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NP-Completeness
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Properties of Algorithms

A given problem can be solved by many different algorithms.  Which 
ALGORITHMS will be useful in practice?

A working definition:  (Jack Edmonds, 1962)

■ Efficient:  polynomial time for ALL inputs.

■ Inefficient:  "exponential time" for SOME inputs.

Robust definition has led to explosion of useful algorithms for wide 
spectrum of problems.

■ Notable exception:  simplex algorithm.
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Exponential Growth

Exponential growth dwarfs technological change.

■ Suppose each electron in the universe had power of today’s 
supercomputers.

■ And each works for the life of the universe in an effort to solve TSP 
problem using N! algorithm.

■ Will not succeed for 1,000 city TSP!

1000!  >>  101000 >>  1079 × 1013 × 109 × 1012

Quantity Number

Home PC instructions / second 109

Supercomputer instructions / second 1012

Seconds per year 109

Age of universe † 1013

Electrons in universe † 1079

Some Numbers

†  Estimated
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Properties of Problems

Which PROBLEMS will we be able to solve in practice?

■ Those with efficient algorithms.

■ How can I tell if I am trying to solve such a problem?
! Theory of NP-completeness helps.

Yes Probably No

Shortest path Longest path

Euler cycle Hamiltonian cycle

Min cut Max cut

2-SAT 3-SAT

Matching 3D-Matching

Unknown

Primality

Factoring

Graph isomorphism

Baseball elimination Soccer elimination

PLANAR-2-COLOR PLANAR-3-COLOR

Bipartite vertex cover Vertex cover

PLANAR-4-COLOR PLANAR-3-COLOR
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P

Decision problem X.
■ X is a (possibly infinite) set of binary strings.
■ Instance:  finite binary string s, of length |s|.
■ Algorithm A solves X if  A(s) = YES  ⇔ s ∈ X.

Polynomial time.
■ Algorithm A runs in polynomial-time if for every instance s, A 

terminates in at most p(s) "steps", where p is some polynomial. 

Definition of P.
■ Set of all decision problems solvable in polynomial time on a 

deterministic Turing machine.

Examples:
■ MULTIPLE: Is the integer y a multiple of x?
■ RELPRIME: Are the integers x and y relatively prime?
■ PERFECT-MATCHING: Given graph G, is there a perfect matching?
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Strong Church-Turing Thesis

Definition of P fundamental because of SCT.

Strong Church-Turing thesis:
■ P is the set of decision problems solvable in polynomial time on

REAL computers.

Evidence supporting thesis:
■ True for all physical computers.
■ Can create deterministic TM that efficiently simulates any real 

general-purpose machine (and vice versa).

Possible exception?
■ Quantum computers:  no conventional gates.
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Efficient Certification

Certification algorithm.

■ Design an algorithm that checks whether proposed solution is a 
YES instance.

Algorithm C is an efficient certifier for X if:

■ C is a polynomial-time algorithm that takes two inputs s and t.

■ There exists a polynomial p( ) so that for every string s,  s ∈ X  ⇔
there exists a string t such that |t| ≤ p(|s|) and C(s, t) = YES.

Intuition.

■ Efficient certifier views things from "managerial" viewpoint.

■ It doesn’t determine whether s ∈ X  on its own.

■ Rather, it evaluates a proposed proof t that s ∈ X.

■ Accepts if and only if given a "short" proof of this fact.
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Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. s is composite  ⇔
there exists an integer 1 < t < s
such that s is a multiple of t.

■ YES instance:  s = 437,669.
– certificate t = 541 or 809 (a factor)

Certifier:
Is s a multiple of t?

NO

Input s:
437,669

Certificate t:  
541

s is a YES instance no conclusion

YES
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Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. s is composite  ⇔
there exists an integer 1 < t < s
such that s is a multiple of t.

■ YES instance:  s = 437,669.
– certificate t = 541 or 809 (a factor)

■ NO instance:  s = 437,677.
– no witness can fool verifier

into saying YES

■ Conclusion:  COMPOSITE ∈ NP.

Certifier:
Is s a multiple of t?

