Red Rule, Blue Rule

Some of these lecture slides are adapted from material in:
» Data Structures and Algorithms, R. E. Tarjan.
» Randomized Algorithms, R. Motwani and P. Raghavan.

Princeton University « COS 423 « Theory of Algorithms ¢ Spring 2002 « Kevin Wayne

Cycles and Cuts

Cycle.
. Acycleis aset of arcs of the form {a,b}, {b,c}, {c,d}, .. ., {z,a}.

Path = 1-2-3-4-5-6-1
Cycle = {1, 2}, {2, 3}, {3, 4},
{4, 5}, {5, 6}, {6, 1}

Cut.

. The cut induced by a subset of nodes S is the set of all arcs with
exactly one endpointin S.

@ @

S = {4, 5, 6}
Cut = {5, 6}, {5, 7}, {3, 4},
{3, 5}, {7, 8}

Cycle-Cut Intersection

A cycle and a cut intersect in an even number of arcs.

%—

Proof.

Spanning Tree

Spanning tree. Let T =(V, F) be asubgraph of G =(V, E). TFAE:
. Tis aspanning tree of G.
. Tis acyclic and connected.
. Tis connected and has |V| - 1 arcs.
. Tis acyclic and has |V| - 1 arcs.
. Tis minimally connected: removal of any arc disconnects it.
. Tis maximally acyclic: addition of any arc creates a cycle.
. T has aunique simple path between every pair of vertices.

Minimum Spanning Tree

Minimum spanning tree. Given connected graph G with real-valued
arc weights c_, an MST is a spanning tree of G whose sum of arc
weights is minimized.

4
5 /@{
16 11
10 14
7 \@

21

G =(V, E) T=(V,F) |w(T)=50

Cayley’s Theorem (1889). There are n"? spanning trees of K...
n=|V], m = |E|.
Can’t solve MST by brute force.

Applications

MST is central combinatorial problem with divserse applications.
Designing physical networks.
- telephone, electrical, hydraulic, TV cable, computer, road
Cluster analysis.
- delete long edges leaves connected components
- finding clusters of quasars and Seyfert galaxies
- analyzing fungal spore spatial patterns
Approximate solutions to NP-hard problems.
— metric TSP, Steiner tree
Indirect applications.
— describing arrangements of nuclei in skin cells for cancer research
— learning salient features for real-time face verification
- modeling locality of particle interactions in turbulent fluid flow
- reducing data storage in sequencing amino acids in a protein

Optimal Message Passing

Optimal message passing.
Distribute message to N agents.

Each agent can communicate with some of the other agents, but their
communication is (independently) detected with probability p;;.

. Group leader wants to transmit message (e.g., Divx movie) to all
agents so as to minimize the total probability that message is detected.

Objective.
Find tree T that minimizes: 1= [] (1_pij)
(.)0T

n @)

. Or equivalently, that maximizes: ()0

. Or equivalently, that maximizes: 2 |09(1‘ pij)
(,j)0T

. Or equivalently, MST with weights p;;.

Fundamental Cycle

Fundamental cycle.
. Adding any non-tree arc e to T forms unique cycle C.
Deleting any arc f O C from T O {e} results in new spanning tree.

Cycle optimality conditions: For every non-tree arc e, and for every
tree arc f in its fundamental cycle: c;<c..

Observation: If ¢, >c_then T is not a MST.

Fundamental Cut

Fundamental cut.

Deleting any tree arc f from T disconnects tree into two
components with cut D.

. Adding back any arc e 1 D to T - {f} results in new spanning tree.

Cut optimality conditions: For every tree arc f, and for every non-tree
arc e in its fundamental cut: c_ = c;.

Observation: If c, <c;then T not a MST.

MST: Cut Optimality Conditions

Theorem. Cut optimality 0 MST. (proof by contradiction)

. T =spanning tree that satisfies cut optimality conditions.
T* = MST that has as many arcs in common with T as possible.

If T=T* then we are done. Otherwise, letf O T s.t. f O T*.
Let D be fundamental cut formed by deleting f from T.

= €

. Adding fto T* creates a fund cycle C, which shares (at least) two arcs
with cut D. Oneis f, let e be another. Note: e OT.

. Cut optimality conditions [c;<c..
. Thus, we can replace e with f in T* without increasing its cost.

10

MST: Cycle Optimality Conditions

Cycle
Theorem. ©df optimality O MST. (proof by contradiction)
. T =spanning tree that satlsflesbla(eoptlmallty conditions.
T* = MST that has as many arcs in common with T as possible.

If T=T* then we are done. Otherwise, let IO F=s+=—11T*. e0T*s.t.eOT
Let)&be fundamental s formed by deletig<=rom T.

cycle adding e to
f —
T
Deleting e from cut D

. _AgetredIa T* creates a fund cyeteC, which shares (at least) two arcs

with ¢, One isX Iet}e(be another. Note: =&1.

cycle C foOT*
Cyde:@l{optlmalltycondltlons 0 c <c,.

