MST: Red Rule, Blue Rule

Some of these lecture slides are adapted from material in:

- Data Structures and Algorithms, R. E. Tarjan.
- Randomized Algorithms, R. Motwani and P. Raghavan.

Princeton University • COS 423 • Theory of Algorithms • Spring 2002 • Kevin Wayne

Cycles and Cuts

Cycle.

A cycle is a set of arcs of the form {a,b}, {b,c}, {c,d}, ..., {z,a}.

Path = 1-2-3-4-5-6-1Cycle = $\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{5, 6\}, \{6, 1\}$

Cut.

 The cut induced by a subset of nodes S is the set of all arcs with exactly one endpoint in S.

Cycle-Cut Intersection

A cycle and a cut intersect in an even number of arcs.

Intersection = $\{3, 4\}, \{5, 6\}$

Proof.

Spanning Tree

Spanning tree. Let T = (V, F) be a subgraph of G = (V, E). TFAE:

- T is a spanning tree of G.
- T is acyclic and connected.
- T is connected and has |V| 1 arcs.
- **.** T is acyclic and has |V| 1 arcs.
- T is minimally connected: removal of any arc disconnects it.
- T is maximally acyclic: addition of any arc creates a cycle.
- T has a unique simple path between every pair of vertices.

Minimum Spanning Tree

Minimum spanning tree. Given connected graph G with real-valued arc weights c_e , an *MST* is a spanning tree of G whose sum of arc weights is minimized.

Cayley's Theorem (1889). There are nⁿ⁻² spanning trees of K_n.

- n = |V|, m = |E|.
- Can't solve MST by brute force.

Applications

MST is central combinatorial problem with divserse applications.

- Designing physical networks.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
 - delete long edges leaves connected components
 - finding clusters of quasars and Seyfert galaxies
 - analyzing fungal spore spatial patterns
- Approximate solutions to NP-hard problems.
 - metric TSP, Steiner tree
- Indirect applications.
 - describing arrangements of nuclei in skin cells for cancer research
 - learning salient features for real-time face verification
 - modeling locality of particle interactions in turbulent fluid flow
 - reducing data storage in sequencing amino acids in a protein

Optimal Message Passing

Optimal message passing.

- Distribute message to N agents.
- Each agent can communicate with some of the other agents, but their communication is (independently) detected with probability p_{ij}.
- Group leader wants to transmit message (e.g., Divx movie) to all agents so as to minimize the total probability that message is detected.

Objective.

- Find tree T that minimizes: $1 \prod_{(i,j) \in T} (1 p_{ij})$
- Or equivalently, that maximizes:

$$\prod_{(i,j)\in T} \left(1 - p_{ij}\right)$$

• Or equivalently, that maximizes:

$$\sum_{(i,j)\in T} \log(1-p_{ij})$$

• Or equivalently, MST with weights p_{ii}.

Fundamental Cycle

Fundamental cycle.

- Adding any non-tree arc e to T forms unique cycle C.
- Deleting any arc $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Cycle optimality conditions: For every non-tree arc e, and for every tree arc f in its fundamental cycle: $c_f \le c_e$. **Observation:** If $c_f > c_e$ then T is not a MST.

Fundamental Cut

Fundamental cut.

- Deleting any tree arc f from T disconnects tree into two components with cut D.
- Adding back any arc $e \in D$ to T {f} results in new spanning tree.

Cut optimality conditions: For every tree arc f, and for every non-tree arc e in its fundamental cut: $c_e \ge c_f$. Observation: If $c_e < c_f$ then T not a MST.

MST: Cut Optimality Conditions

Theorem. Cut optimality \Rightarrow MST. (proof by contradiction)

- T = spanning tree that satisfies cut optimality conditions.
 T* = MST that has as many arcs in common with T as possible.
- . If T = T*, then we are done. Otherwise, let $f \in T$ s.t. $f \notin T^*$.
- Let D be fundamental cut formed by deleting f from T.

- Adding f to T* creates a fund cycle C, which shares (at least) two arcs with cut D. One is f, let e be another. Note: e ∉ T.
- . Cut optimality conditions \Rightarrow $c_f \leq c_e$.
- Thus, we can replace e with f in T* without increasing its cost.

MST: Cycle Optimality Conditions

Deleting e from

cut D

. Adding to T* creates a fund cycle C, which shares (at least) two arcs

with cot O. One is \mathcal{K} , let \mathcal{K} be another. Note: $\mathcal{F} \subset \mathcal{F}$.

- Cycle C e T $rac{cycle C}{cycle C}$ $rac{cycle C}{cycle C} \Rightarrow c_f \le c_e$.
 - Thus, we can replace e with f in T* without increasing its cost.