NO

Input s:
437,677

Certificate t:  
???

s is a YES instance no conclusion

YES
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Certifiers and Certificates

CLIQUE: Given an undirected graph, is there a subset S of k nodes 
such that there is an arc connecting every pair of nodes in S?

Certifier:
1. For all pairs of nodes v and w in t,

check that (v, w) is an edge in the graph.
2. Check that number of nodes in t ≤ k.

NO

Input s:

s is a YES instance no conclusion

YES
CLIQUE ∈ NP.

u

x

v

y

z w

Certificate t:  
{u, v, w, x}

k = 4
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Certifiers and Certificates

3-COLOR: Given planar map, can it be colored with 3 colors?

Certifier:
1. Check that s and t describe same map.
2. Count number of distinct colors in t.
3. Check all pairs of adjacent states.

NO

Input s: Certificate t:

s is a YES instance no conclusion

YES
3-COLOR ∈ NP.
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NP

Definition of NP:

■ Does NOT mean "not polynomial."

Definition of NP:

■ Set of all decision problems for which there exists an efficient
certifier.

■ Definition important because it links many fundamental problems.

Claim: P  ⊆ NP.
Proof: Consider problem X ∈ P.

■ Then, there exists efficient algorithm A(s) that solves X.

■ Efficient certifier B(s, t):  return A(s).
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NP

Definition of EXP:
■ Set of all decision problems solvable in exponential time on a 

deterministic Turing machine.

Claim: NP  ⊆ EXP.
Proof: Consider problem X ∈ NP.

■ Then, there exists efficient certifier C(s, t) for X.

■ To solve input s, run C(s, t) on all strings t with |t| ≤ p(|s|).

■ Return YES, if C(s, t) returns YES for any of these.

Useful alternate definition of NP:

■ Set of all decision problems solvable in polynomial time on a 
NONDETERMINISTIC Turing machine.

■ Intuition:  act of searching for t is viewed as a non-deterministic 
search over the space of possible proofs.  Nondeterministic TM 
can try all possible solutions in parallel.
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EXP

The Main Question

Does P = NP? (Edmonds, 1962)

■ Is the original DECISION problem as easy as CERTIFICATION?

■ Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

■ If yes, staggering practical significance.

■ Clay Foundation Millennium $1 million prize.

NP

P

If  P ≠ NP If  P = NP

EXP

P = NP
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The Main Question

Generator (P) Certifier (NP)

■ Factor integer s. n Is s a multiple of t?

■ Color a map with minimum # colors. n Check if all adjacent regions
have different colors.

■ Design airfoil of minimum drag. n Compute drag of airfoil.

■ Prove a beautiful theorem. n Understand its proof.

■ Write a beautiful sonnet. n Appreciate it.

■ Devise a good joke. n Laugh at it. 

■ Vinify fine wine. n Be a wine snob. 

■ Orate a good lecture. n Know when you’ve heard one.

■ Ace an exam. n Verify TA’s solutions.

Imagine the wealth of a society that produces optimal planes, bridges, 
rockets, theorems, art, music, wine, jokes.
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:

■ Efficient algorithms for 3-COLOR, TSP, FACTOR, . . .

■ Cryptography is impossible (except for one-time pads) on 
conventional machines.

■ Modern banking system will collapse.

■ Harmonial bliss.

If no, then:

■ Can’t hope to write efficient algorithm for TSP.

■ But maybe efficient algorithm still exists for FACTOR . . . .
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The Main Question

Does P = NP?

■ Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:

■ Thousands of researchers have spent four frustrating decades in 
search of polynomial algorithms for many fundamental NP 
problems without success.

■ Consensus opinion:  P ≠ NP.

But maybe yes, since:

■ No success in proving P ≠ NP either.
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Polynomial Transformation

Problem X polynomial reduces (Cook-Turing) to problem Y (X ≤ P Y) if 
arbitrary instances of problem X can be solved using:

■ Polynomial number of standard computational steps, plus

■ Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given any 
input x to X, we can construct an input y such that x is a YES instance 
of X if and only if y is a YES instance of Y. 

■ We require |y| to be of size polynomial in |x|.

