Dynamic Programming

Weighted Activity Selection

Weighted activity selection problem (generalization of CLR 17.1).
- Job requests 1, 2, … , N.
- Job j starts at s_j, finishes at f_j, and has weight w_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Activity Selection: Greedy Algorithm

Recall greedy algorithm works if all weights are 1.

Greedy Activity Selection Algorithm

Sort jobs by increasing finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_N \).

\[
S = \emptyset \\
\text{FOR } j = 1 \text{ to } N \\
\quad \text{IF (job } j \text{ compatible with } A) \\
\quad \quad S \leftarrow S \cup \{j\} \\
\text{RETURN } S
\]

Weighted Activity Selection

Notation.
- Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_N \).
- Define \(q_j = \text{largest index } i < j \text{ such that job } i \text{ is compatible with } j \).
 - \(q_7 = 3, q_2 = 0 \)
Weighted Activity Selection: Structure

Let \(\text{OPT}(j) = \text{value of optimal solution to the problem consisting of job requests } \{1, 2, \ldots, j\} \).

- **Case 1:** \(\text{OPT} \) selects job \(j \).
 - can’t use incompatible jobs \(\{q_j + 1, q_j + 2, \ldots, j-1\} \)
 - must include optimal solution to problem consisting of remaining compatible jobs \(\{1, 2, \ldots, q_j\} \)

- **Case 2:** \(\text{OPT} \) does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs \(\{1, 2, \ldots, j - 1\} \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max\{w_j + \text{OPT}(q_j), \text{OPT}(j - 1)\} & \text{otherwise}
\end{cases}
\]

Weighted Activity Selection: Brute Force

Recursive Activity Selection

INPUT: \(N, s_1, \ldots, s_N, f_1, \ldots, f_N, w_1, \ldots, w_N \)

Sort jobs by increasing finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_N \).

Compute \(q_1, q_2, \ldots, q_N \)

\[
r\text{-compute}(j) = \begin{cases}
\text{RETURN } 0 & \text{if } (j = 0) \\
\max\{w_j + r\text{-compute}(q_j), r\text{-compute}(j-1)\} & \text{otherwise}
\end{cases}
\]

Dynamic Programming Subproblems

Spectacularly redundant subproblems \(\Rightarrow \) exponential algorithms.

```
1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4
1, 2, 3
1

1, 2, 3, 4, 5
1, 2, 3
1

1, 2, 3, 4, 5, 6, 7
1, 2, 3, 4, 5
1

1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4
1

1, 2, 3, 4, 5
1, 2, 3
1

1, 2, 3, 4, 5
1, 2
```

Divide-and-Conquer Subproblems

Independent subproblems \(\Rightarrow \) efficient algorithms.

```
1, 2, 3, 4, 5, 6, 7, 8
1, 2, 3, 4
1

1, 2, 3, 4, 5, 6, 7, 8
5, 6, 7, 8
1

1, 2, 3, 4, 5, 6, 7, 8
5, 6
1

1, 2, 3, 4, 5, 6, 7, 8
7, 8
1
```


Weighted Activity Selection: Memoization

Memoized Activity Selection

INPUT: \(N, s_1, \ldots, s_N, f_1, \ldots, f_N, w_1, \ldots, w_N \)

Sort jobs by increasing finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_N \).

Compute \(q_1, q_2, \ldots, q_N \)

Global array \(OPT[0..N] \)

FOR \(j = 0 \) to \(N \)

\(OPT[j] = "empty" \)

\(m\text{-compute}(j) \{
\quad \text{IF } (j = 0) \quad OPT[0] = 0
\quad \text{ELSE IF } (OPT[j] = "empty")
\quad \quad \quad \quad OPT[j] = \max(w_j + m\text{-compute}(q_j), m\text{-compute}(j-1))
\quad \quad \quad \quad \text{RETURN } OPT[j]
\quad \}
\)

Weighted Activity Selection: Running Time

Claim: memoized version of algorithm takes \(O(N \log N) \) time.

- Ordering by finish time: \(O(N \log N) \).
- Computing \(q_j \): \(O(N \log N) \) via binary search.
- \(m\text{-compute}(j) \): each invocation takes \(O(1) \) time and either
 - (i) returns an existing value of \(OPT[] \)
 - (ii) fills in one new entry of \(OPT[] \) and makes two recursive calls

Progress measure \(\Phi = \# \text{ nonempty entries of } OPT[] \).
- Initially \(\Phi = 0 \), throughout \(\Phi \leq N \).
- (ii) increases \(\Phi \) by 1 \(\Rightarrow \) at most \(2N \) recursive calls.

