Contents

Reductions

Some of these lecture slides are adapted from CLRS Chapter 31.5 and Kozen Chapter 30.

Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

Reduction

Intuitively, decision problem X reduces to problem Y if:

- Any instance of X can be "rephrased" as an instance of Y.
- The solution to instance of Y provides solution to instance of X.

Consequences:

- . Used to establish relative difficulty between two problems.
- Given algorithm for Y, we can also solve X. (design algorithms)
- . If X is hard, then so is Y. (prove intractability)

Reduction

Problem X linearly reduces to problem Y if, given a black box that solves Y in O(f(N)) time, we can devise an O(f(N)) algorithm for X.

- Ex 1. X = PRIME linearly reduces to Y = COMPOSITE.
- PRIME(x): Is x prime?

Contents.

"Linear-time reductions."

Sorting and convex hull.

Undirected and directed shortest path.
Matrix inversion and multiplication.
Integer division and multiplication.

- . COMPOSITE(x): Is x composite?
- To compute PRIME(x), call COMPOSITE(x) and return opposite answer.

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

- . Replace each directed arc by two undirected arcs.
- . Shortest directed path will use each arc at most once.

Reduction: Undirected to Directed Shortest Path

Ex 2. Undirected shortest path (with nonnegative weights) linearly reduces to directed shortest path.

- Replace each directed arc by two undirected arcs.
- Shortest directed path will use each arc at most once.
- Note: reduction invalid in networks with negative cost arcs, even if no negative cycles.

Matrix Inversion

Fundamental problem in numerical analysis.

- . Intimately tied to solving system of linear equations.
- Note: avoid explicitly taking inverses in practice.

$$1x_1 + 5x_2 + 4x_3 = 4$$

$$2x_1 + 0x_2 + 2x_3 = 6$$

$$5x_1 + 1x_2 + 2x_3 = 12$$

$$\Rightarrow x_1 = \frac{19}{9}, x_2 = -\frac{1}{3}, x_3 = \frac{8}{9}$$

$$A = \begin{pmatrix} 1 & 5 & 4 \\ 2 & 0 & 2 \\ 5 & 1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 6 \\ 12 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

	(-1/18	-1/6	5/18		(19/9)
$A^{-1} =$	1/6	-1/2	1/6	$x = A^{-1}b =$	-1/3
	1/18	2/3	-5/18		8/9

Matrix Multiplication vs. Matrix Inversion (CLR 31.5)

Matrix multiplication and inversion have same asymptotic complexity.

- M(N) = time to multiply to N x N matrices.
- . I(N) = time to invert N x N matrix.
- Note: we don't know asymptotic complexity of either!

Proof (matrix multiplication linearly reduces to inversion).

- Regularity assumption: I(3N) = O(I(N)).
 - \mathscr{I} Holds if I(N) = N^{α}, since then I(3N) = (3N)^{α} = 3^{α} I(N).
 - \mathscr{I} Holds if if I(N) = Θ (N^{α} log^{β} N).
- To compute C = AB, define 3N x 3N matrix D.

$D = \begin{pmatrix} I_N \\ 0 \\ 0 \end{pmatrix}$	A I _N	0 B	D ⁻¹ =		– A I _N	АВ - В
(0	0	I N)		0	0	I _N)

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

- Regularity assumption: M(N + k) = O(M(N)) for $0 \le k < N$.
- WLOG: assume N is a power of 2.

Pad with 0s.

(A	0)	_	A^{-1}	0)
0	I_k	-	0	I_k

- . WLOG: assume A is symmetric positive definite.
 - ✓ if A is invertible, then A^TA is symmetric positive definite.
 - $\mathscr{I} A^{-1} = (A^T A)^{-1} A^T.$
 - Only two extra matrix multiplications.

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

- To invert N x N symmetric positive definite matrix A, partition into 4 N/2 x N/2 submatrices.
 - Note: B and S (Schur complement) are symmetric positive definite since A is.

$$A = \begin{pmatrix} B & C^{T} \\ C & D \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} B^{-1} + B^{-1}C^{T}S^{-1}CB^{-1} & -B^{-1}C^{T}S^{-1} \\ -S^{-1}CB^{-1} & S^{-1} \end{pmatrix}$$

$$S = D - CB^{-1}C^{T}$$

$$P_{1} = CB^{-1} = C \times B^{-1}$$

$$P_{2} = CB^{-1}C^{T} = C \times P_{1}$$

$$S = D - CB^{-1}C^{T} = D - P_{1}$$

$$P_{2} = S^{-1}CB^{-1} = S^{-1} \times P_{1}$$

$$P_{3} = B^{-1}C^{T}S^{-1}CB^{-1} = P_{1}^{T} \times P_{2}$$

Matrix Multiplication vs. Matrix Inversion

Proof (matrix inversion linearly reduces to multiplication).