. Thus, we can replace e with f in T* without increasing its cost.

11

Towards a Generic MST Algorithm
If all arc weights are distinct:

. MST is unique.

. Arc with largest weight in cycle C is not in MST.
- cycle optimality conditions

[° 5

. Arc with smallest weight in cutset D is in MST.
- cut optimality conditions

12

Generic MST Algorithm

Red rule.

Let Cbe acycle with no red arcs. Select an uncolored arc of C of
max weight and color it red.

Blue rule.

Let D be a cut with no blue arcs. Select an uncolored arc in D of
min weight and color it blue.

Greedy algorithm.
Apply the red and blue rules (non-deterministically!) until all arcs

are colored. The blue arcs form a MST.
E

Note: can stop once n-1 arcs colored blue.

13

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T* containing all the blue
arcs and none of the red ones.

Base case: no arcs colored [every MST satisfies invariant.
Induction step: suppose color invariant true before blue rule.
—let D be chosen cut, and let f be arc colored blue
—if £ O T*, T* still satisfies invariant
- o/w, consider fundamental cycle C by adding fto T*
—let e O C be another arcin D
- eis uncolored and c,= c; since
eldT* O notred
Dbluerule O notblue, c,2 c;

-T*0{f}-{e} satisfies invariant

T*

14

Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T* containing all the blue
arcs and none of the red ones.

Base case: no arcs colored [every MST satisfies invariant.

Induction step: suppose color invariant true before Be rule.
_letXXbe chosen b&? and Iet>f<be arc colored Bts@ red

- |f.f\/%< T+ still satisfies invariant red

- o/w conS|der fundamental SreteTC by agelrg I to T*

ut D deleting e from
Iet?ﬁf be another arc in)BC J

C.
IS uncolored and c,= c; since

/ ?D\'/F notbeﬁ:

Cc= C
fnotred- ¢~
-T*0O{ f ? L{ e } sat|sf|es Invariant

T*

15

Greedy Algorithm: Proof of Correctness

Proof (continued).
. Induction step: suppose color invariant true before red rule.
- cut-and-paste

. Either the red or blue rule (or both) applies.
- suppose arc e is left uncolored
— blue edges form a forest

N
o

) ©

Case l Case 2

16

Special Case: Prim’s Algorithm

Prim’s algorithm. (Jarnik 1930, Dijkstra 1957, Prim 1959)
. S = vertices in tree connected by blue arcs.
. Initialize S = any vertex.
. Apply blue rule to cut induced by S.

17

Implementing Prim’s Algorithm

Prim’s Algorithm

Q ~ PQnit()

for each v OV
key(v) < o
pred(v) — nil
PQ nsert(v, Q

key(s) < O
while (! PQ senmpty(Q)
v = PQdel m n(Q
for each wl Qs.t {v,w 0O E
I f key(w) > c(v,w
PQdeckey(w, c(v,w))
pred(w) « Vv

O(m + n log n)

O(n?)

Fib. heap

array

18

Dijkstra’s Shortest Path Algorithm

Dijkstra’s Irm Algorithm

Q « PQnit()

for each v OV
key(v) « oo
pred(v) — nil
PQ nsert(v, Q

key(s) < O
while (! PQ senmpty(Q)
v = PQdel m n(Q
for each wl Qs.t {v,w 0O E
1T key(w) > v
PQdeckey(w, Tew)) c(v,w) + key(v)

pred(w ~ Vv

O(m + n log n)

O(n?)

Fib. heap

array

19

Special Case: Kruskal’s Algorithm

Kruskal’s algorithm (1956).
Consider arcs in ascending order of weight.

-~ if both endpoints of e in same blue tree, color red by applying
red rule to unique cycle

— else color e blue by applying blue rule to cut consisting of all
vertices in blue tree of one endpoint

Case 1: {5, 8} Case 2: {5, 6}

20

Implementing Kruskal’s Algorithm

Kruskal’'s Algorithm

Sort edges weights in ascendi ng order
cC,<C,<... £¢C

nr

S=0
for each v OOV
UFmake- set (V)

for i =1tom
(V,W) = ei

1 f (UFfind-set(v) # UFfind-set(w))
S « SO {i}
UFuni on(v, w)

O(n log n) O(m a (m, n))

sorting union-find

21

Special Case: Boruvka's Algorithm

Boruvka’'s algorithm (1926).
. Apply blue rule to cut corresponding to each blue tree.
. Color all selected arcs blue.
. O(log n) phases since each phase halves total # nodes.

O(m log n)

22

Implementing Boruvka’'s Algorithm

Boruvka implementation.
. Contract blue trees, deleting loops and parallel arcs.
. Remember which edges were contracted in each super-node.