Towards a Generic MST Algorithm

If all arc weights are distinct:

- MST is unique.
- Arc with largest weight in cycle C is not in MST.
 - cycle optimality conditions

- Arc with smallest weight in cutset D is in MST.
 - cut optimality conditions

Generic MST Algorithm

Red rule.

Let C be a cycle with no red arcs. Select an uncolored arc of C of max weight and color it red.

Blue rule.

 Let D be a cut with no blue arcs. Select an uncolored arc in D of min weight and color it blue.

Greedy algorithm.

- Apply the red and blue rules (non-deterministically!) until all arcs are colored. The blue arcs form a MST.
- Note: can stop once n-1 arcs colored blue.

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T* containing all the blue arcs and none of the red ones.

- **.** Base case: no arcs colored \Rightarrow every MST satisfies invariant.
- Induction step: suppose color invariant true before blue rule.
 - let D be chosen cut, and let f be arc colored blue
 - if $f \in T^*$, T^* still satisfies invariant
 - o/w, consider fundamental cycle C by adding f to T*
 - let $e \in C$ be another arc in D
 - e is uncolored and $\textbf{c}_{e}^{} \geq~\textbf{c}_{f}^{}~$ since
 - $\mathscr{I} e \in T^* \implies not \ red$

 \checkmark blue rule \Rightarrow not blue, $c_e \ge c_f$

– T* \cup { f } - { e } satisfies invariant

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T* containing all the blue arcs and none of the red ones.

- Base case: no arcs colored \Rightarrow every MST satisfies invariant.
- Induction step: suppose color invariant true before bkg rule.
 - let b be chosen cut, and let be arc colored blue red
 - if $\mathbf{F}_{\mathbf{e}}$, T* still satisfies invariant
 - o/w, consider fundamental cycle C by adding f to T*
 - let $\mathbf{\hat{e}} \in \mathbf{C}$ be another arc in $\mathbf{\hat{k}}^{\mathbf{C}}$

$$\begin{array}{c} \mathbf{A} \in \mathbf{A} \\ \mathbf$$

$$f \notin T^*$$
 blue
blue rule ⇒ not blue, $c_e \ge c_f$
red rule f not red
- T* ∪ { f } - { e } satisfies invariant

Greedy Algorithm: Proof of Correctness

Proof (continued).

- Induction step: suppose color invariant true before red rule.
 - cut-and-paste
- Either the red or blue rule (or both) applies.
 - suppose arc e is left uncolored
 - blue edges form a forest

Special Case: Prim's Algorithm

Prim's algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

- S = vertices in tree connected by blue arcs.
- Initialize S = any vertex.
- Apply blue rule to cut induced by S.

Implementing Prim's Algorithm

Dijkstra's Shortest Path Algorithm

Dijkstra's Drinks Algorithm
Q ← PQinit()
for each $\mathbf{v} \in \mathbf{V}$
$\texttt{key(v)} \leftarrow \infty$
$pred(v) \leftarrow nil$
PQinsert(v, Q)
$\operatorname{Rey}(S) \leftarrow 0$
while (!PQisempty(Q))
v = PQdelmin(Q)
for each w \in Q s.t $\{v,w\} \in E$
if key(w) > $c(w,w)$
PQdeckey(w, C(v,w) + key(v))
$pred(w) \leftarrow v$

Special Case: Kruskal's Algorithm

Kruskal's algorithm (1956).

- **.** Consider arcs in ascending order of weight.
 - if both endpoints of e in same blue tree, color red by applying red rule to unique cycle
 - else color e blue by applying blue rule to cut consisting of all vertices in blue tree of one endpoint

Implementing Kruskal's Algorithm

Kruskal's Algorithm

```
Sort edges weights in ascending order

c_1 \leq c_2 \leq \ldots \leq c_m.

S = \phi

for each v \in V

UFmake-set(v)

for i = 1 to m

(v,w) = e_i

if (UFfind-set(v) \neq UFfind-set(w))

S \leftarrow S \cup \{i\}

UFunion(v, w)
```


Special Case: Boruvka's Algorithm

Boruvka's algorithm (1926).

- Apply blue rule to cut corresponding to each blue tree.
- Color all selected arcs blue.
- O(log n) phases since each phase halves total # nodes.

Implementing Boruvka's Algorithm

Boruvka implementation.

- Contract blue trees, deleting loops and parallel arcs.
- Remember which edges were contracted in each super-node.

Advanced MST Algorithms

Deterministic comparison based algorithms.

- O(m log n)
- O(m log log n).
- **. Ο(m** β**(m, n)).**
- O(m log β (m, n)).
- O(m α (m, n)).
- O(m).

