Binary and Binomial Heaps

These lecture slides are adapted from CLRS, Chapters 6, 19.

Priority Queues

Supports the following operations.
- Insert element \(x \).
- Return min element.
- Return and delete minimum element.
- Decrease key of element \(x \) to \(k \).

Applications.
- Dijkstra’s shortest path algorithm.
- Prim’s MST algorithm.
- Event-driven simulation.
- Huffman encoding.
- Heapsort.
- ...
Binary Heap: Definition

- **Binary heap.**
 - Almost complete binary tree.
 - filled on all levels, except last, where filled from left to right
 - Min-heap ordered.
 - every child greater than (or equal to) parent

Binary Heaps: Array Implementation

- Implementing binary heaps.
 - Use an array: no need for explicit parent or child pointers.
 - Parent(i) = ⌊i/2⌋
 - Left(i) = 2i
 - Right(i) = 2i + 1

Binary Heap: Properties

- **Properties.**
 - Min element is in root.
 - Heap with N elements has height = ⌊log₂ N⌋.

Binary Heap: Insertion

- Insert element x into heap.
 - Insert into next available slot.
 - Bubble up until it’s heap ordered.

 - Peter principle: nodes rise to level of incompetence
Binary Heap: Insertion

Insert element x into heap.
- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence

Binary Heap: Insertion

Insert element x into heap.
- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence

Binary Heap: Insertion

Insert element x into heap.
- Insert into next available slot.
- Bubble up until it's heap ordered.
 - Peter principle: nodes rise to level of incompetence
 - O(log N) operations.

Binary Heap: Decrease Key

Decrease key of element x to k.
- Bubble up until it's heap ordered.
 - O(log N) operations.
Delete minimum element from heap.
- Exchange root with rightmost leaf.
- Bubble root down until it’s heap ordered.
 - power struggle principle: better subordinate is promoted
Binary Heap: Delete Min

Delete minimum element from heap.
- Exchange root with rightmost leaf.
- Bubble root down until it’s heap ordered.
 - power struggle principle: better subordinate is promoted
- O(log N) operations.

Binary Heap: Heapsort

Heapsort.
- Insert N items into binary heap.
- Perform N delete-min operations.
- O(N log N) sort.
- No extra storage.

Binary Heap: Union

Union.
- Combine two binary heaps H₁ and H₂ into a single heap.
- No easy solution.
 - $\Omega(N)$ operations apparently required
- Can support fast union with fancier heaps.

Priority Queues

<table>
<thead>
<tr>
<th>Operation</th>
<th>Heaps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linked List</td>
</tr>
<tr>
<td>make-heap</td>
<td>1</td>
</tr>
<tr>
<td>insert</td>
<td>1</td>
</tr>
<tr>
<td>find-min</td>
<td>N</td>
</tr>
<tr>
<td>delete-min</td>
<td>N</td>
</tr>
<tr>
<td>union</td>
<td>1</td>
</tr>
<tr>
<td>decrease-key</td>
<td>1</td>
</tr>
<tr>
<td>delete</td>
<td>N</td>
</tr>
<tr>
<td>is-empty</td>
<td>1</td>
</tr>
</tbody>
</table>
Binomial Tree

• Recursive definition:
 \[B_0 \]
 \[B_{k-1} \]
 \[B_k \]
 \[B_{k-1} \]

Useful properties of order \(k \) binomial tree \(B_k \):

• Number of nodes = \(2^k \).
• Height = \(k \).
• Degree of root = \(k \).
• Deleting root yields binomial trees \(B_{k-1}, \ldots, B_0 \).

Proof.

• By induction on \(k \).

Binomial Heap

• Sequence of binomial trees that satisfy binomial heap property.
 – each tree is min-heap ordered
 – 0 or 1 binomial tree of order \(k \)
Binomial Heap: Implementation

- Represent trees using left-child, right sibling pointers.
 - three links per node (parent, left, right)
- Roots of trees connected with singly linked list.
 - degrees of trees strictly decreasing from left to right

Binomial Heap: Properties

- Min key contained in root of B_0, B_1, ..., B_k.
- Contains binomial tree B_i iff $b_i = 1$ where $b_n b_{n-1} b_{n-2} ... b_0$ is binary representation of N.
- At most $\lceil \log_2 N \rceil + 1$ binomial trees.
- Height $\leq \lceil \log_2 N \rceil$.

Binomial Heap: Union

- Create heap H that is union of heaps H' and H''.
 - "Mergeable heaps."
 - Easy if H' and H'' are each order k binomial trees.
 - connect roots of H' and H''
 - choose smaller key to be root of H

Binomial Heap: Power-of-2 Heap

- Leftist power-of-2 heap

N = 19
trees = 3
height = 4
binary = 10011

19 + 7 = 26

1 1 0 0 1 1

1 1 0 1 0
Binomial Heap: Union

+

+

+

+

12
18
Binomial Heap: Union

Create heap H that is union of heaps H' and H''.
- Analogous to binary addition.

Running time. $O(\log N)$
- Proportional to number of trees in root lists $\leq 2(\lceil \log_2 N \rceil + 1)$.

Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete
 - $H' \leftarrow$ broken binomial trees
 - $H \leftarrow \text{Union}(H', H)$

Running time. $O(\log N)$
Binomial Heap: Delete Min

Delete node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete
- \(H' \leftarrow \) broken binomial trees
- \(H \leftarrow \) Union\((H', H) \)

Running time. \(O(\log N) \)

Binomial Heap: Insert

Insert a new node x into binomial heap H.
- \(H' \leftarrow \) MakeHeap\((x) \)
- \(H \leftarrow \) Union\((H', H) \)

Running time. \(O(\log N) \)

Binomial Heap: Decrease Key

Decrease key of node x in binomial heap H.
- Suppose x is in binomial tree \(B_k \).
- Bubble node x up the tree if x is too small.

Running time. \(O(\log N) \)

- Proportional to depth of node x \(\leq \lceil \log_2 N \rceil \).

Binomial Heap: Delete

Delete node x in binomial heap H.
- Decrease key of x to \(-\infty\).
- Delete min.

Running time. \(O(\log N) \)

Binomial Heap: Sequence of Inserts

Insert a new node x into binomial heap H.

- If \(N = \ldots .0 \), then only 1 steps.
- If \(N = \ldots .01 \), then only 2 steps.
- If \(N = \ldots .011 \), then only 3 steps.
- If \(N = \ldots .0111 \), then only 4 steps.

Inserting 1 item can take \(\Omega(\log N) \) time.

- If \(N = 11 \ldots 111 \), then \(\log_2 N \) steps.

But, inserting sequence of N items takes \(O(N) \) time!

- \((N/2)(1) + (N/4)(2) + (N/8)(3) + \ldots \leq 2N \)
- Amortized analysis.
- Basis for getting most operations down to constant time.

\[
\sum_{n=1}^{N} \frac{n}{2^n} \leq \frac{2 - N}{2^{N-1}} \]

Priority Queues

<table>
<thead>
<tr>
<th>Operation</th>
<th>Linked List</th>
<th>Binary</th>
<th>Binomial</th>
<th>Fibonacci*</th>
<th>Relaxed</th>
</tr>
</thead>
<tbody>
<tr>
<td>make-heap</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>insert</td>
<td>1</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>find-min</td>
<td>N</td>
<td>1</td>
<td>(\log N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>delete-min</td>
<td>N</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>union</td>
<td>1</td>
<td>N</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>1</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>delete</td>
<td>N</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>is-empty</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Just did this