Overall running time of \(m\text{-compute}(N) \) is \(O(N) \).

Weighted Activity Selection: Finding a Solution

\(m\text{-compute}(N) \) determines value of optimal solution.

- Modify to obtain optimal solution itself.

Finding an Optimal Set of Activities

ARRAY: \(OPT[0..N] \)

Run \(m\text{-compute}(N) \)

\(\text{find-sol}(j) \{
\quad \text{IF } (j = 0) \quad \text{output nothing}
\quad \text{ELSE IF } (w_j + OPT[q_j] > OPT[j-1])
\quad \quad \quad \quad \text{print } j
\quad \quad \quad \quad \text{find-sol}(q_j)
\quad \quad \quad \quad \text{ELSE}
\quad \quad \quad \quad \text{find-sol}(j-1)
\quad \}
\)

- \# of recursive calls \(\leq N \Rightarrow O(N) \).

Weighted Activity Selection: Bottom-Up

Unwind recursion in memoized algorithm.

Bottom-Up Activity Selection

INPUT: \(N, s_1, \ldots, s_N, f_1, \ldots, f_N, w_1, \ldots, w_N \)

Sort jobs by increasing finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_N \).

Compute \(q_1, q_2, \ldots, q_N \)

ARRAY: \(OPT[0..N] \)

\(OPT[0] = 0 \)

FOR \(j = 1 \) to \(N \)

\(OPT[j] = \max(w_j + OPT[q_j], OPT[j-1]) \)
Dynamic Programming Overview

Dynamic programming.
 ■ Similar to divide-and-conquer.
 – solves problem by combining solution to sub-problems
 ■ Different from divide-and-conquer.
 – sub-problems are not independent
 – save solutions to repeated sub-problems in table

Recipe.
 ■ Characterize structure of problem.
 – optimal substructure property
 ■ Recursively define value of optimal solution.
 ■ Compute value of optimal solution.
 ■ Construct optimal solution from computed information.

Top-down vs. bottom-up.
 ■ Different people have different intuitions.

Least Squares

Least squares.
 ■ Foundational problem in statistic and numerical analysis.
 ■ Given N points in the plane \(\{ (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \} \),
 find a line \(y = ax + b \) that minimizes the sum of the squared error:

\[
SS = \sum_{i=1}^{N} (y_i - ax_i - b)^2
\]

 ■ Calculus \(\Rightarrow \) min error is achieved when:

\[
a = \frac{N \sum_{i} x_i y_i - \left(\sum_{i} x_i \right) \left(\sum_{i} y_i \right)}{N \sum_{i} x_i^2 - \left(\sum_{i} x_i \right)^2}, \quad b = \frac{\sum_{i} y_i - a \sum_{i} x_i}{N}
\]

Segmented Least Squares

Segmented least squares.
 ■ Points lie roughly on a sequence of 3 lines.
 ■ Given N points in the plane \(p_1, p_2, \ldots, p_N \), find a sequence of lines that minimize:
 – the sum of the sum of the squared errors \(E \) in each segment
 – the number of lines \(L \)
 ■ Tradeoff function: \(e + cL \), for some constant \(c > 0 \).

Optimal solution:
 ■ Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i \).
 ■ Cost = \(e(i, j) + c + OPT(i-1) \).

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{1 \leq i \leq j} \{ e(i, j) + c + OPT(i-1) \} & \text{otherwise}
\end{cases}
\]

New dynamic programming technique.
 ■ Weighted activity selection: binary choice.
 ■ Segmented least squares: multi-way choice.
Segmented Least Squares: Algorithm

Bottom-Up Segmented Least Squares

INPUT: N, P_1, ..., P_N, c

ARRAY: OPT[0..N]

OPT[0] = 0

FOR j = 1 to N

FOR i = 1 to j

compute the least square error e[i, j] for the segment P_i, ..., P_j

OPT[j] = min_1 ≤ i ≤ j (e[i, j] + c + OPT[i-1])

RETURN OPT[N]

Running time:
- Bottleneck = computing e(i, n) for O(N^2) pairs, O(N) per pair using previous formula.
- O(N^3) overall.

Segmented Least Squares: Improved Algorithm

A quadratic algorithm.
- Bottleneck = computing e(i, j).
- O(N^2) preprocessing + O(1) per computation.

