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Linear Programming

Significance.
. Quintessential tool for optimal allocation of scarce resources,
among a number of competing activities.
Powerful model generalizes many classic problems:
- shortest path, max flow, multicommodity flow, MST, matching,
2-person zero sum games

Ranked among most important scientific advances of 20t century.
- accounts for a major proportion of all scientific computation
Helps find "good" solutions to NP-hard optimization problems.

- optimal solutions (branch-and-cut)

- provably good solutions (randomized rounding)

Brewery Problem

Small brewery produces ale and beer.
Production limited by scarce resources: corn, hops, barley malt.

Recipes for ale and beer require different proportions of resources.

Corn Hops Malt Profit
(pounds) (ounces) (pounds) (%)

5 4 35 13
Beer 15 4 20 23
m 480 160 1100
How can brewer maximize profits?
Devote all resources to beer: 32 barrels of beer O $736.
Devote all resources to ale: 34 barrels of ale O $442.

. 7% barrels of ale, 29%% barrels of beer 0 $776.
. 12 barrels of ale, 28 barrels of beer 0 $800.

Beverage

HoPS BARLEY MALT
160 QUNCES 1,190 POUNDS.

Brewery Problem

max 13A + 23B
s.t. 5A + 15B < 480
4A + 4B < 160
35A + 20B < 1190
A B = 0

5 POUNDS CORN 15 POUNDS COAN
4 OUNCES HOPS.

20 POUNDS MALT

N

-sus PROFTT _szs PROFIT
MOST
PROFITABLE
PRODUCT MiX
: 4

4 OUNCES HOPS
35 POUNDS MALT




Brewery Problem: Feasible Region
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Brewery Problem: Objective Function
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Brewery Problem: Geometry

Brewery problem observation. Regardless of coefficients of linear
objective function, there exists an optimal solution that is an extreme
point.

/- Extreme points
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Linear Programming

LP "standard" form.
. Input data: rational numbers Cj» b;, a;; -
. Maximize linear objective function.
. Subject to linear inequalities.




LP: Geometry

Geometry. n
y . ) (P) max 3 c;x;
Forms an n-dimensional /=1
polyhedron. n .
s.t. Yajx; < b 1l<ism
JEL
x; 2 0 1<js<n

. Convex: if yand z are feasible solutions, then so is Y2y + Y2z.

Extreme point:  feasible solution x that can't be written as %2y + %z
for any two distinct feasible solutions y and z.

/’

Extreme
points

Convex Not convex

LP: Geometry

Extreme Point Theorem. If there exists an optimal solution to
standard form LP (P), then there exists one that is an extreme point.

. Only need to consider finitely many possible solutions.

Greed. Local optima are
global optima.

LP: Algorithms

Simplex. (Dantzig 1947)
Developed shortly after WWII in response to logistical problems:
used for 1948 Berlin airlift.
Practical solution method that moves from one extreme point to a
neighboring extreme point.
Finite (exponential) complexity, but no polynomial implementation
known.

LP: Polynomial Algorithms

Ellipsoid. (Khachian 1979, 1980)

. Solvable in polynomial time: O(n* L) bit operations.
- n =#variables
- L =#bitsininput

. Theoretical tour de force.
Not remotely practical.

Karmarkar’s algorithm. (Karmarkar 1984)

. O(nd3L). \
Polynomial and reasonably efficient
implementations possible.

Interior point algorithms. _’
. O(ndL).
. Competitive with simplex!
- will likely dominate on large problems soon
Extends to even more general problems.




LP Duality

Primal problem.

Find a lower bound on optimal value.

« (Xq, X9, X3, X4) = (0,0, 1, 0) o zxz 5.

- (X9 Xp X3, Xg) = (2,1, 1, 1/3) O zx = 15.
« (Xq, X9, X3, X4) = (3,0, 2,0) o zx = 22
+ (Xq, Xg, X3, X4) = (0, 14,0, 5) o z¢= 29.

