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Approximation Algorithms
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Coping With NP-Hardness

Suppose you need to solve NP-hard problem X.

■ Theory says you aren’t likely to find a polynomial algorithm.

■ Should you just give up?
! Probably yes, if you’re goal is really to find a polynomial 

algorithm.
! Probably no, if you’re job depends on it.
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Coping With NP-Hardness

Brute-force algorithms.

■ Develop clever enumeration strategies.

■ Guaranteed to find optimal solution.

■ No guarantees on running time.

Heuristics.

■ Develop intuitive algorithms.

■ Guaranteed to run in polynomial time.

■ No guarantees on quality of solution.

Approximation algorithms.

■ Guaranteed to run in polynomial time.

■ Guaranteed to find "high quality" solution, say within 1% of optimum.

■ Obstacle:  need to prove a solution’s value is close to optimum,
without even knowing what optimum value is!
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Approximation Algorithms and Schemes

ρ-approximation algorithm.

■ An algorithm A for problem P that runs in polynomial time.

■ For every problem instance, A outputs a feasible solution within
ratio ρ of true optimum for that instance.

Polynomial-time approximation scheme (PTAS).

■ A family of approximation algorithms {Aε :  ε > 0} for a problem P.

■ Aε is a (1 + ε) - approximation algorithm for P.

■ Aε is runs in time polynomial in input size for a fixed ε.

Fully polynomial-time approximation scheme (FPTAS).

■ PTAS where Aε is runs in time polynomial in input size and 1 / ε .
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Approximation Algorithms and Schemes

Types of approximation algorithms.

■ Fully polynomial-time approximation scheme.

■ Constant factor.
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Knapsack Problem

Knapsack problem.

■ Given N objects and a "knapsack."

■ Item i weighs wi  > 0 Newtons and has value vi > 0.

■ Knapsack can carry weight up to W Newtons.

■ Goal:  fill knapsack so as to maximize total value.

Item Value Weight

1 1 1

2 6 2

3 18 5

4 22 6

5 28 7

W = 11

OPT value = 40:  { 3, 4 }

Greedy = 35:  { 5, 2, 1 }

vi / wi
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Knapsack is NP-Hard

KNAPSACK: Given a finite set X, nonnegative weights wi , nonnegative 
values vi , a weight limit W, and a desired value V, is there a subset S ⊆
X such that:

SUBSET-SUM: Given a finite set X, nonnegative values ui , and an 
integer t, is there a subset S ⊆ X whose elements sum to t?

Claim. SUBSET-SUM ≤ P KNAPSACK.
Proof:  Given instance (X, t) of SUBSET-SUM, create KNAPSACK 
instance:

■ vi  = wi =  ui

■ V = W = t
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Knapsack:  Dynamic Programming Solution 1

OPT(n, w) = max profit subset of items  {1, . . . , n} with weight limit w.

■ Case 1:  OPT selects item n.
– new weight limit = w – wn

– OPT selects best of {1, 2, . . . , n – 1} using this new weight limit

■ Case 2:  OPT does not select item n.
– OPT selects best of {1, 2, . . . , n – 1} using weight limit w

Directly leads to O(N W) time algorithm.

■ W = weight limit.

■ Not polynomial in input size!
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Knapsack:  Dynamic Programming Solution 2

OPT(n, v) = min knapsack weight that yields value exactly v using 
subset of items  {1, . . . , n}.

■ Case 1:  OPT selects item n.
– new value needed = v – vn

– OPT selects best of {1, 2, . . . , n – 1} using new value

■ Case 2:  OPT does not select item n.
– OPT selects best of {1, 2, . . . , n – 1} that achieves value v

Directly leads to O(N V *) time algorithm.

■ V* = optimal value.

■ Not polynomial in input size!
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Knapsack:  Bottom-Up

INPUT: N, W, w1,…,wN, v1,…,v N 

ARRAY: OPT[0..N, 0..V*]

FOR v = 0 to V
OPT[0, v] = 0

FOR n = 1 to N
FOR w = 1 to W

IF (v n > v)
OPT[n, v] = OPT[n-1, v]

ELSE
OPT[n, v] = min {OPT[n-1, v], w n + OPT[n-1, v-v n ]}

v* = max {v : OPT[N, v] ≤ W}
RETURNOPT[N, v*]

Bottom-Up Knapsack
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Knapsack:  FPTAS

Intuition for approximation algorithm.

