Approximation Algorithms

Princeton University • COS 423 • Theory of Algorithms • Spring 2001 • Kevin Wayne

Coping With NP-Hardness

Brute-force algorithms.

- Develop clever enumeration strategies.
- Guaranteed to find optimal solution.
- No guarantees on running time.

Heuristics.

- Develop intuitive algorithms.
- Guaranteed to run in polynomial time.
- No guarantees on quality of solution.

Approximation algorithms.

- Guaranteed to run in polynomial time.
- Guaranteed to find "high quality" solution, say within 1% of optimum.
- Obstacle: need to prove a solution's value is close to optimum, without even knowing what optimum value is!

Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.

- Theory says you aren't likely to find a polynomial algorithm.
- Should you just give up?
 - Probably yes, if you're goal is really to find a polynomial algorithm.
 - Probably no, if you're job depends on it.

Approximation Algorithms and Schemes

ρ-approximation algorithm.

- An algorithm A for problem P that runs in polynomial time.
- . For every problem instance, A outputs a feasible solution within ratio ρ of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).

- A family of approximation algorithms $\{A_{\epsilon} : \epsilon > 0\}$ for a problem P.
- A_{ϵ} is a $(1 + \epsilon)$ approximation algorithm for P.
- . A_{ϵ} is runs in time polynomial in input size for a fixed ϵ .

Fully polynomial-time approximation scheme (FPTAS).

. PTAS where A_{ϵ} is runs in time polynomial in input size and 1/ ϵ .

Approximation Algorithms and Schemes

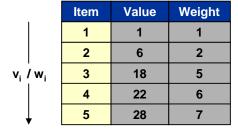
Types of approximation algorithms.

- Fully polynomial-time approximation scheme.
- Constant factor.

Knapsack Problem

Knapsack problem.

- Given N objects and a "knapsack."
- Item i weighs $w_i > 0$ Newtons and has value $v_i > 0$.
- Knapsack can carry weight up to W Newtons.
- Goal: fill knapsack so as to maximize total value.



W = 11

Greedy = 35: { 5, 2, 1 }

OPT value = 40: { 3, 4 }

Knapsack is NP-Hard

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a desired value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer t, is there a subset $S \subseteq X$ whose elements sum to t?

Claim. SUBSET-SUM ≤ P KNAPSACK.

Proof: Given instance (X, t) of SUBSET-SUM, create KNAPSACK instance:

Knapsack: Dynamic Programming Solution 1

 $OPT(n, w) = max profit subset of items \{1, ..., n\}$ with weight limit w.

- Case 1: OPT selects item n.
 - new weight limit = w w_n
 - OPT selects best of {1, 2, . . . , n − 1} using this new weight limit
- Case 2: OPT does not select item n.
 - OPT selects best of {1, 2, . . . , n − 1} using weight limit w

$$OPT(n,w) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1,w) & \text{if } w_n > w \\ \max\{OPT(n-1,w), v_n + OPT(n-1,w-w_n)\} & \text{otherwise} \end{cases}$$

Directly leads to O(N W) time algorithm.

- W = weight limit.
- Not polynomial in input size!

Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using subset of items $\{1, ..., n\}$.

- Case 1: OPT selects item n.
 - new value needed = $v v_n$
 - OPT selects best of {1, 2, . . . , n − 1} using new value
- Case 2: OPT does not select item n.
 - OPT selects best of {1, 2, ..., n − 1} that achieves value v

$$OPT(n,v) = \begin{cases} 0 & \text{if } n = 0 \\ OPT(n-1,v) & \text{if } v_n > v \\ \min \left\{ OPT(n-1,v), & w_n + OPT(n-1,v-v_n) \right\} & \text{otherwise} \end{cases}$$

Directly leads to O(N V *) time algorithm.

- V* = optimal value.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values down to lie in smaller range.
- Run O(N V*) dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight		
1	134,221	1		
2	656,342	2		
3	1,810,013	5		
4	22,217,800	6		
5	28,343,199	7		

Item	Value	Weight		
1	1	1		
2	6	2		
3	18	5		
4	222	6		
5	283	7		

W = 11

W = 11

Original Instance

Rounded Instance

Knapsack: Bottom-Up

INPUT: N, W, w₁,...,w_N, v₁,...,v_N ARRAY: OPT[0..N, 0..V*] FOR v = 0 to V OPT[0, v] = 0 FOR n = 1 to N FOR w = 1 to W IF (v_n > v) OPT[n, v] = OPT[n-1, v] ELSE OPT[n, v] = min {OPT[n-1, v], w_n + OPT[n-1, v-v_n]} v* = max {v : OPT[N, v] ≤ W} RETURN OPT[N, v*]

