Greedy Algorithms

Greed

"Greed is good. Greed is right. Greed works. Greed cuts through, clarifies, and captures the essence of the evolutionary spirit."

Gordon Gecko (Michael Douglas)

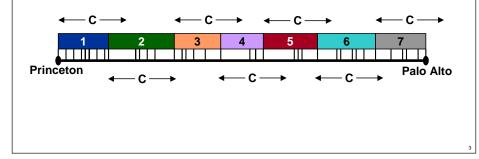
Selecting Breakpoints

Minimizing breakpoints.

- Truck driver going from Princeton to Palo Alto along predetermined route.
- . Refueling stations at certain points along the way.
- Truck fuel capacity = C.

Greedy algorithm.

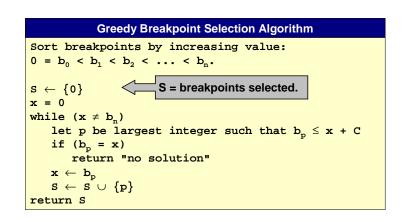
. Go as far as you can before refueling.



Some possibly familiar examples:

- . Gale-Shapley stable matching algorithm.
- Dijkstra's shortest path algorithm.
- Prim and Kruskal MST algorithms.
- . Huffman codes.
- • •

Selecting Breakpoints: Greedy Algorithm

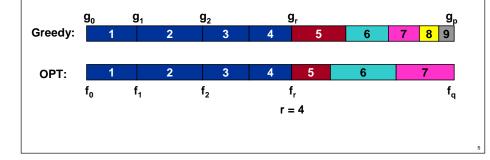


Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- . Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: q < p.

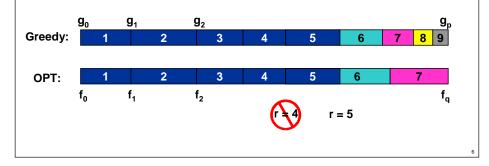


Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: q < p.

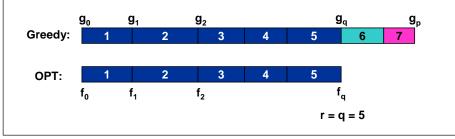


Selecting Breakpoints

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

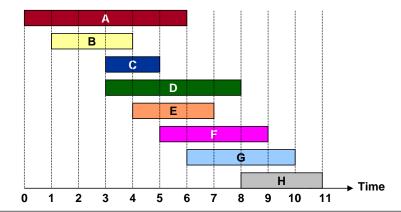
- . Let $0 = g_0 < g_1 < \ldots < g_p = L$ denote set of breakpoints chosen by greedy and assume it is not optimal.
- Let $0 = f_0 < f_1 < \ldots < f_q = L$ denote set of breakpoints in optimal solution with $f_0 = g_0, f_1 = g_1, \ldots, f_r = g_r$ for largest possible value of r.
- Note: q < p.
- . Thus, $f_0 = g_0, f_1 = g_1, \dots, f_q = g_q$

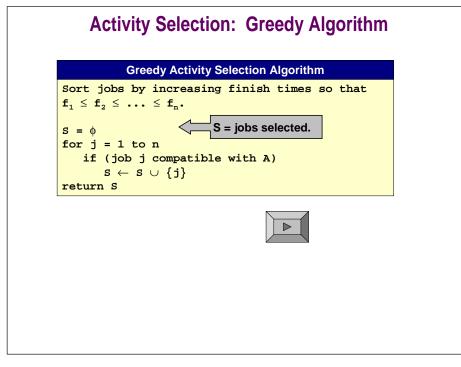


Activity Selection

Activity selection problem (CLR 17.1).

- . Job requests 1, 2, ... , n.
- Job j starts at s_j and finishes at f_j.
- . Two jobs compatible if they don't overlap.
- . Goal: find maximum subset of mutually compatible jobs.



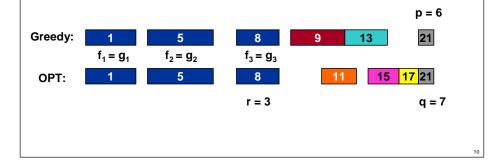


Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- Let f_1, f_2, \dots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \dots, f_r = g_r$ for largest possible value of r.
- Note: r < q.