LP Duality

Primal problem.

Find an upper bound on optimal value.
. Multiply 2" inequality by 2: 10x, + 2x, + 6x5+ 16x, < 110.

O z* =4x;+ X, +5x3+ 3x, < 10x, + 2%, + 6x3+ 16x, < 110.
. Adding 2" and 3 inequalities: 4x, + 3x, + 6x5+ 3x, < 58.

O z¥ =4x;+X, +5X3+ 3X, < 4Xy + 3X, + 6X3+ 3x, < 58.

LP Duality

Primal problem.

Find an upper bound on optimal value.
. Adding 11 times 1stinequality to 6 times 3 inequality:

O z* =4X;+ X, +5X3+ 3X, < 5X + X, + 7X3+ 3X, < 29.

Recall.
« (Xq, Xg, X3, X4) = (0, 14, 0, 5) o zx = 29.

LP Duality

Primal problem.

General idea: add linear combination (y,, y,, y3) of the constraints.

(Y1+5Y2-y3) X1 + (=y1+Y2+2y3) Xp +
(=y1+3y,+3y3) X3+ (By1+8y,-5y3) X4 < y;+55y,+3y3

Dual problem.




LP Duality

Primal and dual linear programs: given rational numbers a
values x;, y; that optimize (P) and (D).

i by, ¢, find

ijr Mir b

Duality Theorem (Gale-Kuhn-Tucker 1951, Dantzig-von Neumann 1947).
If (P) and (D) are nonempty then max = min.

. Dual solution provides certificate of optimality O
decision version O NP n co-NP.

. Special case: max-flow min-cut theorem.

. Sensitivity analysis.

LP Duality: Economic Interpretation

Brewer’s problem: find optimal mix of beer and ale to maximize profits.

A*=12
B* =28
OPT =800

Entrepreneur’s problem: Buy individual resources from brewer at
minimum cost.

. C, H, M =unit price for corn, hops, malt.
. Brewer won't agree to sell resources if 5C + 4H + 35M < 13.

cH=l
H* =2
M*=0
OPT = 800

LP Duality: Economic Interpretation

Sensitivity analysis.
. How much should brewer be willing to pay (marginal price) for
additional supplies of scarce resources?
# corn $1, hops $2, malt $0.

. Suppose a new product "light beer" is proposed. It requires 2 corn,
5 hops, 24 malt. How much profit must be obtained from light beer
to justify diverting resources from production of beer and ale?

# Atleast 2 ($1) + 5 ($2) + 24 (0%) = $12/ barrel.

Standard Form

n
Standard form. (P) max 3 cjx;
J=1

IN
K
[Eny
N
IN
3

n
s.t. Za,-jxl-
j:

X; 2 0 1l<j<n

Easy to handle variants.
. X+2y-3z 217

. X+2y-3z = 17

. minx+2y-3z

. X unrestricted

-X -2y +3z <-17.

x+2y-3z <17, -x-2y+3z <-17.
max -x - 2y + 3z.
X=y-z,y20,220.

O oOooao




LP Application: Weighted Bipartite Matching

Assignment problem. Given a complete bipartite network K, , and
edge weights c;;, find a perfect matching of minimum weight.

min Cij X;j
1<i<n 1<j<n
s.t. Y X =1 1<isn
1<j<n
Xj = 1 1<j<n
1<is<n
Xj =z 0 1<i,j<n

Birkhoff-von Neumann theorem (1946, 1953). All extreme points of the
above polyhedron are {0-1}-valued.

Corollary. Can solve assignment problem using LP techniques since
LP algorithms return optimal solution that is an extreme point.

Remark. Polynomial combinatorial algorithms also exist.

LP Application: Weighted Bipartite Matching

Birkhoff-von Neumann theorem (1946, 1953). All extreme points of the
above polytope are {0-1}-valued.

Proof (by contradiction). Suppose x is a fractional feasible solution.