■ Round all values down to lie in smaller range.

■ Run O(N V*) dynamic programming algorithm on rounded instance.

■ Return optimal items in rounded instance.

Item Value Weight

1 134,221 1

2 656,342 2

3 1,810,013 5

4 22,217,800 6

5 28,343,199 7

W = 11

Item Value Weight

1 1 1

2 6 2

3 18 5

4 222 6

5 283 7

Original Instance Rounded Instance

W = 11
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Knapsack:  FPTAS

Knapsack FPTAS.

■ Round all values:  

– V    = largest value in original instance
– ε = precision parameter
– θ =  scaling factor = ε V / N

■ Bound on optimal value V *:
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Knapsack:  FPTAS

Knapsack FPTAS.

■ Round all values:  

– V    = largest value in original instance
– ε = precision parameter
– θ =  scaling factor = ε V / N

■ Bound on optimal value V *:
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Proof of Correctness
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Knapsack:  State of the Art

This lecture.

■ "Rounding and scaling" method finds a solution within a (1 - ε) 
factor of optimum for any ε > 0.

■ Takes O(N3 / ε) time and space.

Ibarra-Kim (1975), Lawler (1979).

■ Faster FPTAS:  O(N log (1 / ε) +  1 / ε4 ) time.

■ Idea:  group items by value into "large" and "small" classes.
– run dynamic programming algorithm only on large items
– insert small items according to ratio vn / wn

– clever analysis
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Approximation Algorithms and Schemes

Types of approximation algorithms.

■ Fully polynomial-time approximation scheme.

■ Constant factor.
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Traveling Salesperson Problem

TSP: Given a graph G = (V, E), nonnegative edge weights c(e), and an 
integer C, is there a Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570? 
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Traveling Salesperson Problem

TSP:  Given a graph G = (V, E), nonnegative edge weights c(e), and an 
integer C, is there a Hamiltonian cycle whose total cost is at most C?

Is there a tour of length at most 1570? Yes, red tour = 1565.
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Hamiltonian Cycle Reduces to TSP

HAM-CYCLE: given an undirected graph G = (V, E), does there exists 
a simple cycle C that contains every vertex in V.

TSP: Given a complete (undirected) graph G, integer edge weights
c(e) ≥ 0, and an integer C, is there a Hamiltonian cycle whose total 
cost is at most C?

Claim. HAM-CYCLE is NP-complete. 

Proof. (HAM-CYCLE transforms to TSP)

■ Given G = (V, E), we want to decide if it is Hamiltonian.

■ Create instance of TSP with G’ = complete graph.

■ Set c(e) = 1 if e ∈ E, and c(e) = 2 if e ∉ E, and choose C = |V|.

■ Γ Hamiltonian cycle in G   ⇔ Γ has cost exactly |V| in G’.
Γ not Hamiltonian in G      ⇔ Γ has cost at least |V| + 1 in G’.

a

dc

b

G

a

dc

b

G’

1

2
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TSP

TSP-OPT: Given a complete (undirected) graph G = (V, E) with integer 
edge weights c(e) ≥ 0, find a Hamiltonian cycle of minimum cost?

Claim. If P ≠ NP, there is no ρ-approximation for TSP for any ρ ≥ 1 .

Proof (by contradiction).

■ Suppose A is ρ-approximation algorithm for TSP.

■ We show how to solve instance G of HAM-CYCLE.

■ Create instance of TSP with G’ = complete graph.

■ Let C = |V|, c(e) = 1 if e ∈ E, and c(e) = ρ |V | + 1 if e ∉ E.

■ Γ Hamiltonian cycle in G   ⇔ Γ has cost exactly |V| in G’
Γ not Hamiltonian in G ⇔ Γ has cost more than ρ |V| in G’ 

■ Gap  ⇒ If G has Hamiltonian cycle, then A must return it.
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TSP Heuristic

APPROX-TSP(G, c)

■ Find a minimum spanning tree T for (G, c).

h
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b
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e

gf

MST
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Input
(assume Euclidean distances)

a
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TSP Heuristic

APPROX-TSP(G, c)

■ Find a minimum spanning tree T for (G, c).

■ W  ← ordered list of vertices in preorder walk of T.

■ H  ← cycle that visits the vertices in the order L.

h

c

b

a d

e

gf

Hamiltonian Cycle H

a b c h d e f g a

h

c

b

a d

e

g

Preorder Traversal Full Walk W

a b c b h b a d e f e g e d a 

f
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TSP Heuristic

APPROX-TSP(G, c)

■ Find a minimum spanning tree T for (G, c).

