Priority Queues

Blnary and B|nom|al Heaps Supports the following operations.

. Insert element x.

. Return min element.
. Return and delete minimum element.
. Decrease key of element x to k.

Applications.
These lecture slides are adapted PP

from CLRS, Chapters 6, 19. . Dijkstra’s shortest path algorithm.
. Prim’s MST algorithm.

. Event-driven simulation.
. Huffman encoding.

. Heapsort.
Princeton University « COS 423 « Theory of Algorithms « Spring 2002 « Kevin Wayne
Priority Queues In Action Priority Queues
Heaps
» ; Operation Linked List Binary Binomial Fibonacci* Relaxed
Dijkstra’s Shortest Path Algorithm
make-heap 1 1 1 1 1
PQ nit() insert 1 log N log N 1 1
forkeaz:h)v oV find-min N 1 log N 1 1
e \Y — 00
PQ’ynsert (V) delete-min N log N log N log N log N
union 1 N log N 1 1
key(s) < O)
whi l e (! PG senpty()) decrease-key 1 log N log N 1 1
v = PQdel m n() delete N log N log N log N log N
for each wO Qs.t (v,w OE is-empty 1 1 1 1 1
if mw > m(v) + c(v,w
PQdecrease(w, m(v) + c(v,W)) {} ﬁ {}
vl [O(V?) | [O(E[logv) | [O(EI+Ivilog V] |

1 make-heap

[V] insert
|V| delete-min
|E| decrease-key

Binary Heap: Definition

Binary heap.
. Almost complete binary tree.

—filled on all levels, except last, where filled from left to right
. Min-heap ordered.

- every child greater than (or equal to) parent

Binary Heap: Properties

Properties.
. Min elementis in root.
. Heap with N elements has height = [log, NOI

N =14
Height =3

Binary Heaps: Array Implementation

Implementing binary heaps.
. Use an array: no need for explicit parent or child pointers.

—-Parent (i) = 0/20
—Left(i) = 2i
-Right(i) =2 +1

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it's heap ordered.
- Peter principle: nodes rise to level of incompetence

<:Z< next free slot

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it's heap ordered.
- Peter principle: nodes rise to level of incompetence

swap with parent

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it's heap ordered.
- Peter principle: nodes rise to level of incompetence

swap with parent

Binary Heap: Insertion

Insert element x into heap.
. Insert into next available slot.
. Bubble up until it's heap ordered.
- Peter principle: nodes rise to level of incompetence
. O(log N) operations.

stop: heap ordered

Binary Heap: Decrease Key

Decrease key of element x to k.
. Bubble up until it's heap ordered.
. O(log N) operations.

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
- power struggle principle: better subordinate is promoted

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
- power struggle principle: better subordinate is promoted

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
- power struggle principle: better subordinate is promoted

exchange with left child

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
- power struggle principle: better subordinate is promoted

exchange with right child

Binary Heap: Delete Min

Delete minimum element from heap.
. Exchange root with rightmost leaf.
. Bubble root down until it's heap ordered.
- power struggle principle: better subordinate is promoted
. O(log N) operations.

stop: heap ordered

Binary Heap

Heapsort.

. Insert N items into binary heap.

. Perform N delete-min operations.
. O(Nlog N) sort.

. No extra storage.

. Heapsort

Binary Heap: Union

Union.
. Combine two binary heaps H; and H, into a single heap.
. No easy solution.
- Q(N) operations apparently required
. Can support fast union with fancier heaps.

H, H,

2 (i)
() () () (&)

@) @) @ (9 (9 (9

Priority Queues

Heaps
Operation Linked List Binary Binomial Fibonacci* Relaxed

make-heap 1 1 1 1 1
insert 1 log N log N 1 1
find-min N 1 log N 1 1

delete-min N log N log N log N log N
union 1 N log N 1 1
decrease-key 1 log N log N 1 1

delete N log N log N log N log N
is-empty 1 1 1 1 1

Binomial Tree

Binomial tree.