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{v_n} = \left| \frac{v_n}{\theta} \right|$
 - V = largest value in original instance
 - $-\epsilon$ = precision parameter
 - $-\theta$ = scaling factor = ϵ V/N
- Bound on optimal value V *:

$$V \leq V^* \leq NV$$
 assume $w_n \leq W$ for all n

Running Time

$$O(N \overline{V^*}) \in O(N(N \overline{V}))$$

$$\in O(N^2 (V/\theta))$$

$$\in O(N^3 \frac{1}{\varepsilon})$$

 $\overline{V}=$ largest value in rounded instance $\overline{V}*=$ optimal value in rounded instance

Knapsack: FPTAS

Knapsack FPTAS.

- Round all values: $\overline{v_n} = \left| \frac{v_n}{\theta} \right|$
 - V = largest value in original instance
 - $-\epsilon$ = precision parameter
 - $-\theta$ = scaling factor = ϵ V/N
- Bound on optimal value V *:

$$V \leq V^* \leq NV$$

 S^* = opt set of items in original instance $\overline{S^*}$ = opt set of items in rounded instance

Proof of Correctness

$$\frac{\sum_{n \in \overline{S^*}} v_n}{\sum_{n \in \overline{S^*}} \theta \overline{v_n}} \ge \sum_{n \in S^*} \theta \overline{v_n}$$

$$\ge \sum_{n \in S^*} (v_n - \theta)$$

$$\ge \sum_{n \in S^*} v_n - \theta N$$

$$= V^* - (\varepsilon V/N) N$$

$$\ge (1 - \varepsilon)V^*$$

Knapsack: State of the Art

This lecture.

- "Rounding and scaling" method finds a solution within a (1 ϵ) factor of optimum for any ϵ > 0.
- Takes $O(N^3 / \epsilon)$ time and space.

Ibarra-Kim (1975), Lawler (1979).

- Faster FPTAS: O(N log $(1/\epsilon) + 1/\epsilon^4$) time.
- Idea: group items by value into "large" and "small" classes.
 - run dynamic programming algorithm only on large items
 - insert small items according to ratio v_n / w_n
 - clever analysis

Approximation Algorithms and Schemes

Types of approximation algorithms.

- Fully polynomial-time approximation scheme.
- Constant factor.

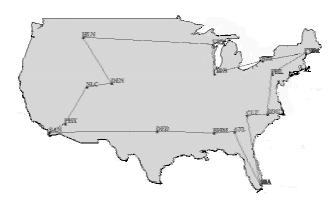
Traveling Salesperson Problem

TSP: Given a graph G = (V, E), nonnegative edge weights c(e), and an integer C, is there a Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570?

Traveling Salesperson Problem

TSP: Given a graph G = (V, E), nonnegative edge weights c(e), and an integer C, is there a Hamiltonian cycle whose total cost is at most C?



Is there a tour of length at most 1570? Yes, red tour = 1565.

Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph G = (V, E), does there exists a simple cycle C that contains every vertex in V.

TSP: Given a complete (undirected) graph G, integer edge weights $c(e) \ge 0$, and an integer C, is there a Hamiltonian cycle whose total cost is at most C?

Claim. HAM-CYCLE is NP-complete.

Proof. (HAM-CYCLE transforms to TSP)

- Given G = (V, E), we want to decide if it is Hamiltonian.
- Create instance of TSP with G' = complete graph.
- Set c(e) = 1 if $e \in E$, and c(e) = 2 if $e \notin E$, and choose C = |V|.
- Γ Hamiltonian cycle in G \Leftrightarrow Γ has cost exactly |V| in G'. Γ not Hamiltonian in G \Leftrightarrow Γ has cost at least |V| + 1 in G'.

TSP

TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer edge weights $c(e) \ge 0$, find a Hamiltonian cycle of minimum cost?

Claim. If $P \neq NP$, there is no ρ -approximation for TSP for any $\rho \geq 1$.

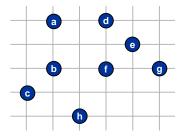
Proof (by contradiction).