- Running time.
 - 4 half-size matrix multiplications.
 - 2 half-size matrix inversions.
 - 2 half-size matrix addition, subtraction.

$$I(N) = 2I(N/2) + 4M(N/2) + O(N^2)$$

= 2I(N/2) + O(M(N))
= O(M(N))

Integer Arithmetic

Fundamental questions.

- . Is integer addition easier than integer multiplication?
- . Is integer multiplication easier than integer division?
- . Is integer division easier than integer multiplication?

Operation	Upper Bound	Lower Bound
Addition	O(N)	Ω (N)
Multiplication	O(N log N log log N)	Ω (N)
Division	O(N log N log log N)	Ω (N)

Warmup: Squaring vs. Multiplication

Integer multiplication: given two N-digit integer s and t, compute st.

Integer squaring: given an N-digit integer s, compute s².

Theorem. Integer squaring and integer multiplication have the same asymptotic complexity.

Proof.

- Squaring linearly reduces to multiplication. – trivial: multiply s and s
- Multiplication linearly reduces to squaring.
 regularity assumption: S(N+1) = O(S(N))

$$st = \frac{1}{2}((s+t)^2 - s^2 - t^2)$$

Integer Division (See Kozen, Chapter 30)

Integer division: given two integers s and t of at most N digits each, compute the quotient q and remainder r:

- $q = \lfloor s/t \rfloor$, $r = s \mod t$.
- . Alternatively, s = qt +r, 0 \leq r < t.

Example.

- . s = 1000, t = 110 \Rightarrow q = 9, r = 10.
- . s = 4905648605986590685, t = 100 \implies r = 85.

We show integer division linearly reduces to integer multiplication.

Integer Division: "Grade-School"

Divide two integers, each is N bits or less.

- . q=[s/t]
- r = s mod t.

(q, r) = IntegerDivision (s, t)

```
IF (s < t)
RETURN (0, t)
```

```
(q', r') \leftarrow IntegerDivision(s, 2t)
```

```
IF (r' < t)
     RETURN(2q', r')
ELSE
     RETURN (2q' + 1, r' - t)</pre>
```

Running time. O(N²).

- O(N) per iteration + recursive calls.
- Denominator increases by factor of 2 each iteration.
 - $-s < 2^{N}$ and does not change
 - $-1 \le t \le s$ throughout
 - \Rightarrow O(N) recursive calls

Integer Division: "Grade-School"

The algorithm correctly compute $q = \lfloor s / t \rfloor$, $r = s \mod t$.

Proof by reverse induction.

- Base case: t > s.
- Inductive step: algorithm computes q', r' such that

$$-q' = \lfloor s / 2t \rfloor, r' = s \mod 2t.$$

$$-s = q'(2t) + r', 0 \le r' < 2t.$$

• Goal: show $\left\lfloor \frac{s}{t} \right\rfloor = \begin{cases} 2q' & \text{if } r' < t \\ 2q'+1 & \text{otherwise} \end{cases}$

 $\left\lfloor \frac{s}{t} \right\rfloor = \left\lfloor \frac{q'(2t) + r'}{t} \right\rfloor$ $= 2q' + \left\lfloor \frac{r'}{t} \right\rfloor$

Newton's Method

Convergence of Newton's method.

- Not guaranteed to converge to a root x*.
- If function is well-behaved, and x₀ sufficiently close to x* then Newton's method converges quadratically.
 - number of bits of accuracy doubles at each iteration

Applications.

Computing square roots:

 $f(x) = t - x^{2}$ $x_{i+1} = \frac{1}{2}(x_{i} + \frac{t}{x_{i}})$

- Finding min / max of function.
 - Extends to multivariate case.
- Cornerstone problem in continuous optimization.
- Interior point methods for linear programming.

Newton's Method

Given a differentiable function f(x), find a value x^* such that $f(x^*) = 0$.

Newton's method.

- Start with initial guess x₀.
- Compute a sequence of approximations: $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$.
- Equivalent to finding line of tangent to curve y = f(x) at x_i and taking x_{i+1} to be point where line crosses x-axis.

Integer Division: Newton's Method

Our application of Newton's method.

- We will use exact binary arithmetic and obtain exact solution.
- Approximately compute x = 1 / t using Newton's method.
- We'll show exact answer is either $\lfloor s x \rfloor$ or $\lceil s x \rceil$.

$$f(x) = t - \frac{1}{x}$$
$$x_{i+1} = 2x_i - tx_i^2$$

Theorem: given a O(M(N)) algorithm for multiplying two N-digit integers, there exists an O(M(N)) algorithm for dividing two integers, each of which is at most N-digits.