. Consider A={(i,]): 0 <x}.
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LP Application: Weighted Bipartite Matching

Birkhoff-von Neumann theorem (1946, 1953). All extreme points of the
above polytope are {0-1}-valued.

Proof (by contradiction). Suppose x is a fractional feasible solution.
. Consider A={(i,]): 0<x}.
. Claim: there exists a perfect
matching in (V, A).
- fractional flow gives fractional
perfect matching

LP Application: Weighted Bipartite Matching

Birkhoff-von Neumann theorem (1946, 1953). All extreme points of the
above polytope are {0-1}-valued.

Proof (by contradiction). Suppose x is a fractional feasible solution.
. Consider A={(i,]): 0<x}.
. Claim: there exists a perfect
matching in (V, A). ®— Yar=1 —®
- fractional flow gives fractional
perfect matching

- apply integrality theorem ® Yo =1 O
for max flow
. Define e =min { x; : x;; > 0}, ©
xl=(1-g)x+ey,
x2=(1+g)x -gy. ®

L x=¥xl+wx2 O
X not an extreme point.
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LP Application: Multicommodity Flow

Multicommodity flow. Given a network G = (V, E) with edge capacities
u(e) = 0, edge costs c(e) 2 0, set of commodities K, and supply /
demand d¥(v) for commodity k at node v, find a minimum cost flow
that satisfies all of the demand.

min s ycke)x*(e)

kOK elE

st.  yx*e)- yx*@e) = dv) vOV,kOK
eintov eout of v

s Yx*e) < u(e) elE
kOK elE

x“(e) = 0 eDE,kOK

Applications.

. Transportation networks.

. Communication networks (Akamai).

. Solving Ax =b with Gaussian elimination, preserving sparsity.
. VLSl design.

Weighted Vertex Cover

Weighted vertex cover. Given an undirected graph G = (V, E) with
vertex weights w, 2 0, find a minimum weight subset of nodes S such
that every edge is incident to at least one vertex in S.

. NP-hard even if all weights are 1.

Integer programming formulation. 10 @ 9
(ILP) min S w, X, 16 B 10
ViV
st. x,tx, =2 1 (vvw)OE
X, 0 {01} vOV 6 & 9
. If x* is optimal solution to (ILP), 23 33
then S={vOV:x* =1}isamin
weight vertex cover. 7 J) 32

Total weight = 55.

Integer Programming

INTEGER-PROGRAMMING: Given rational numbers ajj, b;, Cjs find
integers Xx; that solve:

n
min Y ¢jX;
=1
n
st. YayX; = b l<is<m
=1
X; 2 0 1<js<n
X: integral 1<j<n

J

Claim. INTEGER-PROGRAMMING is NP-hard.
Proof. VERTEX-COVER <, INTEGER-PROGRAMMING.

min ¥ X,
ViV
st. x,+tx, =21 (v,w)OE
X, =2 0 vV
Xy integral vOV

Weighted Vertex Cover

Linear programming relaxation.

(LP) min Sw,X,
vOv

\Y)

1 (vww)OE
> 0 vOv

st X, + Xy
X

A

. Note: optimal value of (LP) is < optimal value of (ILP), and may be
strictly less.

- clique on n nodes requires n-1 1 1
nodes in vertex cover

- LP solution x* =% has value n/ 2 1

. Provides lower bound for approximation algorithm.
. How can solving LP help us find good vertex cover?
# Round fractional values.




Weighted Vertex Cover

Theorem. If x* is optimal solution to (LP), then S={v OV :x*,2%j}is
a vertex cover within a factor of 2 of the best possible.

Provides 2-approximation algorithm.
. Solve LP, and then round.

S is a vertex cover.
. Consider an edge (v,w) OE.
. Since x*, + x*, 2 1, eitherx*, orx*, = % 0O (v,w)covered.

S has small cost.
Let S* be optimal vertex cover.

