Fibonacci Heaps

Fibonacci heap history. Fredman and Tarjan (1986)
- Ingenious data structure and analysis.
- Original motivation: $O(m + n \log n)$ shortest path algorithm.
 - also led to faster algorithms for MST, weighted bipartite matching
- Still ahead of its time.

Fibonacci heap intuition.
- Similar to binomial heaps, but less structured.
- Decrease-key and union run in $O(1)$ time.
- "Lazy" unions.

Fibonacci Heaps: Structure

Fibonacci heap.
- Set of min-heap ordered trees.
Fibonacci Heaps: Implementation

Implementation.
- Represent trees using left-child, right sibling pointers and circular, doubly linked list.
 - can quickly splice off subtrees
- Roots of trees connected with circular doubly linked list.
 - fast union
- Pointer to root of tree with min element.
 - fast find-min

Fibonacci Heaps: Potential Function

Key quantities.
- Degree[x] = degree of node x.
- Mark[x] = mark of node x (black or gray).
- t(H) = # trees.
- m(H) = # marked nodes.
- \(\Phi(H) = t(H) + 2m(H) \) = potential function.

\[t(H) = 5, \quad m(H) = 3 \]

\[\Phi(H) = 11 \]

Fibonacci Heaps: Insert

Insert.
- Create a new singleton tree.
- Add to left of min pointer.
- Update min pointer.

Insert 21
Fibonacci Heaps: Insert

- **Insert.**
 - Create a new singleton tree.
 - Add to left of min pointer.
 - Update min pointer.

Running time. $O(1)$ amortized
- Actual cost = $O(1)$.
- Change in potential = +1.
- Amortized cost = $O(1)$.

Fibonacci Heaps: Union

- **Union.**
 - Concatenate two Fibonacci heaps.
 - Root lists are circular, doubly linked lists.

Running time. $O(1)$ amortized
- Actual cost = $O(1)$.
- Change in potential = 0.
- Amortized cost = $O(1)$.

Fibonacci Heaps: Delete Min

- **Delete min.**
 - Delete min and concatenate its children into root list.
 - Consolidate trees so that no two roots have same degree.
Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.
Fibonacci Heaps: Delete Min

Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Merge 17 and 23 trees.

Merge 7 and 17 trees.

Merge 7 and 24 trees.
Fibonacci Heaps: Delete Min

Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

- Merge 41 and 18 trees.
Fibonacci Heaps: Delete Min

Delete min.
- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min Analysis

Notation.
- \(D(n) \) = max degree of any node in Fibonacci heap with \(n \) nodes.
- \(t(H) \) = # trees in heap \(H \).
- \(\phi(H) = t(H) + 2m(H) \).

Actual cost. \(O(D(n) + t(H)) \)
- \(O(D(n)) \) work adding min’s children into root list and updating min.
 - at most \(D(n) \) children of min node
- \(O(D(n) + t(H)) \) work consolidating trees.
 - work is proportional to size of root list since number of roots decreases by one after each merging
 - \(\leq D(n) + t(H) - 1 \) root nodes at beginning of consolidation

Amortized cost. \(O(D(n)) \)
- \(t(H') \leq D(n) + 1 \) since no two trees have same degree.
- \(\Delta \phi(H) \leq D(n) + 1 - t(H) \).

Is amortized cost of \(O(D(n)) \) good?
- Yes, if only Insert, Delete-min, and Union operations supported.
 - in this case, Fibonacci heap contains only binomial trees since we only merge trees of equal root degree
 - this implies \(D(n) \leq \lceil \log_2 N \rceil \)
- Yes, if we support Decrease-key in clever way.
 - we’ll show that \(D(n) \leq \lceil \log_3 N \rceil \), where \(\phi \) is golden ratio
 - \(\phi^2 = 1 + \phi \)
 - \(\phi = (1 + \sqrt{5}) / 2 = 1.618... \)
 - limiting ratio between successive Fibonacci numbers!
Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- **Case 0**: min-heap property not violated.
 - decrease key of x to k
 - change heap min pointer if necessary

- **Case 1**: parent of x is unmarked.
 - decrease key of x to k
 - cut off link between x and its parent
 - mark parent
 - add tree rooted at x to root list, updating heap min pointer
Fibonacci Heaps: Decrease Key

Decrease key of element \(x \) to \(k \).

- Case 2: parent of \(x \) is marked.
 - decrease key of \(x \) to \(k \)
 - cut off link between \(x \) and its parent \(p[x] \), and add \(x \) to root list
 - cut off link between \(p[x] \) and \(p[p[x]] \), add \(p[x] \) to root list
 - If \(p[p[x]] \) unmarked, then mark it.
 - If \(p[p[x]] \) marked, cut off \(p[p[x]] \), unmark, and repeat.

Decrease 35 to 5.
Fibonacci Heaps: Decrease Key Analysis

Notation.
- \(t(H) \) = # trees in heap \(H \).
- \(m(H) \) = # marked nodes in heap \(H \).
- \(\Phi(H) = t(H) + 2m(H) \).

Actual cost. \(O(c) \)
- \(O(1) \) time for decrease key.
- \(O(1) \) time for each of \(c \) cascading cuts, plus reinserting in root list.

Amortized cost. \(O(1) \)
- \(t(H') = t(H) + c \)
- \(m(H') \leq m(H) - c + 2 \)
 - each cascading cut unmarks a node
 - last cascading cut could potentially mark a node
- \(\Delta \Phi \leq c + 2(-c + 2) = 4 - c \).