■ W  ← ordered list of vertices in preorder walk of T.

■ H  ← cycle that visits the vertices in the order L.

h

c

b

a d

e

gf

Hamiltonian Cycle H:  19.074

(assuming Euclidean distances)

h

c

b

a d

e

gf

An Optimal Tour:  14.715
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TSP With Triangle Inequality

∆-TSP: TSP where costs satisfy ∆-inequality:

■ For all u, v, and w:  c(u,w) ≤ c(u,v) + c(v,w).

Claim. ∆-TSP is NP-complete.
Proof. Transformation from HAM-CYCLE satisfies ∆-inequality.

Ex. Euclidean points in the plane.

■ Euclidean TSP is NP-hard, but not known to be in NP.

■ PTAS for Euclidean TSP.  (Arora 1996, Mitchell 1996)

u

v

w

(0,0)

(5, 9)(-10, 5)

K000.3741595510 222222 =+++++
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TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for ∆-TSP.
Proof. Let H* denote an optimal tour.  Need to show c(H) ≤ 2c(H*).

■ c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge 
from optimal tour.
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TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for ∆-TSP.
Proof. Let H* denote an optimal tour.  Need to show c(H) ≤ 2c(H*).

■ c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge 
from optimal tour.

■ c(W) = 2c(T) since every edge visited exactly twice.
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TSP With Triangle Inequality

Theorem. APPROX-TSP is a 2-approximation algorithm for ∆-TSP.
Proof. Let H* denote an optimal tour.  Need to show c(H) ≤ 2c(H*).

■ c(T) ≤ c(H*) since we obtain spanning tree by deleting any edge 
from optimal tour.

■ c(W) = 2c(T) since every edge visited exactly twice.

■ c(H) ≤ c(W) because of ∆-inequality.
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Walk W
a b c b h b a d e f e g e d a 
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Hamiltonian Cycle H
a b c h d e f g a
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TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.

CHRISTOFIDES(G, c)

■ Find a minimum spanning tree T for (G, c).

■ M   ← min cost perfect matching of odd degree nodes in T.

h

c

b

a d

e

gf

MST T

h

c

b

e
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Matching M
28

TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.

CHRISTOFIDES(G, c)

■ Find a minimum spanning tree T for (G, c).

■ M ← min cost perfect matching of odd degree nodes in T.

■ G’  ← union of spanning tree and matching edges.

h

c

b

a d

e

gf

G’ = MST + Matching

h

c

b

e

gf

Matching M
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TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.

CHRISTOFIDES(G, c)

■ Find a minimum spanning tree T for (G, c).

■ M ← min cost perfect matching of odd degree nodes in T.

■ G’  ← union of spanning tree and matching edges.

■ E   ← Eulerian tour in G’. 

h

c

b

a d

e

gf

E = Eulerian tour in G’

h

c

b

e

gf

Matching M
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TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.

CHRISTOFIDES(G, c)

■ Find a minimum spanning tree T for (G, c).

■ M   ← min cost perfect matching of odd degree nodes in T.

■ G’  ← union of spanning tree and matching edges.

■ E   ← Eulerian tour in G’. 

■ H   ← short-cut version of Eulerian tour in E.

h

c

b

a d

e

gf

E = Eulerian tour in G’

h

c

b

e

gf

Hamiltonian Cycle H

a d
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TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.
Proof. Let H* denote an optimal tour.  Need to show c(H) ≤ 1.5 c(H*).

■ c(T) ≤ c(H*) as before.

■ c(M) ≤ ½ c(Γ*)  ≤ ½ c(H*).
– second inequality follows from ∆-inequality
– even number of odd degree nodes
– Hamiltonian cycle on even # nodes comprised of two matchings
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Optimal Tour Γ* on Odd Nodes 
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TSP:  Christofides Algorithm

Theorem. There exists a 1.5-approximation algorithm for ∆-TSP.
Proof. Let H* denote an optimal tour.  Need to show c(H) ≤ 1.5 c(H*).

■ c(T) ≤ c(H*) as before.

■ c(M) ≤ ½ c(Γ*)  ≤ ½ c(H*).