Polynomial transformation is polynomial reduction with just one call 
to oracle for Y, exactly at the end of the algorithm for X.

Note:  all previous reductions were of this form!
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NP-Complete

Definition of NP-complete:

■ A problem Y in NP with the property that for every problem X in NP, 
X polynomial transforms to Y.

■ "Hardest computational problems" in NP.

EXP NP

P

If  P ≠ NP If  P = NP

NP-
complete

EXP

P = NP
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NP-Complete

Definition of NP-complete:

■ A problem Y in NP with the property that for every problem X in NP, 
X polynomial transforms to Y.

Significance.

■ Efficient algorithm for any NP-complete problem  ⇒
efficient algorithm for every other problem in NP.

■ Links together a huge and diverse number of fundamental 
problems:

– TSP, 3-COLOR, CNF-SAT, CLIQUE, . . . . . . . . .

■ Can implement any computer program in 3-COLOR. 

Notorious complexity class.

■ Only exponential algorithms known for these problems.

■ Called "intractable" - unlikely that they can be solved given limited 
computing resources.
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Some NP-Complete Problems

Most natural problems in NP are either in P or NP-complete.

Six basic genres and paradigmatic examples of NP-complete 
problems.

■ Packing problems: SET-PACKING, INDEPENDENT-SET.

■ Covering problems: SET-COVER, VERTEX-COVER.

■ Sequencing problems: HAMILTONIAN-CYCLE, TSP.

■ Partitioning problems: 3-COLOR, CLIQUE.

■ Constraint satisfaction problems: SAT, 3-SAT.

■ Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Caveat:  PRIME, FACTOR not known to be NP-complete.
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The "World’s First" NP-Complete Problem

CNF-SAT is NP-complete.  (Cook-Levin, 1960’s)

Idea of proof:

■ Given problem X in NP, by definition, there exists
nondeterministic TM M that solves X in polynomial time.

■ Possible execution of M on input string s forms a
branching tree of configurations, where each configuration
gives snapshot of M (tape contents, head position,
state of finite control) at some time step t.

■ M is polynomial time  ⇒ polynomial tree depth  ⇒
polynomial number of tape cells in play.

■ Use polynomial number of Boolean variables to model which symbol
occupies cell i at time t, location of read head at time t, state of finite 
control, etc.

■ Use polynomial number of clauses to ensure machine makes legal 
moves, starts and ends in appropriate configurations, etc.

Stephen Cook
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Establishing NP-Completeness

Definition of NP-complete:

■ A problem Y ∈ NP with the property that for every problem X in NP, 
X polynomial transforms to Y.

Cook’s theorem. CNF-SAT is NP-complete.

Recipe to establish NP-completeness of problem Y.

■ Step 1.  Show that Y ∈ NP.

■ Step 2.  Show that CNF-SAT (or any other NP-complete problem)
transforms to Y.

Example:  CLIQUE is NP-complete.

✔ Step 1.  CLIQUE ∈ NP.

✔ Step 2.  CNF-SAT polynomial transforms to CLIQUE.
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Minesweeper Consistency Problem

Minesweeper.

■ Start: blank grid of squares.

■ Some squares conceal mines; the rest are safe.

■ Find location of mines without detonating any.

■ Choose a square.
– if mine underneath, it detonates and you lose
– If no mine, computer tells you how many total mines in 8 

neighboring squares
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Minesweeper Consistency Problem

Minesweeper consistency problem.

■ Given a state of what purports to be a Minesweeper games, is it 
logically consistent. 

YES

NO
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Minesweeper Consistency Problem

Minesweeper consistency problem.

■ Given a state of what purports to be a Minesweeper games, is it 
logically consistent. 

Claim. Minesweeper consistency is NP-complete.

■ Proof idea:  reduce from circuit satisfiability.

■ Build circuit by laying out appropriate minesweeper 
configurations.

A Minesweeper Wire
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Minesweeper Consistency Problem

A NOT Gate

An AND GateA OR Gate
28

Minesweeper Consistency Problem

A 3-way Splitter

A Phase Changer
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Minesweeper Consistency Problem

A Wire Crossing
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

■ Complexity theory deals with worst case behavior.  The instance(s) 
you want to solve may be "easy."

