Contents

Shortest Path With Negative Weights

Contents.

- Directed shortest path with negative weights.
- Negative cycle detection.
 - application: currency exchange arbitrage
- Tramp steamer problem.
 - application: optimal pipelining of VLSI chips

Shortest Paths with Negative Weights

OPT(i, v) = length of shortest s-v path using at most i arcs.

- Let P be such a path.
- . Case 1: P uses at most i-1 arcs.
- Case 2: P uses exactly i arcs.
 - if (u, v) is last arc, then OPT selects best s-u path using at most i-1 arcs, and then uses (u, v)

Goal: compute OPT(n-1, t) and find a corresponding s-t path.

Shortest Paths with Negative Weights: Algorithm

Shortest Paths: Running Time

Dynamic programming algorithm requires $\Theta(mn)$ time and space.

- Outer loop repeats n times.
- Inner loop for vertex v considers indegree(v) arcs.

 $\sum_{\nu \in V} \text{ indegree}(\nu) = m$

Finding the shortest paths.

- . Could maintain predecessor variables.
- Alternative: compute optimal distances, consider only zero reduced cost arcs.

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path from s to v using at most n arcs contains a cycle; moreover any such cycle has negative cost.

- Proof (by contradiction).
- Since OPT(n,v) < OPT(n-1,v), P has n arcs.
- . Let C be any directed cycle in P.
- Deleting C gives us a path from s to v of fewer than n arcs $\,\Rightarrow\,$ C has negative cost.

Shortest Paths: Detecting Negative Cycles

L1: if OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path from s to v using at most n arcs contains a cycle; moreover any such cycle has negative cost.

- Proof (by contradiction).
- Since OPT(n,v) < OPT(n-1,v), P has n arcs.
- Let C be any directed cycle in P.
- Deleting C gives us a path from s to v of fewer than n arcs $\,\Rightarrow\,$ C has negative cost.

Corollary: can detect negative cost cycle in O(mn) time.

 Need to trace back through sub-problems.

Detecting Negative Cycles: Application

Currency conversion.

- Given n currencies (financial instruments) and exchange rates between pairs of currencies, is there an arbitrage opportunity?
- . Fastest algorithm very valuable!

Shortest Paths: Practical Improvements

Practical improvements.

- If OPT(i, v) = OPT(i-1, v) for all nodes v, then OPT(i, v) are the shortest path distances.
 - Consequence: can stop algorithm as soon as this happens.
- Maintain only one array OPT(v).
 - \mathscr{I} Use O(m+n) space; otherwise Θ (mn) best case.
- No need to check arcs of the form (u, v) unless OPT(u) changed in previous iteration.
 - Avoid unnecessary work.

Overall effect.

. Still O(mn) worst case, but O(m) behavior in practice.

Shortest Paths: Practical Improvements				
	Bellman-Ford FIFO Shortest Path			
	INPUT: $G = (V, E)$, s, t n = $ V $			
	ARRAY: OPT[V], pred[V]			
	$\begin{array}{l} \textbf{FOREACH } \mathbf{v} \in \mathbf{V} \\ \textbf{OPT}[\mathbf{v}] = \infty, \ \textbf{pred}[\mathbf{v}] = \phi \end{array}$			
Negative cycle tweak: stop if any node enqueued n times.	OPT[s] = 0, Q = QUEUEinit(s) WHILE $(Q \neq \phi)$ u = QUEUEget()			
	FOREACH $(u, v) \in E$ IF $(OPT[u] + c[u,v] < OPT[v])$ OPT[v] = OPT[u] + c[u,v] pred[v] = u			
	IF (v ∉ Q) QUEUEput(v)			
	RETURN OPT[n-1]			

Shortest Paths: State of the Art

All times below are for single source shortest path in directed graphs with no negative cycle.

O(mn) time, O(m + n) space.

- Shortest path: straightforward.
- Negative cycle: Bellman-Ford predecessor variables contain shortest path or negative cycle (not proved here).

O(mn^{1/2} log C) time if all arc costs are integers between –C and C.

- Reduce to weighted bipartite matching (assignment problem).
- "Cost-scaling."
- Gabow-Tarjan (1989), Orlin-Ahuja (1992).

$O(mn + n^2 \log n)$ undirected shortest path, no negative cycles.

12

- . Reduce to weighted non-bipartite matching.
- . Beyond the scope of this course.

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.

- A tramp steamer travels from port to port carrying cargo. A voyage from port v to port w earn p(v,w) dollars, and requires t(v,w) days.
- . Captain wants a tour that achieves largest mean daily profit.

Tramp-Steamer Problem

Tramp-steamer (min cost to time ratio) problem.

- Input: digraph G = (V, E), arc costs c, and arc traversal times t > 0.
- Goal: find a directed cycle W that minimizes ratio $\mu(W)$ =

$$= \frac{\sum\limits_{e \in W} c_e}{\sum\limits_{e \in W} t_e}.$$

Novel application.

 Minimize cycle time (maximize frequency) of logic chip on IBM processor chips by adjusting clocking schedule.

Special case.

Find a negative cost cycle.

Tramp-Steamer Problem

Linearize objective function.

- . Let μ^* be value of minimum ratio cycle.
- . Let $\boldsymbol{\mu}$ be a constant.
- . Define ℓ_{e} = c_{e}^{}-\mu \; t_{e}^{}.