Y wyXy <::: LP is relaxation |

w, 2

vs* vV
*
= 3 wyXxy

vs

1

> 15w, <::: X*, 2 Y |
vs

Weighted Vertex Cover

Good news.
. 2-approximation algorithm is basis for most practical heuristics.
- can solve LP with min cut O faster
- primal-dual schema O linear time 2-approximation
PTAS for planar graphs.
. Solvable on bipartite graphs using network flow.

Bad news.
NP-hard even on 3-regular planar graphs with unit weights.

If P # NP, then no p-approximation for p < 4/3, even with unit
weights. (Dinur-Safra, 2001)

Maximum Satisfiability

MAX-SAT: Given clauses C,, C,, ... C, in CNF over Boolean variables
X1, X -« - Xp, @and integer weights w; = 0 for each clause, find a truth
assignment for the x; that maximizes the total weight of clauses
satisfied.

NP-hard even if all weights are 1.

Ex. -
C = X 0O x3 wy=1
Cz = X O X3 Wy = 2 il f 8
C; = x10Xx, Ox3 w3=3 x2=1
C4 = X1 a Xo Wy = 4 WEIght =14
CS = X1 0 72 Wsg =5

Maximum Satisfiability: Johnson’s Algorithm

Randomized polynomial time (RP). Polynomial time extended to allow
calls to randon() call in unit time.

Polynomial algorithm A with one-sided error:
- if x is YES instance: Pr[A(X) = YES] = %
—if x is NO instance: Pr[A(x) =YES] =0

Fundamental open question: does P = RP?

Johnson’s Algorithm: Flip a coin, and set each variable true with
probability ¥2, independently for each variable.

Theorem: The "dumb" algorithm is a 2-approximation for MAX-SAT.




Maximum Satisfiability: Johnson’'s Algorithm

Dl |fclausec is satisfied

Proof: Consider random variable Y; =
DO otherwise.

m
. Let W =3y wY

. Let OPT = weight of the optimal assignment.
. Let ZJ- be the number of distinct literals in clause CJ-.

m
EW] = S w;E[Y]] <::: linearity of expectation

J=1
m

= Y w,Pr[clause C;is satisfied]
J=1
< 1

= >y w;(1- ()’)
J=1
1 m

2 E/ZlW/

> 1OPT. <::: weights are = 0

Maximum Satisfiability: Johnson’s Algorithm

Corollary. If every clause has at least k literals, Johnson’s algorithm
isal/(1- (%)) approximation algorithm.

. 8/7 approximation algorithm for MAX E3SAT.

Theorem (Hastad, 1997). If MAX ESAT has an p-approximation for
p < 8/7,then P = NP.

. Johnson's algorithm is best possible in some cases.

Maximum Satisfiability: Randomized Rounding

Idea 1. Used biased coin flips, not 50-50.
Idea 2. Solve linear program to determine coin biases.

Dl if clause C; is satisfied S mox istrue
j [ .
/ |:|0 otherwise. 00 otherwise.

=indices of variables that occur un-negated in clause C;.
=indices of variables that occur negated in clause C;.

P,

J
s.t. Sy + Z(l Yi)
iEIPj II:Ij
0 < Zj

\%
N

IN
[

Theorem (Goemans-Williamson, 1994). The algorithm is an
e/ (e-1) = 1.582-approximation algorithm.

Maximum Satisfiability: Randomized Rounding

Fact 1. For any nonnegative a,, . .. a,, the geometric mean is < the

arithmetic mean. 1
Yaa-a < p(ata+--+a)

Theorem (Goemans-Williamson, 1994). The algorithm is an
e/ (e-1) = 1.582-approximation algorithm for MAX-SAT.

Proof. Consider an arbitrary clause C;.