Binomial Tree

Useful properties of order k binomial tree B,.
. Number of nodes = 2k,
. Height = k.

. Degree of root = k.

. Deleting root yields binomial
trees B, ,, ..., B,

Proof.
. By induction on k.

. Recursive definition:
BO
@
o ¢
BO Bl BZ BB B4
Binomial Tree

A property useful for naming the data structure.
. B, has ?:[H nodes at depth i.

depth O

depth 1

depth 2

depth 3

depth 4 .

Binomial Heap

Binomial heap. Vuillemin, 1978.
. Sequence of binomial trees that satisfy binomial heap property.
- each tree is min-heap ordered
—-0or 1binomial tree of order k

48

Binomial Heap: Implementation

Implementation.

. Represent trees using left-child, right sibling pointers.
—three links per node (parent, left, right)

. Roots of trees connected with singly linked list.
- degrees of trees strictly decreasing from left to right

29 10 @

Binomial Heap Leftist Power-of-2 Heap

Binomial Heap: Properties

Properties of N-node binomial heap.
. Min key contained in root of By, B, ..., B,.

. Contains binomial tree B; iff b; = 1 where b [b,b,b, is binary
representation of N.

. At most Oog, NI+ 1 binomial trees.
. Height < Oog, NOI

N =19
#trees =3
height =4

binary = 10011

B, Bo

Binomial Heap: Union

Create heap H that is union of heaps H and H”.
. "Mergeable heaps."
. Easy if H and H” are each order k binomial trees.
- connect roots of H and H”
- choose smaller key to be root of H

@)
11 1
0 0 1
19+7=26 + 0 0 1 1
1 1 0 1

Binomial Heap: Union

Binomial Heap: Union

@

@ @
@) @
@

Binomial Heap: Union

Create heap H that is union of heaps H and H”.
. Analogous to binary addition.

Running time. O(log N)
. Proportional to number of trees in root lists < 2(dog, NO+ 1).

19+7=26 + 0

o o r
o|lr o r
Pl R e

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

. Find root x with min key in root list of H, and delete
. H < broken binomial trees

. H < Union(H’, H)

Running time. O(log N)

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.

. Find root x with min key in root list of H, and delete
. H < broken binomial trees

. H < Union(H’, H)

Running time. O(log N)

Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.
. Suppose x is in binomial tree B,.
. Bubble node x up the tree if x is too small.

Running time. O(log N)
. Proportional to depth of node x < Oog, NO.

Binomial Heap: Delete
Delete node x in binomial heap H.
. Decrease key of x to -co.

. Delete min.

Running time. O(log N)

Binomial Heap: Insert
Insert a new node x into binomial heap H.
. H ~ MakeHeap(x)

. H <« Union(H’, H)

Running time. O(log N)

40

Binomial Heap: Sequence of Inserts Priority Queues
Insert a new node x into binomial heap H.
CEN= L 0, then only 1 steps. () (e) ()
. I: N i 01, tEen on:y 2 steps. TS O & Heaps
- IEN= 011, then only 3 steps. Operation Linked List Binary Binomial Fibonacci * Relaxed
. IfN=....0111, then only 4 steps. @) Gy ()
make-heap 1 1 1 1 1
) insert 1 log N log N 1 1
Inserting 1 item can take Q(log N) time. find-min N 1 log N 1 1
. IfN= 11...111, then log, N steps. delete-min N log N log N log N log N
union 1 N log N 1 1
But, inserting sequence of N items takes O(N) time! decrease-key 1 log N log N 1 1
- (N/2)(1) + (N/4)(2) + (N/B)(3) + ... <2N delete N log N log N log N log N
. Am(.)rtlzed an(.'ally3|s. . N no_ o N _ 1 is-empty 1 1 1 1 1
. Basis for getting most operations nzl on oN oN-1
down to constant time. - < 2 {}
| just did this |

