Approximation Algorithms

Princeton University « COS 423 « Theory of Algorithms « Spring 2001 « Kevin Wayne

Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.
. Theory says you aren't likely to find a polynomial algorithm.
. Should you just give up?

# Probably yes, if you're goal is really to find a polynomial
algorithm.

# Probably no, if you're job depends on it.

Coping With NP-Hardness

Brute-force algorithms.

. Develop clever enumeration strategies.
. Guaranteed to find optimal solution.

. No guarantees on running time.

Heuristics.

. Develop intuitive algorithms.

. Guaranteed to run in polynomial time.
. No guarantees on quality of solution.

Approximation algorithms.
. Guaranteed to run in polynomial time.
. Guaranteed to find "high quality" solution, say within 1% of optimum.

. Obstacle: need to prove a solution’s value is close to optimum,
without even knowing what optimum value is!

Approximation Algorithms and Schemes

p-approximation algorithm.
. An algorithm A for problem P that runs in polynomial time.

. For every problem instance, A outputs a feasible solution within
ratio p of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).
. A family of approximation algorithms {A, : € >0} for a problem P.
. A isa(l+¢)-approximation algorithm for P.
. A isrunsintime polynomial in input size for a fixed «.

Fully polynomial-time approximation scheme (FPTAS).
. PTAS where A, is runs in time polynomial in input sizeand 1/¢..




Approximation Algorithms and Schemes

Types of approximation algorithms.
. Fully polynomial-time approximation scheme.

Knapsack Problem

Knapsack problem.
. Given N objects and a "knapsack."
. Itemiweighs w; >0 Newtons and has value v;> 0.
. Knapsack can carry weight up to W Newtons.
. Goal: fill knapsack so as to maximize total value.

Item Value  Weight

1 1 1 Greedy =35: {5,2,1}
2 6 2
v, Iw, 3 18 5 OPT value =40: { 3,4}
4 22 6
5 28 7
W=11

Knapsack is NP-Hard

KNAPSACK: Given afinite set X, nonnegative weights w; , nonnegative
values v, , a weight limit W, and a desired value V, is there a subset S
X such that:

z wi < W
ias
z Vi >V
ias

SUBSET-SUM: Given a finite set X, nonnegative values u; , and an
integer t, is there a subset S 0 X whose elements sum to t?

Claim. SUBSET-SUM < , KNAPSACK.

Proof: Given instance (X, t) of SUBSET-SUM, create KNAPSACK
instance:

<
LV =W = iDzsul <t
- V=W=t su o=t
igs

Knapsack: Dynamic Programming Solution 1

OPT(n, w) = max profit subset of items {1, ..., n} with weight limit w.
. Case 1. OPT selects item n.
- new weight limit =w —w,

- OPT selects best of {1, 2, . . ., n — 1} using this new weight limit
. Case 2: OPT does not select item n.
- OPT selects best of {1, 2, ..., n — 1} using weight limit w
0o if n=0
OPT(n,w)=EDPT(n—1,w) if w,>w

Hnax{OPT(n-1,w), v, + OPT(n-1w-w,)} otherwise

Directly leads to O(N W) time algorithm.
. W = weight limit.
. Not polynomial in input size!




Knapsack: Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using
subset of items {1, ..., n}.

. Case 1. OPT selects item n.
- new value needed =v —v,

- OPT selects best of {1, 2, . . ., n — 1} using new value
. Case 2: OPT does not select item n.
- OPT selects best of {1, 2, ..., n — 1} that achieves value v
oo if n=0

OPT (n,v) = EDPT(n—l, V) if v,>v
Hnin{OPT(n-1,v), w, + OPT(n-1v-v,)} otherwise

Directly leads to O(N V *) time algorithm.
. V* = optimal value.
. Not polynomial in input size!

Knapsack: Bottom-Up

Bottom-Up Knapsack

INPUT: N, W oW, Wy Vi,V
ARRAY OPT[O0..N, 0..V*]

FORvV=0toV
OPT[0, v] =0

FORNn=1toN
FORw=1to W
IF (v, >Vv)
OPTI[n, v] = OPT[n-1, v]
ELSE
OPTI[n, v] = min {OPT[n-1, v], w , + OPT[n-1, v-v a1}

v* = max {v: OPT[N, v] < W}
RETURNOPT[N, v*]

Knapsack: FPTAS

Intuition for approximation algorithm.
. Round all values down to lie in smaller range.

Run O(N V*) dynamic programming algorithm on rounded instance.
. Return optimal items in rounded instance.

Item Value Weight Item Value Weight
1 134,221 1 1 1 1
2 656,342 2 2 6 2
3 1,810,013 5 ‘ 3 18 5
4 22,217,800 6 4 222 6
5 28,343,199 7 5 283 7
w=11 w=11

Original Instance Rounded Instance

Knapsack: FPTAS

Knapsack FPTAS.