Pr[clause C;is not satisfied] = a-y;) M Vi
i0P; iON;
O ot
geometric-arithmetic mean:::> < OH(SY@-y) + Yy)O
g/ i0P; iov;  H
= Q-2(3yi + 3@-y)C
i0p; iON; H

13

")
E 36

LP constraint :::>

IN

L0 M@0
|
2,

~
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Maximum Satisfiability: Randomized Rounding

Proof (continued).

Pr[clause C;is satisfied] = 1 - (1—%)61‘
1-(@-z*/¢)"is concave > ~ (1-1Y)4 8,
- X =1L *
| (1-1/x)* converges to e :::> > (1-1)Z
A
(1 1-(1-9)9

f(z)=1-(1-2)"

f(2*)

»
»

(01 0) z*

Maximum Satisfiability: Randomized Rounding

Proof (continued).
. From previous slide:  Pr[clauseC; issatisfied] > (1-1)z
. Let W =weight of clauses that are satisfied.

m
E[W] = Y w,Pr[clause C; is satisfied]
J=1

\%

1 m *
-2 >w;zj
4

1-1) OPT.p
@-LHort

\%

Corollary. If all clauses have length at most k

EW] = [1-(1-1)*]OPT.

Maximum Satisfiability: Best of Two

Observation. Two approximation algorithms are complementary.
. Johnson’s algorithm works best when clauses are long.
. LProunding algorithm works best when clauses are short.

How can we exploit this?

. Run both algorithms and output better of two.

. Re-analyze to get 4/3-approximation algorithm.

. Better performance than either algorithm individually!

Best-of-Two (C,,C ,,...,C )

(x%, W) « Johnson(C, ....G)
(x2,W? «~ LPround(C 4...,.C_)

IF (WL > W2)
RETURNx!

ELSE
RETURNX2

Maximum Satisfiability: Best of Two

Theorem (Goemans-Williamson, 1994). The Best-of-Two algorithm is
a 4/3-approximation algorithm for MAX-SAT.

Proof.

e+ ]
= %% w; Pr[clauseC; issatisfied by Alg1] +

E max(Wl,Wz)]

\

15 w; Pr[clauseC; issatisfied by Alg 2]
i

sy « (a2 2]

%% W (% ZJ)

3OPTp

30PT.

\

\}

\4

\Y




Maximum Satisfiability: Best of Two

Lemma. Forany integer /21, (1-(3)") + ll—(l—%)l] Z]f 2 3z.

Proof.
. Casel(r=1); 1+1z; = 37
. Case2(=2): 32+ 2z7 =2 37
. Case3(r23) (1-(3)) + [1-(1-1)]Z = (1-(1)) + @-H) 7
745,
2 g%t 3%
— 35

Maximum Satisfiability: State of the Art

Observation. Can’t get better than 4/3-approximation using our LP.

. If all weights =1, OPT , =4 but OPT = 3. C = xy 0x,
G = x 0x
G = x1 0x
Ci = x1 0 x;

Lower bound.
. Unless P = NP, can’'t do better than 8/ 7 = 1.142.

Semi-definite programming.
. 1.275-approximation algorithm.

. 1l.2-approximation algorithm
if certain conjecture is true.

Open research problem. C, X, B, Aj D' SR(n xn)
. 4/3- approximation algorithm X oY = E g X Vi
without solving LP or SDP. i=1 j=1 v

> positive semi-definite

Appendix: Proof of LP Duality Theorem

LP Duality Theorem. For AOO™n b O0O™,cOdn,
if (P) and (D) are nonempty then max = min.

Princeton University « COS 423 « Theory of Algorithms « Spring 2001 « Kevin Wayne

LP Weak Duality

LP Weak Duality. For AOO™n b O0dm,cOdn,if (P)and (D) are
nonempty, then max < min.

Proof (easy).

. Suppose x O O™ is feasible for (P) and y O O" is feasible for (D).
-x20, yTA =2 ¢ O yTAx = c'x.
-y=20,Ax<b O y'Ax < y™b
- combining two inequalities: ¢™x < yTAx < y'b




Closest Point

Welerstrass’ Theorem. Let X be a compact set, and let f(x) be a
continuous function on X. Then min {f(x) : x O X} exists.

