Fibonacci Heaps

These lecture slides are adapted from CLRS, Chapter 20.

Priority Queues

	Heaps				
Operation	Linked List	Binary	Binomial	Fibonacci \dagger	Relaxed
make-heap	1	1	1	1	1
insert	1	$\log N$	$\log N$	1	1
find-min	N	1	$\log N$	1	1
delete-min	\mathbf{N}	$\log N$	$\log N$	$\log N$	$\log N$
union	1	N	$\log N$	1	1
decrease-key	1	$\log N$	$\log N$	1	1
delete	\mathbf{N}	$\log N$	$\log N$	$\log N$	$\log N$
is-empty	1	1	1	1	1

Fibonacci Heaps

Fibonacci heap history. Fredman and Tarjan (1986)

- Ingenious data structure and analysis.
- Original motivation: $\mathbf{O}(m+n \log n)$ shortest path algorithm.
- also led to faster algorithms for MST, weighted bipartite matching
- Still ahead of its time.

Fibonacci heap intuition.

- Similar to binomial heaps, but less structured.
- Decrease-key and union run in $O(1)$ time.
. "Lazy" unions.

Fibonacci Heaps: Structure

Fibonacci heap.

- Set of min-heap ordered trees.

Fibonacci Heaps: Implementation

Implementation.

- Represent trees using left-child, right sibling pointers and circular, doubly linked list.
- can quickly splice off subtrees
- Roots of trees connected with circular doubly linked list.
- fast union
- Pointer to root of tree with min element.
- fast find-min

Fibonacci Heaps: Potential Function

Key quantities.

- Degree $[x]=$ degree of node x.
- Mark[x] = mark of node x (black or gray).
- $\mathrm{t}(\mathrm{H})=$ \# trees.
- $m(H)=$ \# marked nodes.
- $\Phi(H)=t(H)+2 m(H)=$ potential function.

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to left of min pointer.
. Update min pointer.

Insert 21

21

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to left of min pointer.
. Update min pointer.

Insert 21

Fibonacci Heaps: Insert

Insert.

- Create a new singleton tree.
- Add to left of min pointer.
. Update min pointer.

Running time. $\mathrm{O}(1)$ amortized

- Actual cost = O(1).
- Change in potential = +1.
- Amortized cost $=\mathbf{O}(1)$.

Fibonacci Heaps: Union

Union.

- Concatenate two Fibonacci heaps.
- Root lists are circular, doubly linked lists.

Fibonacci Heaps: Union

Union.

- Concatenate two Fibonacci heaps.
- Root lists are circular, doubly linked lists.

Running time. $\mathrm{O}(1)$ amortized

- Actual cost = O(1).
- Change in potential $=0$.
- Amortized cost $=\mathbf{O}(1)$.
H^{\prime}

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

(35)

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min

Delete min.

- Delete min and concatenate its children into root list.
- Consolidate trees so that no two roots have same degree.

Fibonacci Heaps: Delete Min Analysis

Notation.

- $D(n)=$ max degree of any node in Fibonacci heap with \mathbf{n} nodes.
- $t(H)=$ \# trees in heap H.
- $\Phi(\mathrm{H})=\mathrm{t}(\mathrm{H})+\mathbf{2 m}(\mathrm{H})$.

Actual cost. $\mathrm{O}(\mathrm{D}(\mathrm{n})+\mathrm{t}(\mathrm{H}))$

- $O(D(n))$ work adding min's children into root list and updating min.
- at most $D(n)$ children of min node
- $O(D(n)+t(H))$ work consolidating trees.
- work is proportional to size of root list since number of roots decreases by one after each merging
$-\leq \mathrm{D}(\mathrm{n})+\mathrm{t}(\mathrm{H})-1$ root nodes at beginning of consolidation

Amortized cost. O(D(n))

- $t\left(H^{\prime}\right) \leq D(n)+1$ since no two trees have same degree.
- $\Delta \Phi(H) \leq D(n)+1-t(H)$.

Fibonacci Heaps: Delete Min Analysis

Is amortized cost of $O(D(n))$ good?

- Yes, if only Insert, Delete-min, and Union operations supported.
- in this case, Fibonacci heap contains only binomial trees since we only merge trees of equal root degree
- this implies $D(n) \leq\left\lfloor\log _{2} N\right\rfloor$
- Yes, if we support Decrease-key in clever way.
- we'll show that $D(n) \leq\left\lfloor\log _{\phi} N\right\rfloor$, where ϕ is golden ratio
$-\phi^{2}=1+\phi$
$-\phi=(1+\sqrt{ } 5) / 2=1.618 \ldots$
- limiting ratio between successive Fibonacci numbers!