Integer Division: Newton's Method Example

Integer Division: Newton's Method

(q, r) = NewtonIntegerDivision (s, t)
Arbitrary precision rational x.
Choose x to be unique fractional power of 2 in interval $(1/2t, 1/t]$.
WHILE (s - s x t \geq t) x \leftarrow 2x - tx ²
IF $(s - \lfloor s x \rfloor t < t)$ q = $\lfloor s x \rfloor$
ELSE q = [s x], r = s - qt
r = s - qt

AnalysisL1: $\frac{1}{2t} < x_0 \le x_1 \le x_2 \le \dots \le \frac{1}{t}$.Proof by induction on i. $\frac{1}{2t} < x_0 \le \frac{1}{t}$.• Base case: $\frac{1}{2t} < x_0 \le \frac{1}{t}$.• Inductive hypothesis: $\frac{1}{2t} < x_0 \le x_1 \le \dots \le x_i \le \frac{1}{t}$. $x_{i+1} = x_i(2-tx_i)$ $x_{i+1} = 2x_i - tx_i^2$ $\ge x_i(2-t(1/t))$ $= 2x_i - tx_i^2 - 1/t + 1/t$ $= x_i$ $= -t(x_i - 1/t)^2 + 1/t$ $\le 1/t$

Analysis

 $1-tx_i < \frac{1}{2^{2^i}}.$

L2: Sequence of Newton iterations converges quadratically to 1/t. Iterate x_i is approximates 1/t to 2^i significant bits of accuracy.

Proof by induction on i.

• Base case: $\frac{1}{2t} < x_0$

Inductive hypothesis: $1 - t x_i < \frac{1}{2^{2^i}}$

$$1-t x_{i+1} = 1-t (2x_i - t x_i^2)$$

= $(1-t x_i)^2$
< $\left(\frac{1}{2^{2^i}}\right)^2$
= $\frac{1}{2^{2^{i+1}}}$

Analysis

L3: Algorithm terminates after O(log N) steps.

- By L2, after $k = \lceil \log_2 \log_2 (s/t) \rceil$ steps, we have: $1 tx_k < \frac{1}{2^{2^k}} \le \frac{t}{s}$. Note: $2^k = O(N)$, $k = O(\log N)$.
- L4: Algorithm returns correct answer.
- By L1, $x_k \le 1/t$.
- Combining with proof of L3: $0 \leq \frac{s}{t} sx_k < 1$
- This implies, $\lfloor s/t \rfloor$ is either $\lfloor s x_k \rfloor$ or $\lceil s x_k \rceil$; the remainder can be found by subtraction.

Analysis

Theorem: Newton's method does integer division in O(M(N)) time, where M(N) is the time to do multiply two N-digit integers.

- By L3, 2^k = O(N), and the number of iterations is O(log N).
- Each Newton iteration involves two multiplications, one addition, and one subtraction.

$$f(x) = t - \frac{1}{x}$$
$$x_{i+1} = 2x_i - tx_i^2$$

 Technical fact (not proved here): algorithm still works if we only keep track of 2ⁱ significant digits in iteration i.

Bottleneck operation = multiplications.

 \mathscr{I} 2M(1) + 2M(2) + 2M(4) + . . . + 2M(2^k) = O(M(N)).

Integer Arithmetic

Theorem: The following integer operations have the same asymptotic bit complexity.

- . Multiplication.
- . Squaring.
- Division.
- Reciprocal: N-significant bit approximation of 1/s.

Sorting and Convex Hull

Sorting.

Given N distinct integers, rearrange in increasing order.

Convex hull.

- Given N points in the plane, find their convex hull in counterclockwise order.
 - Find shortest fence enclosing N points.

Sorting and Convex Hull

Sorting.

. Given N distinct integers, rearrange in increasing order.

Convex hull.

• Given N points in the plane, find their convex hull in counterclockwise order.

Lower bounds.

- Recall, under comparison-based model of computation, sorting N items requires $\Omega(N \log N)$ comparisons.
- . We show sorting linearly reduces to convex hull.
- Hence, finding convex hull of N points requires $\Omega(\rm N \log N)$ comparisons.

Sorting Reduces to Convex Hull

Sorting instance:

 $x_1, x_2, ..., x_N$

Convex hull instance.

 $(x_1,\,x_1^2),\;(x_2,\,x_2^2),\ldots,(x_N,\,x_N^2)$

Key observation.

- Region {x : $x^2 \ge x$ } is convex \Rightarrow all points are on hull.
- Counter-clockwise order of convex hull (starting at point with most negative x) yields items in sorted order.