Preprocessing

\[
a_{ij} = \frac{\sum_{k=1}^{j} x_k y_k}{n} - \left(\frac{\sum_{k=1}^{j} x_k}{n} \right)^2 - \left(\frac{\sum_{k=1}^{j} y_k}{n} \right)^2
\]

\[
b_{ij} = \frac{\sum_{k=1}^{j} y_k - a \sum_{k=1}^{j} x_k}{n}
\]

\[
n_{ij} = j - i + 1
\]

\[
x_s_k = \sum_{k=1}^{i} x_k \quad y_s_k = \sum_{k=1}^{i} y_k
\]

\[
x_{ss} = \sum_{k=1}^{i} x_k^2 \quad y_{ss} = \sum_{k=1}^{i} y_k^2
\]

\[
x y_k = \sum_{k=1}^{i} x_k y_k
\]

\[
e(i, j) = \sum_{k=i}^{j} (y_k - ax_k - b)^2 = (y_{ss} - y_{ss}) + \cdots
\]

Knapsack Problem

Knapsack problem.
- Given N objects and a "knapsack."
- Item i weighs w_i > 0 Newtons and has value v_i > 0.
- Knapsack can carry weight up to W Newtons.
- Goal: fill knapsack so as to maximize total value.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\[
\text{Greedy = 35: \{ 5, 2, 1 \}}
\]

\[
\text{OPT value = 40: \{ 3, 4 \}}
\]

\[
W = 11
\]

Knapsack Problem: Structure

OPT(n, w) = max profit subset of items {1, ..., n} with weight limit w.
- Case 1: OPT selects item n.
 - new weight limit = w - w_n
 - OPT selects best of {1, 2, ..., n – 1} using this new weight limit
- Case 2: OPT does not select item n.
 - OPT selects best of {1, 2, ..., n – 1} using weight limit w

\[
OPT(n, w) = \begin{cases}
0 & \text{if } n = 0 \\
OPT(n-1, w) & \text{if } w_n > w \\
\max\{OPT(n-1, w), \ v_n + OPT(n-1, w-w_n)\} & \text{otherwise}
\end{cases}
\]

New dynamic programming technique.
- Weighted activity selection: binary choice.
- Segmented least squares: multi-way choice.
- Knapsack: adding a new variable.
Knapsack Problem: Bottom-Up

Bottom-Up Knapsack

INPUT: \(N, W, w_1, \ldots, w_N, v_1, \ldots, v_N \)

ARRAY: OPT[0..N, 0..W]

FOR \(w = 0 \) to \(W \)

\[\text{OPT}[0, w] = 0 \]

FOR \(n = 1 \) to \(N \)

FOR \(w = 1 \) to \(W \)

IF \((w_n > w) \)

\[\text{OPT}[n, w] = \text{OPT}[n-1, w] \]

ELSE

\[\text{OPT}[n, w] = \max \{ \text{OPT}[n-1, w], v_n + \text{OPT}[n-1, w-w_n] \} \]

RETURN \(\text{OPT}[N, W] \)

Knapsack Problem: Running Time

Knapsack algorithm runs in time \(O(NW) \).

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is "NP-complete."
- Optimization version is "NP-hard."

Knapsack approximation algorithm.

- There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum.
- Stay tuned.

Knapsack Algorithm

Weight Limit

<table>
<thead>
<tr>
<th>Weight Limit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>0</td>
</tr>
<tr>
<td>{1}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{1, 2}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>{1, 2, 3}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>{1, 2, 3, 4}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>40</td>
</tr>
<tr>
<td>{1, 2, 3, 4, 5}</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>18</td>
<td>22</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

Item	**Value**	**Weight**
1 | 1 | 1
2 | 6 | 2
3 | 8 | 5
4 | 22 | 6
5 | 28 | 7

Sequence Alignment

How similar are two strings?

- **ocurrance**
- **occurrence**

5 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
Sequence Alignment: Applications

Applications.
- Spell checkers / web dictionaries.
 - occurrence
 - occurrence
- Computational biology.
 - ctgacactct
 - cctgactacat

Edit distance.
- Gap penalty δ.
- Mismatch penalty α_{pq}.
- Cost = sum of gap and mismatch penalties.