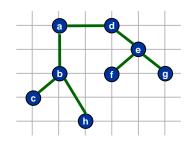
- \blacksquare Suppose A is $\rho\text{-approximation}$ algorithm for TSP.
- . We show how to solve instance G of HAM-CYCLE.
- Create instance of TSP with G' = complete graph.
- Let C = |V|, c(e) = 1 if e ∈ E, and c(e) = ρ |V | + 1 if e ∉ E.
- Gap ⇒ If G has Hamiltonian cycle, then A must return it.

TSP Heuristic

APPROX-TSP(G, c)

• Find a minimum spanning tree T for (G, c).





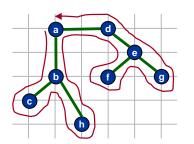
Input (assume Euclidean distances)

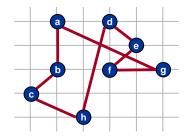
MST

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- . W \leftarrow ordered list of vertices in preorder walk of T.
- lacksquare H \leftarrow cycle that visits the vertices in the order L.





Preorder Traversal Full Walk W

abcbhbadefegeda

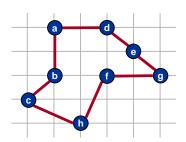
Hamiltonian Cycle H

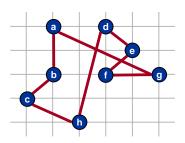
abchdefga

TSP Heuristic

APPROX-TSP(G, c)

- Find a minimum spanning tree T for (G, c).
- ullet W \leftarrow ordered list of vertices in preorder walk of T.
- ullet H \leftarrow cycle that visits the vertices in the order L.





An Optimal Tour: 14.715

Hamiltonian Cycle H: 19.074

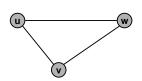
(assuming Euclidean distances)

.

TSP With Triangle Inequality

 \triangle -TSP: TSP where costs satisfy \triangle -inequality:

• For all u, v, and w: $c(u,w) \le c(u,v) + c(v,w)$.

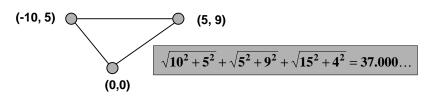


Claim. Δ -TSP is NP-complete.

Proof. Transformation from HAM-CYCLE satisfies Δ -inequality.

Ex. Euclidean points in the plane.

• Euclidean TSP is NP-hard, but not known to be in NP.

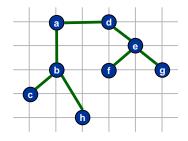


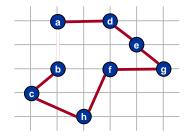
■ PTAS for Euclidean TSP. (Arora 1996, Mitchell 1996)

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for Δ -TSP. Proof. Let H* denote an optimal tour. Need to show c(H) \leq 2c(H*).

• $c(T) \le c(H^*)$ since we obtain spanning tree by deleting any edge from optimal tour.





MST T

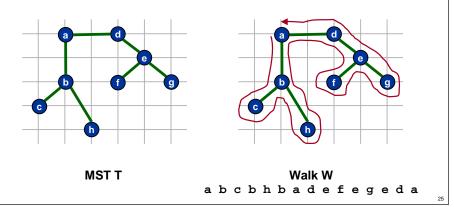
An Optimal Tour

, |

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for \triangle -TSP. Proof. Let H* denote an optimal tour. Need to show $c(H) \le 2c(H^*)$.

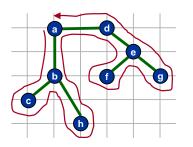
- c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge from optimal tour.
- c(W) = 2c(T) since every edge visited exactly twice.

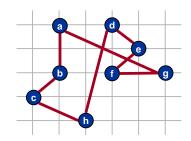


TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for Δ -TSP. Proof. Let H* denote an optimal tour. Need to show $c(H) \le 2c(H^*)$.

- c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge from optimal tour.
- c(W) = 2c(T) since every edge visited exactly twice.
- **■** $c(H) \le c(W)$ because of Δ -inequality.





Walk W a b c b h b a d e f e g e d a

Hamiltonian Cycle H abchdefga

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- lacksquare M $\locate{}\leftarrow$ min cost perfect matching of odd degree nodes in T.

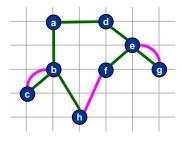
MST T Matching M

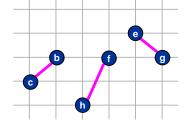
TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- ullet M $\ \leftarrow$ min cost perfect matching of odd degree nodes in T.
- G' ← union of spanning tree and matching edges.