– TSP where all points are on a line or circle
– 13,509 US city TSP problem solved

(Cook et. al., 1998)
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

■ Develop a heuristic, and hope it produces a good solution.

■ Design an approximation algorithm: algorithm that is guaranteed 
to find a high-quality solution in polynomial time.

– active area of research, but not always possible
unless P = NP!

– Euclidean TSP tour within 1% of optimal
– stay tuned

Sanjeev Arora (1997)
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

Exploit intractability.

■ Cryptography.
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Coping With NP-Completeness

Hope that worst case doesn’t occur. 

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.
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Coping With NP-Completeness

A person can be at most two of the following three things:
! Honest.
! Intelligent.
! A politician.

If a problem is NP-complete, you design an algorithm to do at most 
two of the following three things:

! Solve the problem exactly.
! Guarantee to solve the problem in polynomial time.
! Solve arbitrary instances of the problem.
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Asymmetry of NP

Definition of NP: X ∈ NP if there exists a certifier C(s, t) such that:

■ Input string s is a YES instance if and only if there exists a short 
certificate t such that C(s, t) = YES.

■ Alternatively, input string s is a NO instance if and only if for all
short t, C(s, t) = NO.

Ex.  HAM-CYCLE vs. NO-HAM-CYCLE.

■ Given G and a proposed Hamiltonian cycle, easy to if check if it
really is a Hamiltonian cycle.

■ Given G, hard to assert that it is not Hamiltonian.

Ex.  PRIME vs. COMPOSITE.

■ Given integer s and proposed factor t, it is easy to check if s is a 
multiple of t.

■ Appears harder to assert that an integer is not composite.
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Co-NP

NP: Decision problem X ∈ NP if there exists a certifier C(s, t) s.t.

■ Input string s is a YES instance if and only if there exists a short 
certificate t such that C(s, t) = YES.

■ Alternatively, input string s is a NO instance if and only if for all
short t, C(s, t) = NO.

co-NP: X ∈ co-NP if there exists a certifier C(s, t) s.t.

■ Input string s is a NO instance if and only if there exists a short 
certificate t such that C(s, t) = YES.

■ Alternatively, input string s is a YES instance if and only if for all
short t, C(s, t) = NO.
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Co-NP Certifiers and Certificates

PRIME: Given integer s, is s prime?

Observation. s is composite if and
only if there exists an integer 1 < t < s
such that s is a multiple of t.

■ NO instance:  s = 437,669.

Conclusions.

■ PRIME ∈ co-NP.

■ COMPOSITE ∈ P. Certifier:
Is s a multiple of t?

NO

Input s:
437,669

Certificate t:  
541

s is a NO instance no conclusion

YES
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Co-NP Verifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Fact (Pratt). s is prime if and only if
s > 2 is odd and there exists an
integer 1 < t < s  s.t.

■ NO instance:  437,677.

Conclusions.

■ COMPOSITE ∈ co-NP.

■ PRIME ∈ NP.

Certifier:
17^(s-1) mod s = 1
s - 1 = 2 × 2 × 3 × 36,473
17^(s-1)/2 mod s = 437,676
17^(s-1)/3 mod s = 329,415
17^(s-1)/36,473 mod s = 305,452 

NO

Input s:
437,677

Certificate t:  
17

s is a NO instance no conclusion

YES

1 of  divisors prime allfor 
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NP = co-NP ?

Fundamental question:  does NP = co-NP?

■ Do YES-instances have short certificates if and only if NO-
instances have short certificates.

■ Consensus opinion:  no.

Theorem. If NP ≠ co-NP, then P ≠ NP.
Proof. We prove if P = NP, then NP = co-NP.

■ Key idea:  P is closed under complementation, so if P = NP, then
NP is closed under complementation as well.

■ More formally, using the assumption P = NP:

■ Thus, NP ⊆ co-NP  and  co-NP ⊆ NP, so co-NP = NP.