$\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA}$

Sequence Alignment: Problem Structure

$$OPT(i, j) = \min \text{ cost of aligning strings } x_1 x_2 \ldots x_i \text{ and } y_1 y_2 \ldots y_j$$
- Case 1: OPT matches (i, j).
 - pay mismatch for (i, j) + min cost of aligning two strings $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_{j-1}$
- Case 2a: OPT leaves m unmatched.
 - pay gap for i and min cost of aligning $x_1 x_2 \ldots x_{i-1}$ and $y_1 y_2 \ldots y_j$
- Case 2b: OPT leaves n unmatched.
 - pay gap for j and min cost of aligning $x_1 x_2 \ldots x_i$ and $y_1 y_2 \ldots y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta + \alpha_{x_i, y_j} + OPT(i-1, j-1), & \text{if } i = 0 \\ \min \{ \delta + OPT(i-1, j), \delta + OPT(i, j-1) \}, & \text{otherwise} \\ i\delta + OPT(i, j-1), & \text{if } j = 0 \end{cases}$$

Sequence Alignment: Algorithm

$O(MN)$ time and space.

Bottom-Up Sequence Alignment

INPUT: $M, N, x_1 x_2 \ldots x_M, y_1 y_2 \ldots y_N, \delta, \alpha$

ARRAY: $OPT[0..M, 0..N]$

FOR $i = 0$ to M
 OPT[0, i] = $i\delta$

FOR $j = 0$ to N
 OPT[j, 0] = $j\delta$

FOR $i = 1$ to M
 FOR $j = 1$ to N
 OPT[i, j] = $\min(\alpha_{x_i, y_j} + \text{OPT}[i-1, j-1], \delta + \text{OPT}[i-1, j], \delta + \text{OPT}[i, j-1])$

RETURN $OPT[M, N]$
Sequence Alignment: Linear Space

Straightforward dynamic programming takes \(\Theta(MN) \) time and space.
- English words or sentences \(\Rightarrow \) may not be a problem.
- Computational biology \(\Rightarrow \) huge problem.
 - \(M = N = 100,000 \)
 - 10 billion ops OK, but 10 gigabyte array?

Optimal value in \(O(M + N) \) space and \(O(MN) \) time.
- Only need to remember \(\text{OPT}(i - 1, \cdot) \) to compute \(\text{OPT}(i, \cdot) \).
- Not clear how to recover optimal alignment itself.

Optimal alignment in \(O(M + N) \) space and \(O(MN) \) time.
- Clever combination of divide-and-conquer and dynamic programming.

Consider following directed graph (conceptually).
- Note: takes \(\Theta(MN) \) space to write down graph.

Let \(f(i, j) \) be shortest path from \((0,0)\) to \((i, j)\). Then, \(f(i, j) = \text{OPT}(i, j) \).

Let \(g(i, j) \) be shortest path from \((0,0)\) to \((i, j)\). Then, \(f(i, j) = \text{OPT}(i, j) \).

\[
\begin{align*}
 f(i, j) &= \min \{ \alpha_{xy} + f(i-1, j-1), \delta + f(i-1, j), \delta + f(i, j-1) \} \\
 &= \min \{ \alpha_{xy} + \text{OPT}(i-1, j-1), \delta + \text{OPT}(i-1, j), \delta + \text{OPT}(i, j-1) \} \\
 &= \text{OPT}(i, j)
\end{align*}
\]
Observation 1: the cost of the shortest path that uses \((i, j)\) is \(f(i, j) + g(i, j)\).

Observation 2: let \(q\) be an index that minimizes \(f(q, N/2) + g(q, N/2)\). Then, the shortest path from \((0, 0)\) to \((M, N)\) uses \((q, N/2)\).

Sequence Alignment: Linear Space

Divide: find index \(q\) that minimizes \(f(q, N/2) + g(q, N/2)\) using DP.

Conquer: recursively compute optimal alignment in each "half."

\[T(m, n) = \max \text{ running time of algorithm on strings of length } m \text{ and } n. \]

Theorem. \(T(m, n) = O(mn)\).

- \(O(mn)\) work to compute \(f(\cdot, n/2)\) and \(g(\cdot, n/2)\).
- \(O(m + n)\) to find best index \(q\).
- \(T(q, n/2) + T(m - q, n/2)\) work to run recursively.
- Choose constant \(c\) so that:

\[
T(m, 2) \leq cn \\
T(n, 2) \leq cm \\
T(m, n) \leq cmn + T(q, n/2) + T(m - q, n/2)
\]

- Base cases: \(m = 2\) or \(n = 2\).
- Inductive hypothesis: \(T(m, n) \leq 2cmn\).