/9

0,
/

3
(4)

5)

|
\

{6, 7} {3, 4}, {4, 5}, {4, 8}

8)
@

Advanced MST Algorithms

Deterministic comparison based algorithms.

. O(m log n)
. O(mlog log n).
. O(m B(m, n)).

. O(mlog B(m, n)).

. O(m a (m, n)).
. O(m).

Worth noting.

. O(m) randomized.

. O(m) verification.

Jarnik, Prim, Dijkstra, Kruskal, Boruvka
Cheriton-Tarjan (1976), Yao (1975)
Fredman-Tarjan (1987)
Gabow-Galil-Spencer-Tarjan (1986)
Chazelle (2000)

Holy grail.

Karger-Klein-Tarjan (1995)
Dixon-Rauch-Tarjan (1992)

24

Linear Expected Time MST

Random sampling algorithm. (Karger, Klein, Tarjan, 1995)
If lots of nodes, use Boruvka.
— decreases number of nodes by factor of 2

If lots of edges, delete useless ones.
- use random sampling to decrease by factor of 2

. Expected running time is O(m + n).

25

Filtering Out F-Heavy Edges

Definition. Given graph G and forest F, an edge e is F-heavy if both
endpoints lie in the same component and c, > ¢, for all edges f on
fundamental cycle.

. Cycle optimality conditions: T*is MST < no T*-heavy edges.
If e is F-heavy for any forest F, then safe to discard e.
—apply red rule to fundamental cycles

Forest F
F-heavy edges

Verification subroutine. (Dixon-Rauch-Tarjan, 1992).
. Given graph G and forest F, is Fis a MSF?

In O(m + n) time, either answers (i) YES or (ii) NO and output all
F-heavy edges.

26

Random sampling.

. Obtain G(p) by independently including each edge with p = 1/2.

Random Sampling

. Let Fbe MSF in G(p).
. Compute F-heavy edges in G.
. Delete F-heavy edges from G.

®

@

®

27

=)

Random sampling.

. Obtain G(p) by independently including each edge with p = 1/2.

Random Sampling

. Let Fbe MSF in G(p).
. Compute F-heavy edges in G.
. Delete F-heavy edges from G.

©)

G(1/2)

@

®

28

= .

Random sampling.

. Obtain G(p) by independently including each edge with p = 1/2.
Let F be MSF in G(p).

Random Sampling

. Compute F-heavy edges in G.
. Delete F-heavy edges from G.

G(1/2)

MSF F in G(1/2)

29

=

Random Sampling

Random sampling.

. Obtain G(p) by independently including each edge with p = 1/2.

. Let Fbe MSF in G(p).
. Compute F-heavy edges in G.
. Delete F-heavy edges from G.

V&

MSF F in G(1/2)

30

Random sampling.

. Obtain G(p) by independently including each edge with p = 1/2.

Random Sampling

. Let Fbe MSF in G(p).
. Compute F-heavy edges in G.
. Delete F-heavy edges from G.

®

@

®

31

Random Sampling Lemma

Random sampling lemma. Given graph G, let F be a MSF in G(p).
Then the expected number of F-light edgesis < n/p.

Proof.

. WMA ¢, <c,<...=<c,,and that G(p) is constructed by flipping
coin m times and including edge g, if ith coin flip is heads.

. Construct MSF F at same time using Kruskal’'s algorithm.
- edge e added to F < e, is F-light

- F-lightness of edge e, depends only on first i-1 coin flips and
does not change after phase i

. Phase k = period between when |F| = k-1 and |F| = k.
- F-light edge has probability p of being added to F
- # F-light edges in phase k ~ Geometric(p)

. Total # F-light edges < NegativeBinomial(n, p).

32

Random Sampling Algorithm

Random Sampling Algorithm(G, m, n)

Run 3 phases of Boruvka's algorithmon G Let G be
resulting graph, and let C be set of contracted edges.

|F G, has no edges RETURN F ~ C

G « G(1/2)
Conpute MSF F, of G, recursively.

Conpute all F,-heavy edges in G, renove these
edges from G, and let G be resulting graph.

Conpute MSF F of G recursively.

Return F « C O F

33

Analysis of Random Sampling Algorithm

Theorem. The algorithm computes an MST in O(m+n) expected time.

Proof.

. Correctness: red-rule, blue-rule.

. Let T(m, n) denote expected running time to find MST on graph
with n vertices and m arcs.

. G, has <m arcs and < n/8 vertices.
- each Boruvka phase decreases n by factor of 2

. G, has < n/8 vertices and expected # arcs < m/2
- each edge deleted with probability 1/2

. G’ has < n/8 vertices and expected # arcs <n/4
-~ random sampling lemma

c(m+n)

T(M,N)<OT(m/2,n/8)+T(n/4,n/8)+ c(m+n)

5

MSF of G,

0 T(m,n) £ 2c(m+n)

M SE of G’

%f_/
everything else

If m<lor n<l
otherwise

34