- Jarník, Prim, Dijkstra, Kruskal, Boruvka
- **Cheriton-Tarjan (1976), Yao (1975)**
 - Fredman-Tarjan (1987)
- Gabow-Galil-Spencer-Tarjan (1986)
- Chazelle (2000)
- Holy grail.

Worth noting.

- O(m) randomized. Karg
- O(m) verification.

Karger-Klein-Tarjan (1995)

Dixon-Rauch-Tarjan (1992)

Linear Expected Time MST

Random sampling algorithm. (Karger, Klein, Tarjan, 1995)

- If lots of nodes, use Boruvka.
 - decreases number of nodes by factor of 2
- If lots of edges, delete useless ones.
 - use random sampling to decrease by factor of 2
- Expected running time is O(m + n).

Filtering Out F-Heavy Edges

Definition. Given graph G and forest F, an edge e is **F-heavy** if both endpoints lie in the same component and $c_e > c_f$ for all edges f on fundamental cycle.

- Cycle optimality conditions: T* is MST ⇔ no T*-heavy edges.
- If e is F-heavy for any forest F, then safe to discard e.
 - apply red rule to fundamental cycles

Forest F F-heavy edges

Verification subroutine. (Dixon-Rauch-Tarjan, 1992).

- Given graph G and forest F, is F is a MSF?
- In O(m + n) time, either answers (i) YES or (ii) NO and output all F-heavy edges.

- Obtain G(p) by independently including each edge with p = 1/2.
- Let F be MSF in G(p).
- . Compute F-heavy edges in G.
- Delete F-heavy edges from G.

- Obtain G(p) by independently including each edge with p = 1/2.
 - Let F be MSF in G(p).
 - . Compute F-heavy edges in G.
 - Delete F-heavy edges from G.

- Obtain G(p) by independently including each edge with p = 1/2.
- Let F be MSF in G(p).
- . Compute F-heavy edges in G.
- Delete F-heavy edges from G.

Random sampling.

G

- Obtain G(p) by independently including each edge with p = 1/2.
- Let F be MSF in G(p).
- . Compute F-heavy edges in G.
- Delete F-heavy edges from G.

- Obtain G(p) by independently including each edge with p = 1/2.
- Let F be MSF in G(p).
- . Compute F-heavy edges in G.
- Delete F-heavy edges from G.

Random Sampling Lemma

Random sampling lemma. Given graph G, let F be a MSF in G(p). Then the expected number of F-light edges is $\leq n / p$.

Proof.

- WMA $c_1 \le c_2 \le ... \le c_m$, and that G(p) is constructed by flipping coin m times and including edge e_i if ith coin flip is heads.
- Construct MSF F at same time using Kruskal's algorithm.
 - edge e_i added to $F \iff e_i$ is F-light
 - F-lightness of edge e_i depends only on first i-1 coin flips and does not change after phase i
- Phase k = period between when |F| = k-1 and |F| = k.
 - F-light edge has probability p of being added to F
 - # F-light edges in phase k ~ Geometric(p)
- Total # F-light edges < NegativeBinomial(n, p).

Random Sampling Algorithm

Random Sampling Algorithm(G, m, n)

```
Run 3 phases of Boruvka's algorithm on G. Let G_1 be
resulting graph, and let C be set of contracted edges.
IF G_1 has no edges RETURN F \leftarrow C
G_2 \leftarrow G_1(1/2)
Compute MSF F_2 of G_2 recursively.
Compute all F_2-heavy edges in G_1, remove these
edges from G_1, and let G' be resulting graph.
Compute MSF F' of G' recursively.
Return F \leftarrow C \cup F'
```

Analysis of Random Sampling Algorithm

Theorem. The algorithm computes an MST in O(m+n) expected time.

Proof.

- **.** Correctness: red-rule, blue-rule.
- Let T(m, n) denote expected running time to find MST on graph with n vertices and m arcs.
- G_1 has \leq m arcs and \leq n/8 vertices.
 - each Boruvka phase decreases n by factor of 2
- . G_2 has \leq n/8 vertices and expected # arcs \leq m/2
 - each edge deleted with probability 1/2
- . G' has \leq n/8 vertices and expected # arcs \leq n/4
 - random sampling lemma

$$T(m,n) \leq \begin{cases} c(m+n) & \text{if } m \leq 1 \text{ or } n \leq 1 \\ \underbrace{T(m/2,n/8)}_{MSF \text{ of } G_2} + \underbrace{T(n/4,n/8)}_{MSF \text{ of } G'} + \underbrace{c(m+n)}_{\text{everything else}} & \text{otherwise} \end{cases}$$

$$\Rightarrow T(m,n) \leq 2c(m+n)$$