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 0: min-heap property not violated.
- decrease key of x to k
- change heap min pointer if necessary

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 1: parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 1: parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 1: parent of x is unmarked.
- decrease key of x to k
- cut off link between x and its parent
- mark parent
- add tree rooted at x to root list, updating heap min pointer

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
) If $\mathrm{p}[\mathrm{p}[\mathrm{x}]$] unmarked, then mark it.
If $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$ marked, cut off $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$, unmark, and repeat.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.

- Case 2: parent of x is marked.
- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list

If $\mathrm{p}[\mathrm{p}[\mathrm{x}]$] unmarked, then mark it.
If $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$ marked, cut off $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$, unmark, and repeat.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.

- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
) If $\mathrm{p}[\mathrm{p}[\mathrm{x}]$] unmarked, then mark it.
If $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$ marked, cut off $\mathrm{p}[\mathrm{p}[\mathrm{x}]]$, unmark, and repeat.

Decrease 35 to 5.

Fibonacci Heaps: Decrease Key

Decrease key of element x to k.
. Case 2: parent of x is marked.

- decrease key of x to k
- cut off link between x and its parent $p[x]$, and add x to root list
- cut off link between $p[x]$ and $p[p[x]]$, add $p[x]$ to root list
) If $\mathrm{p}[\mathrm{p}[\mathrm{x}]$] unmarked, then mark it.
\& If $p[p[x]]$ marked, cut off $p[p[x]]$, unmark, and repeat.

Decrease 35 to 5.

Fibonacci Heaps: Decrease Key Analysis

Notation.

- $t(H)=$ \# trees in heap H.
- $m(H)=\#$ marked nodes in heap H.
- $\Phi(H)=t(H)+2 m(H)$.

Actual cost. O(c)

- O(1) time for decrease key.
- $O(1)$ time for each of cascading cuts, plus reinserting in root list.

Amortized cost. O(1)

- $\mathbf{t}\left(\mathrm{H}^{\prime}\right)=\mathbf{t}(\mathrm{H})+\mathbf{c}$
- $\mathbf{m}\left(\mathrm{H}^{\prime}\right) \leq \mathrm{m}(\mathrm{H})-\mathbf{c}+2$
- each cascading cut unmarks a node
- last cascading cut could potentially mark a node
- $\Delta \Phi \leq c+2(-c+2)=4-c$.

Fibonacci Heaps: Delete

Delete node x.

- Decrease key of x to $-\infty$.
- Delete min element in heap.

Amortized cost. O(D(n))

- O(1) for decrease-key.
- $O(D(n))$ for delete-min.
- $D(n)=$ max degree of any node in Fibonacci heap.

Fibonacci Heaps: Bounding Max Degree

Definition. $\mathrm{D}(\mathrm{N})=\max$ degree in Fibonacci heap with N nodes.
Key lemma. $\mathbf{D}(\mathbf{N}) \leq \log _{\phi} \mathbf{N}$, where $\phi=(1+\sqrt{ } 5) / 2$.
Corollary. Delete and Delete-min take $\mathrm{O}(\log \mathrm{N})$ amortized time.

Lemma. Let x be a node with degree k, and let y_{1}, \ldots, y_{k} denote the children of x in the order in which they were linked to x. Then:

$$
\operatorname{degree}\left(y_{i}\right) \geq \begin{cases}0 & \text { if } i=1 \\ i-2 & \text { if } i \geq 1\end{cases}
$$

Proof.

- When y_{i} is linked to $x, y_{1}, \ldots, y_{i-1}$ already linked to x, \Rightarrow degree $(\mathbf{x})=\mathbf{i}-1$
\Rightarrow degree $\left(y_{i}\right)=\mathrm{i}-1$ since we only link nodes of equal degree
- Since then, y_{i} has lost at most one child
- otherwise it would have been cut from x
- Thus, $\operatorname{degree}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathbf{i - 1}$ or i-2

Fibonacci Heaps: Bounding Max Degree

Key lemma. In a Fibonacci heap with \mathbf{N} nodes, the maximum degree of any node is at most $\log _{\phi} N$, where $\phi=(1+\sqrt{ } 5) / 2$.

Proof of key lemma.

