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Properties of Algorithms

A given problem can be solved by many different algorithms. Which
ALGORITHMS will be useful in practice?

A working definition: (Jack Edmonds, 1962)
. Efficient: polynomial time for ALL inputs.
. Inefficient: "exponential time" for SOME inputs.

Robust definition has led to explosion of useful algorithms for wide
spectrum of problems.

. Notable exception: simplex algorithm.

Exponential Growth

Exponential growth dwarfs technological change.
. Suppose each electron in the universe had power of today’'s
supercomputers.
. And each works for the life of the universe in an effort to solve TSP
problem using N! algorithm.

Some Numbers

Quantity Number

Home PC instructions / second 10°

Supercomputer instructions / second 1012 1t Estimated
Seconds per year 10°

Age of universe T 1013

Electrons in universe t 107

. Will not succeed for 1,000 city TSP!
1000! >> 101000 >> 1079 x 1013 x 109 x 1012

Properties of Problems

Which PROBLEMS will we be able to solve in practice?
. Those with efficient algorithms.
. How can I tell if | am trying to solve such a problem?
# Theory of NP-completeness helps.

Yes Probably No
Shortest path Longest path Primality
Euler cycle Hamiltonian cycle Factoring
Min cut Max cut Graph isomorphism
2-SAT 3-SAT

PLANAR-2-COLOR PLANAR-3-COLOR
PLANAR-4-COLOR PLANAR-3-COLOR

Matching 3D-Matching
Baseball elimination Soccer elimination
Bipartite vertex cover Vertex cover




Decision problem X.

. Xis a(possibly infinite) set of binary strings.
Instance: finite binary string s, of length |s|.

. Algorithm A solves Xif A(s)=YES = sOX

Polynomial time.

. Algorithm A runs in polynomial-time if for every instance s, A
terminates in at most p(s) "steps", where p is some polynomial.

Definition of P.

. Set of all decision problems solvable in polynomial time on a
deterministic Turing machine.

Examples:
MULTIPLE: Is the integer y a multiple of x?
RELPRIME: Are the integers x and y relatively prime?
PERFECT-MATCHING: Given graph G, is there a perfect matching?

Strong Church-Turing Thesis

Definition of P fundamental because of SCT.

Strong Church-Turing thesis:

P is the set of decision problems solvable in polynomial time on
REAL computers.

Evidence supporting thesis:
. True for all physical computers.

. Can create deterministic TM that efficiently simulates any real
general-purpose machine (and vice versa).

Possible exception?
. Quantum computers: no conventional gates.

Efficient Certification

Certification algorithm.

Design an algorithm that checks whether proposed solution is a
YES instance.

Algorithm C is an efficient certifier for X if:
. Cis apolynomial-time algorithm that takes two inputs s and t.

. There exists a polynomial p() so that for every strings, sOX =
there exists a string t such that |t| < p(|s]) and C(s, t) = YES.

Intuition.
Efficient certifier views things from "managerial” viewpoint.
It doesn’t determine whether s 0 X on its own. {
Rather, it evaluates a proposed proof t that s O X.

. Accepts if and only if given a "short" proof of this fact.

Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. sis composite <
there exists an integer 1 <t<s
such that s is a multiple of t.
. YESinstance: s =437,669.
- certificate t = 541 or 809 (a factor)

Input s: Certificate t:
437,669 541

sis a YES instance no conclusion




Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. sis composite =
there exists an integer 1 <t<s

such that s is a multiple of t. Inputs: Certificate t:
. o 437,677 ??7?
. YESinstance: s =437,669.
- certificate t = 541 or 809 (a factor)
. NOinstance: s =437,677.
- no witness can fool verifier
into saying YES
. Conclusion: COMPOSITE O NP. YES NO

sis a YES instance no conclusion

Certifiers and Certificates

CLIQUE: Given an undirected graph, is there a subset S of k nodes
such that there is an arc connecting every pair of nodes in S?

k=4 Input s: Certificate t:
'%' \ /{U’V,W’X}

CLIQUE O NP.

sis a YES instance

no conclusion

Certifiers and Certificates

3-COLOR: Given planar map, can it be colored with 3 colors?

R

Certificate t:

a

Input s:

YES NO

3-COLOR [ NP.

sis a YES instance no conclusion

NP

Definition of NP:
. Does NOT mean "not polynomial.”

Definition of NP:

. Set of all decision problems for which there exists an efficient
certifier.

. Definition important because it links many fundamental problems.

Claim: P O NP.

Proof: Consider problem X O P.
. Then, there exists efficient algorithm A(s) that solves X.
. Efficient certifier B(s, t): return A(S).