. Round all values: v, = v U
n E e a
-V =largest value in original instance
- €& = precision parameter
-0 = scaling factor=¢ V/N

. Bound on optimal value V *;

V<V*<NV

<::: assume w, < W for all n

Running Time

ONV*) O O(N(NV))
O O(N?(V/6))
0 o(N°1)

largest valuein rounded instance
optimal valueinrounded instance

<l <




Knapsack: FPTAS

Knapsack FPTAS.

. Round all values: v, = v U
n He a
-V =largest value in original instance
- & =precision parameter
-8 = scaling factor=¢ V/N Proof of Correctness
. Bound on optimal value V *: >V, =2 > ov,
nOS* nosc
V<V <NV 2 3 0y,
noS*
. . L. . = Z(Vn' 0)
S* = optsetofitems inoriginal instance nOS*
S* = optsetofitems inrounded instance 2 DXSkVn - ON
n
= V*—(eV/N)N
> (1-¢eV*

Knapsack: State of the Art

This lecture.

. "Rounding and scaling” method finds a solution within a (1 - €)
factor of optimum for any € > 0.

. Takes O(N3/¢) time and space.

Ibarra-Kim (1975), Lawler (1979).

. Faster FPTAS: O(Nlog (1/¢&)+ 1/¢&*)time.

. ldea: group items by value into "large" and "small" classes.
- run dynamic programming algorithm only on large items
- insert small items according to ratio v,/ w,
- clever analysis

Approximation Algorithms and Schemes
Types of approximation algorithms.

. Constant factor.

Traveling Salesperson Problem

TSP: Given agraph G = (V, E), nonnegative edge weights c(e), and an
integer C, is there a Hamiltonian cycle whose total cost is at most C?

r.y

—e a
(% o

= el
N b
\J‘\ ’a‘{"‘"\—g S %

3
&
£

\ ]
J g

Is there a tour of length at most 15707

Fsd




Traveling Salesperson Problem

TSP: Given agraph G = (V, E), nonnegative edge weights c(e), and an
integer C, is there a Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570? Yes, red tour = 1565.

Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph G = (V, E), does there exists
a simple cycle C that contains every vertex in V.

TSP: Given a complete (undirected) graph G, integer edge weights
c(e) =0, and an integer C, is there a Hamiltonian cycle whose total
cost is at most C?

Claim. HAM-CYCLE is NP-complete. @ (b)

N

G
Proof. (HAM-CYCLE transforms to TSP)

. Given G =(V, E), we want to decide if it is Hamiltonian.
. Create instance of TSP with G’ = complete graph.
. Setc(e)=1ifedE,and c(e) =2if e OE, and choose C =|V]|.

I Hamiltonian cyclein G = T has cost exactly |V|in G'.
I not Hamiltonianin G < T hascostatleast|V|+1inG'.

TSP

TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer
edge weights c(e) = 0, find a Hamiltonian cycle of minimum cost?

Claim. If P # NP, there is no p-approximation for TSP forany p>1.

Proof (by contradiction).
. Suppose A is p-approximation algorithm for TSP.
. We show how to solve instance G of HAM-CYCLE.
. Create instance of TSP with G’ = complete graph.
LetC=|V|,c(e)=1ifedE,andc(e)=p|V|+1ifeDE.
I Hamiltonian cyclein G < T has cost exactly |[V|in G’
I not Hamiltonian in G < [ has cost more than p [V] in G’
. Gap O If G has Hamiltonian cycle, then A must return it.

TSP Heuristic

APPROX-TSP(G, c)
Find a minimum spanning tree T for (G, c).

Input MST
(assume Euclidean distances)




TSP Heuristic
APPROX-TSP(G, c)

. W — ordered list of vertices in preorder walk of T.
. H < cyclethat visits the vertices in the order L.

Preorder Traversal Full Walk W
abcbhbadef egeda

Hamiltonian Cycle H

abchdef ga

TSP Heuristic

APPROX-TSP(G, c)

An Optimal Tour: 14.715

Hamiltonian Cycle H: 19.074

(assuming Euclidean distances)

TSP With Triangle Inequality

A-TSP: TSP where costs satisfy A-inequality:
. Forallu,v,and w: c(u,w) <c(u,v) +c(v,w).

Claim. A-TSP is NP-complete.
Proof. Transformation from HAM-CYCLE satisfies A-inequality.

Ex. Euclidean points in the plane.
. Euclidean TSP is NP-hard, but not known to be in NP.

(-10,5) (5, 9)

V102 +52 + /52 + 92 + /152 + 42 = 37.000...

(0,0)

. PTAS for Euclidean TSP. (Arora 1996, Mitchell 1996)

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.

Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H?*).

. ¢(T) < c(H*) since we obtain spanning tree by deleting any edge
from optimal tour.

MSTT An Optimal Tour




TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H*).

. ¢(W) =2c(T) since every edge visited exactly twice.

MSTT Walk W
abcbhbadef egeda

25

TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 2c(H?*).

. C(H) < c(W) because of A-inequality.

Walk W Hamiltonian Cycle H
abcbhbadef egeda abchdef ga

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, c)
. Find aminimum spanning tree T for (G, c).
. M < min cost perfect matching of odd degree nodes in T.

o poo

MSTT Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, )

. G’ < union of spanning tree and matching edges.

o poo

G’ = MST + Matching Matching M




TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, )

. E < Euleriantourin G'.

