = 85.

We show integer division linearly reduces to integer multiplication.

Integer Division: "Grade-School"

Divide two integers, each (g, r) = IntegerDivision (s, t)

is N bits or less.
. g=0/t0
. r=smodt.

IF (s <t)
RETURN (0, t)

(g, r') < IntegerDivision(s, 2t)

IF (r <1t)
RETURN(2q’, r')
ELSE

RETURN (29" + 1, r' - t)

Running time. O(N32).
. O(N) per iteration + recursive calls.
. Denominator increases by factor of 2 each iteration.
-s < 2Nand does not change

-1<t<sthroughout
O O(N) recursive calls

Integer Division: "Grade-School"

The algorithm correctly compute q =3 /t00, r =s mod t.

Proof by reverse induction.

. Basecase: t>s.

. Inductive step: algorithm computes q’, r’ such that
-g'=0$/2t0, r=s mod 2t.
-s=q ' (2)+r,0<r <2t

q if r'<t

2
. Goal: show U D:E
Ht B 0 29'+1 otherwise

Oos o _ oOq@2t)+r' o

BeHE B ¢t B
_ , . arao
= 2q+57ﬁ

Newton's Method

Given a differentiable function f(x), find a value x* such that f(x*) = 0.

Newton’s method.
. Start with initial guess Xx,,.

f(x)
. Compute a sequence of approximations: Xj+1 = Xj — :

f'(x;)

. Equivalent to finding line of tangent to curve y = f(x) at x; and
taking X;,, to be point where line crosses x-axis.

Newton’'s Method

Convergence of Newton’s method.
. Not guaranteed to converge to aroot x*.

. If function is well-behaved, and X, sufficiently close to x* then
Newton’s method converges quadratically.

- number of bits of accuracy doubles at each iteration

Applications.
. Computing square roots: f(x)
Xj+1 = %(Xi + X%)
. Finding min / max of function.
Extends to multivariate case.

2

t - X

. Cornerstone problem in continuous optimization.
. Interior point methods for linear programming.

Integer Division: Newton’s Method

Our application of Newton’s method.

. We will use exact binary arithmetic and obtain exact solution.
. Approximately compute x =1/t using Newton’s method.

. We’'ll show exact answer is either [$ xOor [$ xO

f (x)

Xisg = 2%

11
—
|

Theorem: given a O(M(N)) algorithm for multiplying two N-digit
integers, there exists an O(M(N)) algorithm for dividing two integers,
each of which is at most N-digits.

Integer Division: Newton's Method Example Integer Division: Newton’s Method
Compute: 1/7. (q, r) = NewtonlIntegerDivision (s, t)
1
B .x =01 f(x) = t-=
. x. = 0.13 X . Arbitrary precision rational x.
v Xisp = 2% ~ X
- Xy = 0.1417 Choose x to be unique fractional power of
. Xz = 0.142847770 2 ininterval (1/2t, 1/t].
B - x. = 0. 14285714224218970 WHLE (s — sxt >1)
. X5 = 0.14285714285714285449568544449737 X « 2x—tx ?
- . Xg = 0.1428571428571428571428571428571428080902311386
34
7839307631644158170 IE (s- Bx Ot<t)
. X7 = 0.1428571428571428571428571428571428571428571428571
428571428571428571260140220318020240406844673408393 g= Bx O
Compute [123456/ 70 ELSE
. 123456 * xg = 17636.57142857142824461934223586731072000 g= B Ur=s- g
. Correct answer is either 17636 or 17637. r=s- qt
Analysis Analysis
L1: T < Xg S X S Xp € o € } L2: Sequ_ence of Newton iterations converges q_uadratically tol/t.
2t t Iterate x; is approximates 1/t to 2'significant bits of accuracy.
1
Proof by induction on i. 1-tx < 52
Base case: Proof by induction on i.
< x <} . Base case: 1
07 - 57 < Xo
2t
Inductive hypothesis: 1
< Xp € X, S-S X < } Inductive hypothesis: 1-tx < —-
i t 22
1-t Xy = 1-t(2x -t x?)
- 2
Xy = X(2-tX) Xisg = 2% ~tX = (1-tx)?
> x(2-t(1/1) = 2% —tx7-1/t+1/t g1 HZ
= X = _t(Xi _1/t)2+1/t < [QZ‘ O
< 1/t _ 1
- i+l
22

Analysis

L3: Algorithm terminates after O(log N) steps. 1
. By L2, after k = dog, log, (s / t) Osteps, we have: 1-tx, < > S
Note: 2%=O(N), k = O(log N). 2

L4: Algorithm returns correct answer.
By L1, x, < 1/t

- s <1

~ | (n

. Combining with proof of L3: 0<

. This implies, 5/t Ois either [$ x, Oor Us x, [
the remainder can be found by subtraction.

(7]

Integer Arithmetic

Theorem: The following integer operations have the same asymptotic
bit complexity.
. Multiplication.

. Squaring.
. Division.
. S . . . 022N-1 0
. Reciprocal: N-significant bit approximation of 1/s. =3
oS O

Analysis

Theorem: Newton’s method does integer division in O(M(N)) time,
where M(N) is the time to do multiply two N-digit integers.

. By L3, 2k=0(N), and the number of iterations is O(log N).
Each Newton iteration involves two multiplications, one addition,
and one subtraction.

f(x)

Xisg = 2X

Il
—
I

I X |k

. Technical fact (not proved here): algorithm still works if we only
keep track of 2 significant digits in iteration i.
Bottleneck operation = multiplications.
2M(1) + 2M(2) + 2M(4) + . . . + 2M(2%) = O(M(N)).

Sorting and Convex Hull

Sorting.
. Given N distinct integers, rearrange in increasing order.

Convex hull.
. Given N points in the plane, find their convex hull in counter-

clockwise order.
Find shortest fence enclosing N points.

~

~

Sorting and Convex Hull

Sorting.
. Given N distinct integers, rearrange in increasing order.

Convex hull.
. Given N points in the plane, find their convex hull in counter-
clockwise order.

Lower bounds.
Recall, under comparison-based model of computation, sorting N
items requires Q(N log N) comparisons.

. We show sorting linearly reduces to convex hull.

Hence, finding convex hull of N points requires Q(N log N)
comparisons.

Sorting Reduces to Convex Hull

Sorting instance:
X1, X4 .ees XN

Convex hull instance.

(X1, x2), (X2, X3), e, (Xps XR)

Key observation.
Region {x : x2=x} is convex O
all points are on hull.

. Counter-clockwise order of
convex hull (starting at point

f(x) = x2

with most negative x) yields
items in sorted order.