NP

Definition of EXP:

. Set of all decision problems solvable in exponential time on a
deterministic Turing machine.

Claim: NP O EXP.
Proof: Consider problem X [0 NP.
. Then, there exists efficient certifier C(s, t) for X.
. To solveinput s, run C(s, t) on all strings t with |t] < p(|s|).
Return YES, if C(s, t) returns YES for any of these.

Useful alternate definition of NP:

. Set of all decision problems solvable in polynomial time on a
NONDETERMINISTIC Turing machine.
Intuition: act of searching for t is viewed as a non-deterministic
search over the space of possible proofs. Nondeterministic TM
can try all possible solutions in parallel.

The Main Question

Does P =NP? (Edmonds, 1962)
Is the original DECISION problem as easy as CERTIFICATION?
Does nondeterminism help you solve problems faster?

Most important open problem in computer science.

If yes, staggering practical significance.
. Clay Foundation Millennium $1 million prize.

If P#NP If P=NP

The Main Question

Generator (P) Certifier (NP)
Factor integer s. « Is s amultiple of t?

. Color amap with minimum # colors. « Check if all adjacent regions

have different colors.
Design airfoil of minimum drag. « Compute drag of airfoil.
Prove a beautiful theorem. Understand its proof.

. Write a beautiful sonnet.

Appreciate it.

Devise a good joke. « Laugh at it.
. Vinify fine wine. « Be awine snob.
. Orate agood lecture. « Know when you've heard one.
. Ace an exam. « Verify TA’s solutions.

Imagine the wealth of a society that produces optimal planes, bridges,
rockets, theorems, art, music, wine, jokes.

The Main Question

Does P = NP?
Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:
Efficient algorithms for 3-COLOR, TSP, FACTOR, . ..
. Cryptography is impossible (except for one-time pads) on
conventional machines.
Modern banking system will collapse.
Harmonial bliss.

If no, then:
. Can’t hope to write efficient algorithm for TSP.
But maybe efficient algorithm still exists for FACTOR . . ..




The Main Question

Does P = NP?
Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:

. Thousands of researchers have spent four frustrating decades in
search of polynomial algorithms for many fundamental NP
problems without success.

. Consensus opinion: P # NP.

But maybe yes, since:
No success in proving P #Z NP either.

Polynomial Transformation

Problem X polynomial reduces (Cook-Turing) to problem Y (X<, Y) if
arbitrary instances of problem X can be solved using:

Polynomial number of standard computational steps, plus
Polynomial number of calls to oracle that solves problem Y.

Problem X polynomial transforms (Karp) to problem Y if given any
input x to X, we can construct an input y such that x is a YES instance
of X if and only if y is a YES instance of Y.

. Werequire |y| to be of size polynomial in |x|.

Polynomial transformation is polynomial reduction with just one call
to oracle for Y, exactly at the end of the algorithm for X.

Note: all previous reductions were of this form!

NP-Complete

Definition of NP-complete:

. Aproblem Y in NP with the property that for every problem X in NP,
X polynomial transforms to Y.

. "Hardest computational problems" in NP.

NP EXP

NP-
complete

If P#NP If P=NP

NP-Complete

Definition of NP-complete:

. Aproblem Y in NP with the property that for every problem X in NP,
X polynomial transforms to Y.

Significance.

Efficient algorithm for any NP-complete problem O
efficient algorithm for every other problem in NP.

Links together a huge and diverse number of fundamental
problems:

- TSP, 3-COLOR, CNF-SAT, CLIQUE, .........
. Can implement any computer program in 3-COLOR.

Notorious complexity class.
. Only exponential algorithms known for these problems.

. Called "intractable" - unlikely that they can be solved given limited
computing resources.




Some NP-Complete Problems

Most natural problems in NP are either in P or NP-complete.

Six basic genres and paradigmatic examples of NP-complete
problems.

Packing problems: SET-PACKING, INDEPENDENT-SET.

. Covering problems: SET-COVER, VERTEX-COVER.

. Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3-COLOR, CLIQUE.

. Constraint satisfaction problems: SAT, 3-SAT.
Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

Caveat: PRIME, FACTOR not known to be NP-complete.

The "World’s First" NP-Complete Problem

CNF-SAT is NP-complete. (Cook-Levin, 1960's) !P"

Idea of proof:

. Given problem X in NP, by definition, there exists
nondeterministic TM M that solves X in polynomial time.

Possible execution of M on input string s forms a
branching tree of configurations, where each configuration
gives snapshot of M (tape contents, head position,

state of finite control) at some time step t.