Activity SelectionTheorem: greedy algorithm is optimal.Proof (by contradiction):• Let g_1, g_2, \dots, g_p denote set of jobs selected by greedy and assume it is not optimal.• Let f_1, f_2, \dots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \dots, f_r = g_r$ for largest possible value of r.• Note: r < q.F = 6Greedy:15891321

8

r = 3

5

OPT:

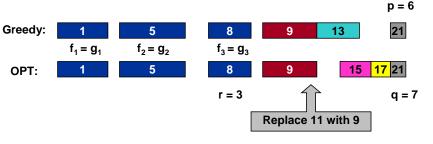
1

possible value of r. p = 6 9 13 21 $f_1 = g_1, f_2 = g_2, \dots, f_1$ Note: r < q. g = 6 g = 13 21 $f_1 = g_1, f_2 = g_2, \dots, f_1$ g = 6 Greedy: 1 $f_1 = g_1, f_2 = g_2, \dots, f_1$ $f_2 = g_1, f_3 = g_2, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_2 = g_1, f_2 = g_2, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_2 = g_1, f_2 = g_2, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_1 = g_1, f_2 = g_2, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_1 = g_1, \dots, f_n$ $f_2 = g_1, \dots, f_n$ $f_2 = g_1, \dots,$

Activity Selection Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let $g_1, g_2, \ldots g_p$ denote set of jobs selected by greedy and assume it is not optimal.
- Let $f_1, f_2, \ldots f_q$ denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \ldots, f_r = g_r$ for largest possible value of r.

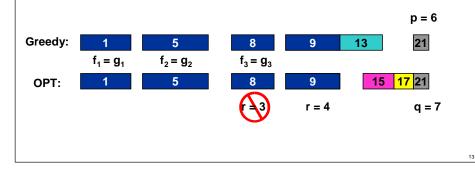


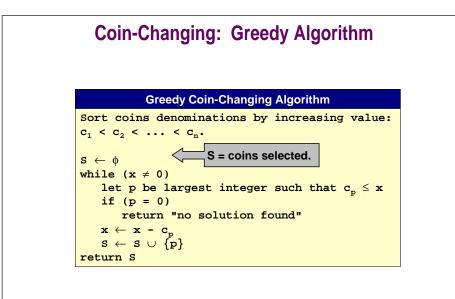
Activity Selection

Theorem: greedy algorithm is optimal.

Proof (by contradiction):

- Let g₁, g₂, ..., g_p denote set of jobs selected by greedy and assume it is not optimal.
- . Let f_1, f_2, \dots, f_q denote set of jobs selected by optimal solution with $f_1 = g_1, f_2 = g_2, \dots, f_r = g_r$ for largest possible value of r.
- Note: r < q.







Is Greedy Optimal for Coin-Changing Problem?

Yes, for U.S. coinage: $\{c_1, c_2, c_3, c_4, c_5\} = \{1, 5, 10, 25, 100\}.$

Ad hoc proof.

- Consider optimal way to change amount $c_k \le x < c_{k+1}$.
- . Greedy takes coin k.
- . Suppose optimal solution does not take coin k.
 - it must take enough coins of type $c_1, c_2, \ldots, c_{k-1}$ to add up to x.

k	c _k	Max # taken by optimal solution	Max value of coins 1, 2, , k in any OPT	
1	1	4	4	
2	5	1	4 + 5 = 9	
3	10	2	20 + 4 = 24	
4	25	3	75 + 24 = 99	<mark> </mark>
5	100	no limit	no limit	

Does Greedy Always Work?

US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

- **.** Ex. 140¢.
- Greedy: 100, 34, 1, 1, 1, 1, 1, 1.
- Optimal: 70, 70.

Characteristics of Greedy Algorithms

Greedy choice property.

- Globally optimal solution can be arrived at by making locally optimal (greedy) choice.
- At each step, choose most "promising" candidate, without worrying whether it will prove to be a sound decision in long run.

Optimal substructure property.

- Optimal solution to the problem contains optimal solutions to subproblems.
 - if best way to change 34¢ is {25, 5, 1, 1, 1, 1} then best way to change 29¢ is {25, 1, 1, 1, 1}.

Objective function does not explicitly appear in greedy algorithm!

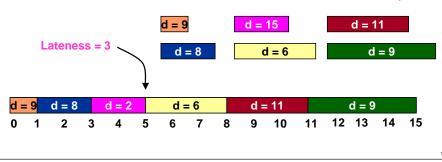
Hard, if not impossible, to precisely define "greedy algorithm."

. See matroids (CLR 17.4), greedoids for very general frameworks.

Minimizing Lateness

Minimizing lateness problem.

- . Single resource can process one job at a time.
- . n jobs to be processed.
 - job j requires p_i units of processing time.
 - job j has due date d_i.
- . If we assign job j to start at time s_j, it finishes at time f_j = s_j + p_j.
- Lateness: $\ell_j = \max \{ 0, f_j d_j \}$.
- Goal: schedule all jobs to minimize maximum lateness L = max ℓ_i .



Minimizing Lateness: Greedy Algorithm