G' = MST + Matching

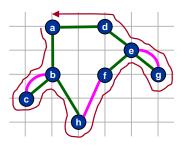
Matching M

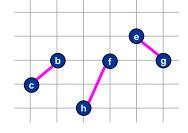
TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- M ← min cost perfect matching of odd degree nodes in T.
- G' ← union of spanning tree and matching edges.
- E ← Eulerian tour in G'.





E = Eulerian tour in G'

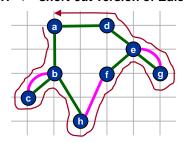
Matching M

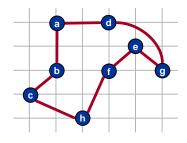
TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP.

CHRISTOFIDES(G, c)

- Find a minimum spanning tree T for (G, c).
- M ← min cost perfect matching of odd degree nodes in T.
- G' ← union of spanning tree and matching edges.
- E ← Eulerian tour in G'.
- H ← short-cut version of Eulerian tour in E.





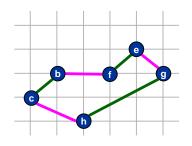
E = Eulerian tour in G'

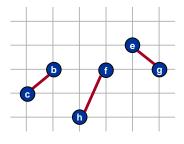
Hamiltonian Cycle H

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for \triangle -TSP. Proof. Let H* denote an optimal tour. Need to show $c(H) \le 1.5 c(H^*)$.

- **■** $c(T) \le c(H^*)$ as before.
- $c(M) \le \frac{1}{2} c(\Gamma^*) \le \frac{1}{2} c(H^*)$.
 - second inequality follows from Δ -inequality
 - even number of odd degree nodes
 - Hamiltonian cycle on even # nodes comprised of two matchings





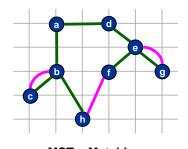
Optimal Tour Γ^* on Odd Nodes

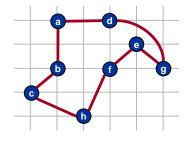
Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for Δ -TSP. Proof. Let H* denote an optimal tour. Need to show c(H) \leq 1.5 c(H*).

- $c(T) \le c(H^*)$ as before.
- $c(M) \le \frac{1}{2} c(\Gamma^*) \le \frac{1}{2} c(H^*)$.
- Union of MST and and matching edges is Eulerian.
 - every node has even degree
- Can shortcut to produce H and $c(H) \le c(M) + c(T)$.





MST + Matching

Hamiltonian Cycle H

Load Balancing

Load balancing input.

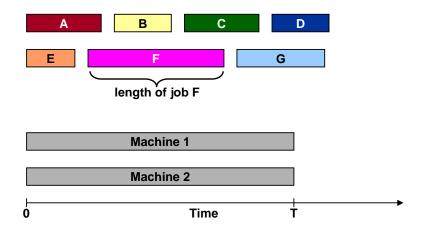
- . m identical machines.
- n jobs, job j has processing time p_i.

Goal: assign each job to a machine to minimize makespan.

- If subset of jobs S_i assigned to machine i, then i works for a total time of $T_i = \sum_{j \in S_i} p_j$.
- Minimize maximum T_i.

Load Balancing on 2 Machines

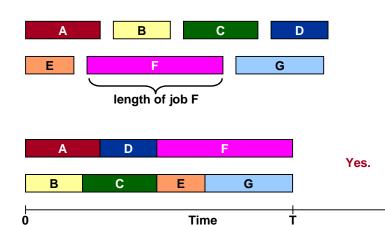
2-LOAD-BALANCE: Given a set of jobs J of varying length $p_j \ge 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.



33

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length $p_j \ge 0$, and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.



Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S \subseteq X such that $\sum_{a \in S} a = \sum_{a \in X \setminus S} a$.

2-LOAD-BALANCE: Given a set of jobs J of varying length p_j , and an integer T, can the jobs be processed on 2 identical parallel machines so that they all finish by time T.

Claim. PARTITION \leq _P 2-LOAD-BALANCE. Proof. Let X be an instance of PARTITION.

- For each integer $x \in X$, include a job j of length $p_i = x$.
- Set $T = \frac{1}{2} \sum_{a \in X} a$.

Conclusion: load balancing optimization problem is NP-hard.

Load Balancing

Greedy algorithm.