Fibonacci Heaps: Delete

Delete node \(x \).
- Decrease key of \(x \) to \(-\infty \).
- Delete min element in heap.

Amortized cost. \(O(D(n)) \)
- \(O(1) \) for decrease-key.
- \(O(D(n)) \) for delete-min.
- \(D(n) = \text{max degree of any node in Fibonacci heap} \).

Fibonacci Heaps: Bounding Max Degree

Definition. \(D(N) = \text{max degree in Fibonacci heap with } N \text{ nodes} \).

Key lemma. \(D(N) \leq \log_\phi N \), where \(\phi = (1 + \sqrt{5}) / 2 \).

Corollary. Delete and Delete-min take \(O(\log N) \) amortized time.

Lemma. Let \(x \) be a node with degree \(k \), and let \(y_1, \ldots, y_k \) denote the children of \(x \) in the order in which they were linked to \(x \). Then:

\[
\text{degree}(y_i) \geq \begin{cases}
0 & \text{if } i = 1 \\
 i - 2 & \text{if } i \geq 1
\end{cases}
\]

Proof.
- When \(y_i \) is linked to \(x \), \(y_1, \ldots, y_{i-1} \) already linked to \(x \),
 \(\Rightarrow \text{degree}(x) = i - 1 \)
 \(\Rightarrow \text{degree}(y_i) = i - 1 \) since we only link nodes of equal degree
- Since then, \(y_i \) has lost at most one child
 - otherwise it would have been cut from \(x \)
- Thus, \(\text{degree}(y_i) = i - 1 \) or \(i - 2 \)

Fibonacci Heaps: Bounding Max Degree

Key lemma. In a Fibonacci heap with \(N \) nodes, the maximum degree of any node is at most \(\log_\phi N \), where \(\phi = (1 + \sqrt{5}) / 2 \).

Proof of key lemma.
- For any node \(x \), we show that \(\text{size}(x) \geq \phi^{\text{degree}(x)} \).
 - \(\text{size}(x) = \text{# node in subtree rooted at } x \)
 - taking base \(\phi \) logs, \(\text{degree}(x) \leq \log_\phi \text{size}(x) \leq \log_\phi N \).
- Let \(s_k \) be min size of tree rooted at any degree \(k \) node.
 - trivial to see that \(s_0 = 1, s_1 = 2 \)
 - \(s_k \) monotonically increases with \(k \)
- Let \(x^* \) be a degree \(k \) node of size \(s_k \), and let \(y_1, \ldots, y_k \) be children in order that they were linked to \(x^* \).

Assume \(k \geq 2 \)

\[
\begin{align*}
s_k &= \text{size} \left(x^* \right) \\
&= 2 + \sum_{i=2}^{k} \text{size}(y_i) \\
&\geq 2 + \sum_{i=2}^{k} s_{\text{deg}(y_i)} \\
&\geq 2 + \sum_{i=2}^{k} s_{i-2} \\
&= 2 + \sum_{i=0}^{k-2} s_i
\end{align*}
\]
Fibonacci Facts

Definition. The Fibonacci sequence is:

- $F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \geq 2 \end{cases}$
- Slightly nonstandard definition.

Fact F1. $F_k \geq \phi^k$, where $\phi = (1 + \sqrt{5}) / 2 = 1.618...$

Fact F2. For $k \geq 2$, $F_k = 2 + \sum_{i=0}^{k-2} F_i$

Consequence. $s_k \geq F_k \geq \phi^k$.
- This implies that $\text{size}(x) \geq \phi^{\text{degree}(x)}$ for all nodes x.

Golden Ratio

Definition. The Fibonacci sequence is: 1, 2, 3, 5, 8, 13, 21, ...

Definition. The golden ratio $\phi = (1 + \sqrt{5}) / 2 = 1.618...$

- Divide a rectangle into a square and smaller rectangle such that the smaller rectangle has the same ratio as original one.

Parthenon, Athens Greece

Fibonacci Numbers and Nature

Pinecone

Cauliflower
Fibonacci Proofs

Fact F1. $F_k \geq \phi^k$.
Proof. (by induction on k)
- Base cases:
 - $F_0 = 1$, $F_1 = 2 \geq \phi$.
- Inductive hypotheses:
 - $F_k \geq \phi^k$ and $F_{k+1} \geq \phi^{k+1}$

\[
F_{k+2} = F_k + F_{k+1} \\
\geq \phi^k + \phi^{k+1} \\
= \phi^k (1 + \phi) \\
= \phi^k (\phi^2) \\
= \phi^{k+2}
\]

Fact F2. For $k \geq 2$, $F_k = 2 + \sum_{i=0}^{k-2} F_i$
Proof. (by induction on k)
- Base cases:
 - $F_2 = 3$, $F_3 = 5$
- Inductive hypotheses:
 - $F_k = 2 + \sum_{i=0}^{k-2} F_i$

\[
F_{k+2} = F_k + F_{k+1} \\
= 2 + \sum_{i=0}^{k-2} F_i + F_{k+1} \\
= 2 + \sum_{i=0}^{k} F_i
\]

On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated algorithms, they usually run extremely fast. The computer doesn’t need to understand the algorithm, its task is only to run the programs."

R. E. Tarjan