Case 1: there exists negative cost cycle W using lengths $\ell_{\rm e}$.

$$\sum_{e \in W} (c_e - \mu t_e) < 0 \quad \Leftrightarrow \quad \mu > \frac{\sum_{e \in W} c_e}{\sum_{e \in W} t_e} \ge \mu^*.$$

Case 2: every directed cycle has positive cost using lengths ℓ_e .

$$\sum_{e \in W} (c_e - \mu t_e) > 0 \quad \text{for every cycle } W \iff$$
$$\mu < \frac{\sum_{e \in W} c_e}{\sum_{e \in W} t_e} \quad \text{for every cycle } W \iff \mu < \mu^*.$$

Linearize objective function. • Let μ^* be value of minimum ratio cycle. • Let μ be a constant. • Define $\ell_e = c_e - \mu t_e$. Case 3: every directed cycle has nonnegative cost using lengths ℓ_e , and there exists a zero cost cycle W*. $\sum_{e \in W} (c_e - \mu t_e) \ge 0 \quad \text{for every cycle W} \iff$ $\mu \le \frac{\sum_{e \in W} c_e}{\sum_{e \in W} t_e} \quad \text{for every cycle W} \iff \mu \le \mu^*.$ $\frac{\sum_{e \in W^*} c_e}{\sum_{e \in W^*} t_e} = \mu \implies \mu = \mu^*.$

Tramp-Steamer Problem

Tramp-Steamer Problem

Linearize objective function.

- . Let μ^{*} be value of minimum ratio cycle.
- . Let μ be a constant.
- . Define ℓ_{e} = c_{e} μ t_{e}.

Case 1: there exists negative cost cycle W using lengths $\ell_{\rm e}$.

• $\mu^* < \mu$

Case 2: every directed cycle has positive cost using lengths $\ell_e.$. $\mu^* > \mu$

Case 3: every directed cycle has nonnegative cost using lengths ℓ_e , and there exists a zero cost cycle W*.

• μ* = μ

Tramp-Steamer: Sequential Search Procedure

Sequential Tramp Steamer

Let μ be a known upper bound on μ^* . REPEAT (forever) $\ell_e \leftarrow c_e - \mu$ Solve shortest path problem with lengths ℓ_e IF (negative cost cycle W w.r.t. ℓ_e) $\mu \leftarrow \mu(W)$ ELSE Find a zero cost cycle W* w.r.t. ℓ_e . RETURN W*.

Theorem: sequential algorithm terminates.

- . Case 1 $\, \Rightarrow \, \mu$ strictly decreases from one iteration to the next.
- . μ is the ratio of some cycle, and only finitely many cycles.

Tramp-Steamer: Binary Search Procedure

Proof by induction follows from cases 1-2.

Lemma. Upon termination, the algorithm returns a min ratio cycle.

Immediate from case 3.

Assumption.

- . All arc costs are integers between -C and C.
- . All arc traversal times are integers between –T and T.

Lemma. The algorithm terminates after O(log(nCT)) iterations.

. Proof on next slide.

Theorem. The algorithm finds min ratio cycle in O(mn log (nCT)) time.

19

Tramp-Steamer: Binary Search Procedure

Lemma. The algorithm terminates after O(log(nCT)) iterations.

- Initially, left = -C, right = C.
- . Each iteration halves the size of the interval.
- Let c(W) and t(W) denote cost and traversal time of cycle W.
- . We show any interval of size less than $1/(n^2T^2)$ contains at most one value from the set { c(W) / t(W) : W is a cycle }.
 - let W_1 and W_2 cycles with $\mu(W_1) > \mu(W_2)$

c(W ₁)	$c(W_2) > 0$	A	$c(W_1) t(W_2) - c(W_2) t(W_1)$	< 0
t(W ₁)	t(W ₂)	\leftarrow	$t(W_1) t(W_2)$	/ 0

– numerator of RHS is at least 1, denominator is at most $n^2 T^2$

- After $1 + \log_2 ((2C) (n^2T^2)) = O(\log (nCT))$ iterations, at most one ratio in the interval.
- . Algorithm maintains cycle W and interval [left, right] s.t. left \leq $\mu*$ \leq $\mu(W)$ < right.

Tramp Steamer: State of the Art

Min ratio cycle.

- O(mn log (nCT)).
- O(n³ log²n) dense. (Megiddo, 1979)
- O(n³ log n) sparse. (Megiddo, 1983)

Minimum mean cycle.

- Special case when all traversal times = 1.
- Θ(mn). (Karp, 1978)
- O(mn^{1/2} log C). (Orlin-Ahuja, 1992)
- O(mn log n). (Karp-Orlin, 1981)
 - parametric simplex best in practice

Optimal Pipelining of VLSI Chip

Novel application.

• Minimize cycle time (maximize frequency) of logic chip on IBM processor chips by adjusting clocking schedule.

If clock signal arrive at latches simultaneously, min cycle time = 14.

Allow individual clock arrival times at latches.

Clock signal at latch:

- A: 0, 10, 20, 30, . . .
- **B**: -1, 9, 19, 29, ...
- C: 0, 10, 20, 30, ...
- D: -4, 6, 16, 26, ...

Optimal cycle time = 10. Max mean weight cycle = 10.

23