- Consider jobs in some fixed order.
- . Assign job j to machine whose load is smallest so far.


```
\begin{aligned} & \text{LIST-SCHEDULING (m, n, p}_1, \dots, p_n) \\ & \text{FOR } i = 1 \text{ to m} \\ & \text{T}_i \leftarrow 0 \text{, } \text{S}_i \leftarrow \phi \end{aligned} \begin{aligned} & \text{FOR } j = 1 \text{ to n} \\ & \text{i = argmin}_k \text{ T}_k \\ & \text{S}_i \leftarrow \text{S}_i \cup \{j\} \\ & \text{T}_i \leftarrow \text{T}_i + \text{p}_j \end{aligned} machine with smallest load assign job j to machine i
```

• Note: this is an "on-line" algorithm.

Load Balancing

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.

- First worst-case analysis of an approximation algorithm.
- Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is at least $T^* \geq \frac{1}{m} \sum_{j} p_{j}$.

- The total processing time is $\Sigma_i p_i$.
- One of m machines must do at least a 1/m fraction of total work.

Lemma 2. The optimal makespan is at least $T^* \ge \max_i p_i$.

Some machine must process the most time-consuming job.

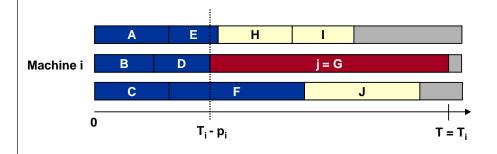
Load Balancing

Lemma 1. The optimal makespan is at least $T^* \ge \frac{1}{m} \sum_j p_j$. Lemma 2. The optimal makespan is at least $T^* \ge \max_i p_i$.

Theorem. Greedy algorithm is a 2-approximation.

Proof. Consider bottleneck machine i that works for T units of time.

- Let i be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is T_i p_i \Rightarrow T_i p_i \leq T_k for all $1 \leq k \leq m$.



Load Balancing

Lemma 1. The optimal makespan is at least $T^* \ge \frac{1}{m} \sum_j p_j$. Lemma 2. The optimal makespan is at least $T^* \ge \max_i p_i$.

Theorem. Greedy algorithm is a 2-approximation.

Proof. Consider bottleneck machine i that works for T units of time.

- Let i be last job scheduled on machine i.
- When job j assigned to machine i, i has smallest load. It's load before assignment is T_i p_i \Rightarrow T_i p_i \leq T_k for all $1 \leq k \leq n$.
- Sum inequalities over all k and divide by m, and then apply L1.

$$T_{i} - p_{j} \leq \frac{1}{m} \sum_{k} T_{k}$$

$$= \frac{1}{m} \sum_{k} p_{k}$$

$$< T^{*}$$

. Finish off using L2.

$$T_{i} = (T_{i} - p_{j}) + p_{j}$$

$$\leq T^{*} + T^{*}$$

$$= 2T^{*}$$

Load Balancing

Is our analysis tight?

- . Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
 - m machines, m(m-1) jobs with of length 1, 1 job of length m
 - 10 machines, 90 jobs of length 1, 1 job of length 10

1	11	21	31	41	51	61	71	81	91
2	12	22	32	42	52	62	72	82	Machine 2
3	13	23	33	43	53	63	73	83	Machine 3
4	14	24	34	44	54	64	74	84	Machine 4
5	15	25	35	45	55	65	75	85	Machine 5
6	16	26	36	46	56	66	76	86	Machine 6
7	17	27	37	47	57	67	77	87	Machine 7
8	18	28	38	48	58	68	78	88	Machine 8
9	19	29	39	49	59	69	79	89	Machine 9
10	20	30	40	50	60	70	80	90	Machine 10

List Schedule makespan = 19

41

Load Balancing: State of the Art

What's known.

- 2-approximation algorithm.
- 3/2-approximation algorithm: homework.
- 4/3-approximation algorithm: extra credit.
- . PTAS.

Load Balancing

Is our analysis tight?

- . Essentially yes.
- We give instance where solution is almost factor of 2 from optimal.
 - m machines, m(m-1) jobs with of length 1, 1 job of length m
 - 10 machines, 90 jobs of length 1, 1 job of length 10

1	11	21	31	41	51	61	71	81	10	Machine 1
2	12	22	32	42	52	62	72	82	20	Machine 2
3	13	23	33	43	53	63	73	83	30	Machine 3
4	14	24	34	44	54	64	74	84	40	Machine 4
5	15	25	35	45	55	65	75	85	50	Machine 5
6	16	26	36	46	56	66	76	86	60	Machine 6
7	17	27	37	47	57	67	77	87	70	Machine 7
8	18	28	38	48	58	68	78	88	80	Machine 8
9	19	29	39	49	59	69	79	89	90	Machine 9
	91						Machine 10			

Optimal makespan = 10

42