Lemma 1. Let X O O™ be a nonempty closed convex set, and let y 0 X.
Then there exists x* O X with minimum distance from y. Moreover, for all
x O X we have (y —x*)T (x —x*) <0.

Proof. (existence)
. Define f(x) = ||y - |-
. Want to apply Weierstrass:
- fis continuous
- X closed, but maybe not bounded
. X£@ O thereexists x’ 0 X.
- X=X OXly =x| < [ly=x1'}
is closed and bounded.
. min{f(x) : x OX}=min{f(x) :x OX%}

Closest Point

Lemma 1. Let X O O™ be a nonempty closed convex set, and let y 0 X.
Then there exists x* 0 X with minimum distance from y. Moreover, for all
x O X we have (y — x*)T(x —x*) <0.

Proof. (moreover)
. x*mindistance O |ly-x*|2<|ly—x||2forallx OX.
. Byconvexity:if x 0OX,then x*+ € (x—x*) OXforall0 <e<1.
< Aly=x 12 < fly - x* - e(x—x¥) || 2
=y = x| 2+ e2]l(x = x| 2— 2 & (y — x*) T(x - x*)
. Thus, (y—x*) T(x-x*) < Y%e||(x —x¥)|| 2
. Letting € - O*, we obtain the desired result.

Separating Hyperplane Theorem

Separating Hyperplane Theorem. Let X 0 0™ be a nonempty closed
convex set, and let y 0 X. Then there exists a hyperplane
H={x0O0Om:ax =a} whereaO O™, a 00O that separates y from X.

. alx<aforall x OX.
. aly>a.

Proof.
. Let x* be closest point in X toy.
-L1 0 (y=x*)T(x—x*)<0forallx OX
. Choosea=y—x* #0and a=a'x*.
-aly=al(a+x*)=|la*+a>a
—ifx OX, thenaT(x —x*) <0
0 a'x < alx*=a

H={xOOm

Fundamental Theorem of Linear Inequalities

Farkas’ Theorem (Farkas 1894, Minkowski 1896). For A0 Om™n b O Om
exactly one of the following two systems holds.

Proof (not both). Suppose x satisfies (I) and y satisfies (ll).
. Then0 < y™ = yTAx < 0, a contradiction.

Proof (at least one). Suppose (I) infeasible. We will show (ll) feasible.
. Consider S ={Ax : x 20} so that S closed, convex, b OS.

- there exists hyperplaney 0 O™, a 00 0O separating b from S:
y™b >a, y's<aforallsOS.

. 00S 0O az=200 yb>0
. YTAx<aforallx=0 O yTA <0since x can be arbitrarily large.




Another Theorem of the Alternative

Corollary. For A0 Om™n b O 0O™ exactly one of the following two
systems holds.

Proof.
. Define A" Om>xmm =[A|1],x"=[x]|s],wheres O Om.
. Farkas’ Theorem to A’, b’: exactly one of (I') and (II') is feasible.

. (I') equivalent to (1), (II') equivalent to (ll).

LP Strong Duality

LP Duality Theorem. For AOO™n b O0O™,cO0On if (P)and (D) are
nonempty then max = min.

Proof (max < min). Weak LP duality.
Proof (min < max). Suppose max < a. We show min < a.

. By definition of a, (I) infeasible O (ll) feasible by Farkas Corollary.

LP Strong Duality

Lety, z be a solution to (ll).

Case1l: z=0.
. Then, {yOQOm:yTA>0,y'"b<0,y=>0}is feasible.
. Farkas Corollary O {xO0O": Ax<b,x=0}is infeasible.
. Contradiction since by assumption (P) is nonempty.

Case 2: z>0.
. Scaley, z so that y satisfies (Il) and z= 1.
. Resulting y feasible to (D) and y™b < a.