ZaraL.

E = Eulerian tour in G’ Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.

CHRISTOFIDES(G, )

. H < short-cut version of Eulerian tour in E.

E = Eulerian tour in G’

Hamiltonian Cycle H

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 1.5 c(H*).
. ¢(T) £ c(H*) as before.
. c(M) < %c(l*) < Y c(H¥).
- second inequality follows from A-inequality
- even number of odd degree nodes
- Hamiltonian cycle on even # nodes comprised of two matchings

o po

Optimal Tour I'* on Odd Nodes Matching M

TSP: Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for A-TSP.
Proof. Let H* denote an optimal tour. Need to show c(H) < 1.5 c(H*).

. Union of MST and and matching edges is Eulerian.
- every node has even degree
. Can shortcut to produce H and c(H) < c(M) + c(T).

MST + Matching

Hamiltonian Cycle H




Load Balancing

Load balancing input.
. midentical machines.
. njobs, job jhas processing time p;.

Goal: assign each job to a machine to minimize makespan.

. If subset of jobs S; assigned to machine i, then i works for a total

timeof 7, = 3 p;.
Jjos;

. Minimize maximum T,.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length p;= 0, and
an integer T, can the jobs be processed on 2 identical parallel
machines so that they all finish by time T.

A NECENE c § o |
[ | [ 6 |
- J

~
length of job F

| Machine 1 |

| Machine 2 |

v

0 Time T

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length p;= 0, and
an integer T, can the jobs be processed on 2 identical parallel
machines so that they all finish by time T.

A NECENE c § o |
[ | [ 6 |
- J

~
length of job F

Yes.

0 Time T

Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S

0 Xsuchthat Y a= 3 a.
alls ailx\s

2-LOAD-BALANCE: Given a set of jobs J of varying length p;, and an
integer T, can the jobs be processed on 2 identical parallel machines
so that they all finish by time T.

Claim. PARTITION <, 2-LOAD-BALANCE.
Proof. Let X be an instance of PARTITION.
. For each integer x U X, include a job j of length p; = x.
_1
. Set T‘ﬁZana-

Conclusion: load balancing optimization problem is NP-hard.




Load Balancing

Greedy algorithm.
. Consider jobs in some fixed order.

. Assign job j to machine whose load is smallest so far.

LIST-SCHEDULING (m, N, py, . .., P,)

i = argmng T, <::|' machine with smallest load |
S « S 0O {j \
W - T: + r{)jj} <::|I assign job j to machine i |

Note: thisis an "on-line" algorithm.

Load Balancing

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.
First worst-case analysis of an approximation algorithm.
Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is at least T* > %2/‘ pj-
. Thetotal processing timeis Z;p ;.
. One of m machines must do at least a 1/m fraction of total work.

Lemma 2. The optimal makespan is atleast T* = max; p;.
. Some machine must process the most time-consuming job.

Load Balancing

\%

Lemma 1. The optimal makespan is at least T*
Lemma 2. The optimal makespan is at least T *

1 .
m2j Pi
man pj

\%

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.
Letj be last job scheduled on machine i.

. When job j assigned to machine i, i has smallest load. It's load
before assignmentis T; - p; O T;- p; < T, foralll<ksm.

Machinei

v

Load Balancing

\%

Lemma 1. The optimal makespan is at least T* %Z/ pj.
Lemma 2. The optimal makespan is at least 7* > max ; p;.
Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.
Letj be last job scheduled on machine i.
. When job j assigned to machine i, i has smallest load. It's load
before assignmentis Ty - p; O T, - p; < T, foralll<ks<n.

. Sum inequalities over all k and divide by m,

" _p- 1
and then apply L1. Ti-p; = me Tk
- 1
= w2 Pk
W

T*

Finish off using L2.

IN

Ti = (Ti-pj) + pj
T*+T
2T *

IN

40




1
2
K]
4
5
6
7
8
9
10

Load Balancing

Is our analysis tight?

. Essentially yes.

. We give instance where solution is almost factor of 2 from optimal.
- m machines, m(m-1) jobs with of length 1, 1 job of length m
- 10 machines, 90 jobs of length 1, 1 job of length 10

91
Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

Machine 8

Machine 9

Machine 10

List Schedule makespan =19

41

1
2
K]
4
5
6
7
8
9

Load Balancing

Is our analysis tight?

. Essentially yes.

. We give instance where solution is almost factor of 2 from optimal.
- m machines, m(m-1) jobs with of length 1, 1 job of length m
- 10 machines, 90 jobs of length 1, 1 job of length 10

Machine 1

Machine 2

Machine 3

Machine 4

Machine 5

Machine 6

Machine 7

Machine 8

Machine 9

Machine 10

Optimal makespan =10

42

Load Balancing: State of the Art

What's known.
. 2-approximation algorithm.
. 3/2-approximation algorithm: homework.
. 4/3-approximation algorithm: extra credit.
. PTAS.

43