Stephen Cook

M is polynomial time O polynomial tree depth 0O
polynomial number of tape cells in play.

Use polynomial number of Boolean variables to model which symbol
occupies cell i at time t, location of read head at time t, state of finite
control, etc.

Use polynomial number of clauses to ensure machine makes legal
moves, starts and ends in appropriate configurations, etc.

Establishing NP-Completeness

Definition of NP-complete:

. A problem Y O NP with the property that for every problem X in NP,
X polynomial transforms to Y.

Cook’s theorem. CNF-SAT is NP-complete.

Recipe to establish NP-completeness of problem Y.
. Step 1. Show that Y O NP.

. Step 2. Show that CNF-SAT (or any other NP-complete problem)
transforms to Y.

Example: CLIQUE is NP-complete.
O Step 1. CLIQUE O NP.
0 Step 2. CNF-SAT polynomial transforms to CLIQUE.

Minesweeper Consistency Problem

Minesweeper.

. Start: blank grid of squares.

. Some squares conceal mines; the rest are safe.
Find location of mines without detonating any.

. Choose a square.
- if mine underneath, it detonates and you lose

- If no mine, computer tells you how many total mines in 8
neighboring squares




Minesweeper Consistency Problem

Minesweeper consistency problem.

. Given a state of what purports to be a Minesweeper games, is it
logically consistent.

Minesweeper Consistency Problem

Minesweeper consistency problem.

. Given a state of what purports to be a Minesweeper games, is it

logically consistent.

Claim. Minesweeper consistency is NP-complete.
. Proofidea: reduce from circuit satisfiability.

. Build circuit by laying out appropriate minesweeper

configurations.
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Coping With NP-Completeness

Hope that worst case doesn’t occur.

. Complexity theory deals with worst case behavior. The instance(s)
you want to solve may be "easy."

- TSP where all points are on aline or circle
- 13,509 US city TSP problem solved

(Cook et. al., 1998)

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.
. Develop a heuristic, and hope it produces a good solution.
. Design an approximation algorithm: algorithm that is guaranteed
to find a high-quality solution in polynomial time.
1

- active area of research, but not always possible
unless P = NP!

- Euclidean TSP tour within 1% of optimal
- stay tuned

'W

Sanjeev Arora (1997)

Coping With NP-Completeness
Hope that worst case doesn’t occur.
Change the problem.

Exploit intractability.
. Cryptography.




Coping With NP-Completeness
Hope that worst case doesn’t occur.
Change the problem.
Exploit intractability.

Keep trying to prove P = NP.

Coping With NP-Completeness

A person can be at most two of the following three things:
# Honest.
# Intelligent.
# A politician.

If a problem is NP-complete, you design an algorithm to do at most
two of the following three things:

# Solve the problem exactly.
# Guarantee to solve the problem in polynomial time.
# Solve arbitrary instances of the problem.

Asymmetry of NP

Definition of NP: X O NP if there exists a certifier C(s, t) such that:

Input string s is a YES instance if and only if there exists a short
certificate t such that C(s, t) = YES.

. Alternatively, input string s is a NO instance if and only if for all
short t, C(s, t) = NO.

Ex. HAM-CYCLE vs. NO-HAM-CYCLE.

. Given G and a proposed Hamiltonian cycle, easy to if check if it
really is a Hamiltonian cycle.

. Given G, hard to assert that it is not Hamiltonian.

Ex. PRIME vs. COMPOSITE.

. Given integer s and proposed factor t, it is easy to check if sis a
multiple of t.

. Appears harder to assert that an integer is not composite.

Co-NP

NP: Decision problem X O NP if there exists a certifier C(s, t) s.t.

Input string s is a YES instance if and only if there exists a short
certificate t such that C(s, t) = YES.

. Alternatively, input string s is a NO instance if and only if for all
short t, C(s, t) = NO.

co-NP: X O co-NP if there exists a certifier C(s, t) s.t.
Input string s is a NO instance if and only if there exists a short
certificate t such that C(s, t) = YES.
. Alternatively, input string s is a YES instance if and only if for all
short t, C(s, t) = NO.




Co-NP Certifiers and Certificates

PRIME: Given integer s, is s prime?

Observation. s is composite if and {

only if there exists an integer 1 <t<s
such that s is a multiple of t. Input s: Certificate t:

NO instance: s =437,669. 437,669 541

Conclusions.
PRIME O co-NP.
. COMPOSITE O P.

sis aNO instance no conclusion

Co-NP Verifiers and Certificates

COMPOSITE: Given integer s, is s composite? {
. L . Input s: Certificate t:
Fact (Pratt). sis prime if and only if 437,677 17

s > 2is odd and there exists an
integer 1<t<s s.t.

ts1 = 1 (mods)
tDP 2 1 (mods)
for all primedivisors pof s-1

NO instance: 437,677.

