Average Case Analysis

Beyond Worst Case Analysis

Worst-case analysis.

• Analyze running time as function of worst input of a given size.

Average case analysis.

- . Analyze average running time over some distribution of inputs.
- Ex: quicksort.

Amortized analysis.

- Worst-case bound on sequence of operations.
- Ex: splay trees, union-find.

Competitive analysis.

- Make quantitative statements about online algorithms.
- Ex: paging, load balancing.

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Average Case Analysis

Average case analysis.

- Analyze average running time over some distribution of inputs.
- . Ex: quicksort.
 - O(N log N) if input is assumed to be in random order.
 - leads to randomized algorithm with O(N log N) expected running time, independent of input
- Major disadvantage: hard to quantify what input distributions will look like in practice.

Quicksort

Quicksort.

- Assume all elements are unique.
- . Assume input is a random permutation of inputs.
- Denote ith largest element by i.

quicksort.c

```
void quicksort(Item a[], int left, int right) {
    int m;
    if (right > left) {
        m = partition(a, left, right);
        quicksort(a, left, m - 1);
        quicksort(a, m + 1, right);
    }
}
```

Quicksort: BST Representation of Pivots

Quicksort: Average Case Analysis

Probability that i = 2 and j = 7 get compared.

- Let x be pivot element that separates i and j.
- Case 1: x ∈ {3, 4, 5, 6}
- \Rightarrow i and j not compared.
- Case 2: $x \in \{2, 7\}$
- \Rightarrow i and j are compared.

Quicksort: Average Case Analysis

Probability that i = 2 and j = 7 get compared.

- Let x be pivot element that separates i and j.
- Case 1: x ∈ {3, 4, 5, 6}
- 5, 6} \Rightarrow i and j not compared.

Quicksort: Average Case Analysis

Probability that i = 2 and j = 7 get compared.

- . Let x be pivot element that separates i and j.
- Case 1: x ∈ {3, 4, 5, 6}
- \Rightarrow i and j not compared.
- Case 2: x ∈ {2, 7}
- \Rightarrow i and j are compared.

$$Pr[i \text{ and } j \text{ compared } (i < j)] = \frac{2}{j - i + 1}$$

Comparison Based Sorting Lower Bound

Lower bound = $\Omega(N \log_2 N)$: applies to comparison-based algorithms.

- . Tree height h determines worst case running time.
- N! different input orderings.
- One (or more) leaves corresponds to each ordering.
- Binary tree with N! leaves has height:

$$h \geq \log_{2}(N!)$$

$$\geq \log_{2}(N/e)^{N}$$

$$= N \log_{2} N - N \log_{2} e$$

$$= \Omega(N \log_{2} N)$$
Stirling's formula