- For any node x, we show that $\left.\operatorname{size}(x) \geq \phi^{\text {degree(}} \mathbf{x}\right)$.
$-\operatorname{size}(x)=\#$ node in subtree rooted at x
- taking base ϕ logs, degree $(x) \leq \log _{\phi}($ size $(x)) \leq \log _{\phi} N$.
- Let s_{k} be min size of tree rooted at any degree k node.
- trivial to see that $s_{0}=1, s_{1}=2$
- \mathbf{s}_{k} monotonically increases with k
- Let x^{*} be a degree k node of size s_{k}, and let y_{1}, \ldots, y_{k} be children in order that they were linked to x^{*}.

Assume $\mathrm{k} \geq 2$

$$
\begin{aligned}
s_{k} & =\operatorname{size}\left(x^{*}\right) \\
& =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{\operatorname{deg}\left[y_{i}\right]} \\
& \geq 2+\sum_{i=2}^{k} s_{i-2} \\
& =2+\sum_{i=0}^{k-2} s_{i}
\end{aligned}
$$

Fibonacci Facts

Definition. The Fibonacci sequence is: $\quad \mathbf{F}_{\mathrm{k}}= \begin{cases}\mathbf{1} & \text { if } \boldsymbol{k}=\mathbf{0} \\ 2 & \text { if } k=1 \\ \mathbf{F}_{\mathrm{k}-1}+\mathbf{F}_{\mathrm{k}-2} & \text { if } k \geq 2\end{cases}$

- Slightly nonstandard definition.

Fact F1. $\quad F_{k} \geq \phi^{k}$, where $\phi=(1+\sqrt{ } 5) / 2=1.618 \ldots$

Fact F2. For $k \geq 2, F_{k}=2+\sum_{i=0}^{k-2} F_{i}$

Consequence. $s_{k} \geq F_{k} \geq \phi^{\mathbf{k}}$.

- This implies that size $\left.(\mathbf{x}) \geq \phi^{\text {degree(}} \mathbf{(}\right)$ for all nodes \mathbf{x}.

$$
\begin{aligned}
s_{k} & =\operatorname{size}\left(x^{*}\right) \\
& =2+\sum_{i=2}^{k} \operatorname{size}\left(y_{i}\right) \\
& \geq 2+\sum_{i=2}^{k} s_{\operatorname{deg}\left[y_{i}\right]} \\
& \geq 2+\sum_{i=2}^{k} s_{i-2} \\
& =2+\sum_{i=0}^{k-2} s_{i}
\end{aligned}
$$

Golden Ratio

Definition. The Fibonacci sequence is: $1,2,3,5,8,13,21, \ldots$
Definition. The golden ratio $\phi=(1+\sqrt{ } 5) / 2=1.618 \ldots$

- Divide a rectangle into a square and smaller rectangle such that the smaller rectangle has the same ratio as original one.

Parthenon, Athens Greece

Fibonacci Numbers and Nature

Pinecone

Cauliflower

Fibonacci Proofs

Fact F1. $\quad F_{k} \geq \phi^{k}$.
Proof. (by induction on k)

- Base cases:

$$
-F_{0}=1, F_{1}=2 \geq \phi .
$$

- Inductive hypotheses:
$-F_{k} \geq \phi^{k}$ and $F_{k+1} \geq \phi^{k+1}$

$$
\begin{aligned}
\boldsymbol{F}_{k+2} & =\boldsymbol{F}_{k}+\boldsymbol{F}_{k+1} \\
& \geq \varphi^{k}+\varphi^{k+1} \\
& =\varphi^{k}(\mathbf{1}+\varphi) \\
& =\varphi^{k}\left(\varphi^{2}\right) \\
& =\varphi^{k+2}
\end{aligned}
$$

Fact F2. For $\boldsymbol{k} \geq \mathbf{2}, \boldsymbol{F}_{\boldsymbol{k}}=2+\sum_{i=0}^{k-2} \boldsymbol{F}_{i}$
Proof. (by induction on k)
Proof. (by induction on k)

- Base cases:
$-F_{2}=3, F_{3}=5$
- Inductive hypotheses:

$$
F_{k}=2+\sum_{i=0}^{k-2} F_{i}
$$

$$
\begin{aligned}
\boldsymbol{F}_{k+2} & =\boldsymbol{F}_{\boldsymbol{k}}+\boldsymbol{F}_{k+1} \\
& =2+\sum_{i=0}^{k-2} \boldsymbol{F}_{i}+\boldsymbol{F}_{k+1} \\
& =2+\sum_{i=0}^{k} \boldsymbol{F}_{k}
\end{aligned}
$$

On Complicated Algorithms

"Once you succeed in writing the programs for [these] complicated algorithms, they usually run extremely fast. The computer doesn't need to understand the algorithm, its task is only to run the programs."

R. E. Tarjan