Conclusions.
. COMPOSITE O co-NP.
PRIME 0O NP.

YES NO

s is a NO instance no conclusion

NP =co-NP ?

Fundamental question: does NP = co-NP?

Do YES-instances have short certificates if and only if NO-
instances have short certificates.

. Consensus opinion: no.

Theorem. If NP # co-NP, then P # NP.

Proof. We prove if P = NP, then NP = co-NP.
Key idea: P is closed under complementation, so if P = NP, then
NP is closed under complementation as well.

More formally, using the assumption P = NP:
XONP O XOP 0O XOP O XONP O XUOco-NP
XOco-NP O XONP O XOP 0O XOP 0O XONP

. Thus, NP O co-NP and co-NP O NP, so co-NP = NP.

Good Characterizations

Good characterization: NP (] co-NP.
If problem Xis in NP and co-NP, then:
- for YES instance, there is a short certificate
- for NO instance, there is a short certificate
Provides conceptual leverage for reasoning about a problem.

Examples.
MAX-FLOW: given a network, is there an s-t flow of value > W.
- if yes, can exhibit s-t flow that achieves this value
- if no, can exhibit s-t cut whose capacity is less than W

PERFECT-MATCHING: given a bipartite graph, is there a perfect
matching.
- if yes, can exhibit a perfect matching

—if no, can exhibit a set of vertices S 0 L such that the total
number of neighbors of S is strictly less than |S|

40




Good Characterizations

Observation. PO NP (1 co-NP.

Proof of max-flow min-cut theorem and Hall’'s theorem led to
stronger results that max-flow and bipartite matching are in P.

. Sometimes finding a good characterization seems easier than
finding an efficient algorithm: linear programming.

Fundamental question: does P =NP [ co-NP?
Mixed opinions.

Many examples where problem found to have a non-trivial good
characterization, but only years later discovered to be in P.

Note: PRIME O NP () co-NP, but not known to bein P.
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A Note on Terminology
Knuth. (SIGACT News 6, January 1974, p. 12 — 18)

Find an adjective x that sounds good in sentences like.
FIND-TSP-TOUR is x.
It is x to decide whether a given graph has a Hamiltonian cycle.
It is unknown whether FACTOR is an x problem.

Note: x does not necessarily imply that a problem is in NP or even a
decision problem.

Knuth's original suggestions.
Hard.

. Tough.
Herculean.
Formidable.

. Arduous.
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A Note on Terminology

Some English word write-ins.
Impractical.
Bad.

Heavy.

. Tricky.
Intricate.
Prodigious.
Difficult.
Intractable.

. Costly.

. Obdurate.

. Obstinate.
Exorbitant.
Interminable.

43

A Note on Terminology

Hard-boiled. (Ken Steiglitz)
In honor of Cook.

Hard-ass. (Al Meyer)
Hard as satisfiability.

Sisyphean. (Bob Floyd)
Problem of Sisyphus was time-consuming.
Hercules needed great strength.
Problem: Sisyphus never finished his task 00 unsolvable.

Ulyssean. (Don Knuth)
. Ulysses was note for his persistence and also finished.

a4




A Note on Terminology: Made-Up Words

Exparent. (Mike Paterson)
. exponential + apparent

Perarduous. (Mike Paterson)
. through, in space or time + completely

Supersat. (Al Meyer)
. greater than or equal to satisfiability

Polychronious. (Ed Reingold)
. enduringly long; chronic

. Appears in Webster’'s 2nd unabridged, but apparently in no other
dictionary.
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A Note on Terminology: Acronyms

PET. (Shen Lin)
. Probably exponential time.
. Provably exponential time, previously exponential time.

GNP. (Al Meyer)
. Greater than or equal to NP in difficulty.
. Costing more than GNP to resolve.
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A Note on Terminology: Consensus

NP-complete.
. A problem in NP such that every other problem in NP transforms to it.

NP-hard. (Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni)
. A problem such that every problem in NP transforms to it.

Knuth’s conclusion.

. "create research workers are as full of ideas for new terminology as
they are empty of enthusiasm for adopting it."

a7

Summary

Many fundamental problems are NP-complete.
. TSP, 3-CNF-SAT, 3-COLOR, CLIQUE, .. ..

Theory says we probably won’t be able to design efficient algorithms
for NP-complete problems.

. You will likely run into these problems in your scientific life.

. If you know about NP-completeness, you can identify them and
avoid wasting time.
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