NPXNPXPXPXNPX -co∈⇒∈⇒∈⇒∈⇒∈

NPXPXPXNPXNPX ∈⇒∈⇒∈⇒∈⇒∈ -co
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Good Characterizations

Good characterization:  NP  I co-NP.

■ If problem X is in NP and co-NP, then:
– for YES instance, there is a short certificate
– for NO instance, there is a short certificate

■ Provides conceptual leverage for reasoning about a problem.

Examples.

■ MAX-FLOW:  given a network, is there an s-t flow of value  ≥ W.
– if yes, can exhibit s-t flow that achieves this value
– if no, can exhibit s-t cut whose capacity is less than W

■ PERFECT-MATCHING:  given a bipartite graph, is there a perfect 
matching.

– if yes, can exhibit a perfect matching
– if no, can exhibit a set of vertices S ⊆ L such that the total 

number of neighbors of S is strictly less than |S|
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Good Characterizations

Observation. P ⊆ NP  I co-NP.

■ Proof of max-flow min-cut theorem and Hall’s theorem led to 
stronger results that max-flow and bipartite matching are in P.

■ Sometimes finding a good characterization seems easier than 
finding an efficient algorithm:  linear programming.

Fundamental question:  does P = NP  I co-NP?

■ Mixed opinions.

■ Many examples where problem found to have a non-trivial good 
characterization, but only years later discovered to be in P.

■ Note:  PRIME  ∈ NP  I co-NP, but not known to be in P.
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A Note on Terminology

Knuth.  (SIGACT News 6, January 1974, p. 12 – 18)

Find an adjective x that sounds good in sentences like.

■ FIND-TSP-TOUR is x.

■ It is x to decide whether a given graph has a Hamiltonian cycle.

■ It is unknown whether FACTOR is an x problem.

Note:  x does not necessarily imply that a problem is in NP or even a 
decision problem.

Knuth's original suggestions.

■ Hard.

■ Tough.

■ Herculean.

■ Formidable.

■ Arduous.
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A Note on Terminology

Some English word write-ins.

■ Impractical.

■ Bad.

■ Heavy.

■ Tricky.

■ Intricate.

■ Prodigious.

■ Difficult.

■ Intractable.

■ Costly.

■ Obdurate.

■ Obstinate.

■ Exorbitant.

■ Interminable.
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A Note on Terminology

Hard-boiled.  (Ken Steiglitz)

■ In honor of Cook.

Hard-ass.  (Al Meyer)

■ Hard as satisfiability.

Sisyphean.  (Bob Floyd)

■ Problem of Sisyphus was time-consuming.

■ Hercules needed great strength.

■ Problem:  Sisyphus never finished his task  ⇒ unsolvable.

Ulyssean.  (Don Knuth)

■ Ulysses was note for his persistence and also finished.
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A Note on Terminology:  Made-Up Words

Exparent.  (Mike Paterson)

■ exponential + apparent

Perarduous.  (Mike Paterson)

■ through, in space or time + completely

Supersat.  (Al Meyer)

■ greater than or equal to satisfiability

Polychronious.  (Ed Reingold)

■ enduringly long; chronic

■ Appears in Webster’s 2nd unabridged, but apparently in no other 
dictionary.
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A Note on Terminology:  Acronyms

PET.  (Shen Lin)

■ Probably exponential time.

■ Provably exponential time, previously exponential time.

GNP.  (Al Meyer)

■ Greater than or equal to NP in difficulty.

■ Costing more than GNP to resolve.
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A Note on Terminology:  Consensus

NP-complete.

■ A problem in NP such that every other problem in NP transforms to it.

NP-hard.  (Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni)

■ A problem such that every problem in NP transforms to it.

Knuth’s conclusion.

■ "create research workers are as full of ideas for new terminology as 
they are empty of enthusiasm for adopting it."
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Summary

Many fundamental problems are NP-complete.

■ TSP, 3-CNF-SAT, 3-COLOR, CLIQUE, . . . .

Theory says we probably won’t be able to design efficient algorithms 
for NP-complete problems.

■ You will likely run into these problems in your scientific life.

■ If you know about NP-completeness, you can identify them and 
avoid wasting time.