■ Union of MST and and matching edges is Eulerian.
– every node has even degree

■ Can shortcut to produce H and c(H) ≤ c(M) + c(T).
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Load Balancing

Load balancing input.

■ m identical machines.

■ n jobs, job j has processing time pj.

Goal:  assign each job to a machine to minimize makespan.

■ If subset of jobs Si assigned to machine i, then i works for a total 
time of 

■ Minimize maximum Ti.

.∑
∈
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Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length pj ≥ 0, and 
an integer T, can the jobs be processed on 2 identical parallel 
machines so that they all finish by time T.

A D

F

B C

GE

Machine 2

Machine 1

Time T0

length of job F
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Machine 2

Machine 1A D F

B C E G

Yes.

Load Balancing on 2 Machines

2-LOAD-BALANCE: Given a set of jobs J of varying length pj ≥ 0, and 
an integer T, can the jobs be processed on 2 identical parallel 
machines so that they all finish by time T.

Time T0

A D

F

B C

GE

length of job F
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Load Balancing is NP-Hard

PARTITION: Given a set X of nonnegative integers, is there a subset S 
⊆ X such that

2-LOAD-BALANCE: Given a set of jobs J of varying length pj, and an 
integer T, can the jobs be processed on 2 identical parallel machines 
so that they all finish by time T.

Claim. PARTITION ≤ P 2-LOAD-BALANCE.
Proof. Let X be an instance of PARTITION.

■ For each integer x ∈ X, include a job j of length pj = x.

■ Set

Conclusion:  load balancing optimization problem is NP-hard.
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Greedy algorithm.

■ Consider jobs in some fixed order.

■ Assign job j to machine whose load is smallest so far.

■ Note:  this is an "on-line" algorithm.

FOR i = 1 to m
Ti ← 0, Si ← φ

FOR j = 1 to n
i = argmink Tk
Si ← Si ∪ {j}
Ti ← Ti + pj

LIST-SCHEDULING (m, n, p1, . . . , pn)

machine with smallest load

assign job j to machine i

Load Balancing
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Load Balancing

Theorem (Graham, 1966). Greedy algorithm is a 2-approximation.

■ First worst-case analysis of an approximation algorithm.

■ Need to compare resulting solution with optimal makespan T*.

Lemma 1. The optimal makespan is at least

■ The total processing time is Σ j p j .

■ One of m machines must do at least a 1/m fraction of total work.

Lemma 2. The optimal makespan is at least 

■ Some machine must process the most time-consuming job.

.max* jj pT ≥

.* 1 ∑≥ j jm pT
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Load Balancing

Lemma 1. The optimal makespan is at least
Lemma 2. The optimal makespan is at least 

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.

■ Let j be last job scheduled on machine i.

■ When job j assigned to machine i, i has smallest load. It’s load
before assignment is Ti  - pj    ⇒ Ti  - pj   ≤ Tk     for all 1 ≤ k ≤ m.

.* 1 ∑≥ j jm pT

Machine 3

Machine 2

Machine 1A

D

F

B

C

j = G

E IH

J

0
T = TiTi - pi 

.max* jj pT ≥

Machine i
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Load Balancing

Lemma 1. The optimal makespan is at least
Lemma 2. The optimal makespan is at least 

Theorem. Greedy algorithm is a 2-approximation.
Proof. Consider bottleneck machine i that works for T units of time.

■ Let j be last job scheduled on machine i.

■ When job j assigned to machine i, i has smallest load. It’s load
before assignment is Ti  - pj    ⇒ Ti  - pj   ≤ Tk     for all 1 ≤ k ≤ n.

■ Sum inequalities over all k and divide by m,
and then apply L1.

■ Finish off using L2.
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Load Balancing

Is our analysis tight?

■ Essentially yes.

■ We give instance where solution is almost factor of 2 from optimal.
– m machines, m(m-1) jobs with of length 1, 1 job of length m
– 10 machines, 90 jobs of length 1, 1 job of length 10

Machine 55 15 25 35 45 55 65 75 85
Machine 66 16 26 36 46 56 66 76 86
Machine 77 17 27 37 47 57 67 77 87
Machine 88 18 28 38 48 58 68 78 88

Machine 21 11 21 31 41 51 61 71 81
Machine 22 12 22 32 42 52 62 72 82
Machine 33 13 23 33 43 53 63 73 83
Machine 44 14 24 34 44 54 64 74 84

Machine 99 19 29 39 49 59 69 79 89
Machine 1010 20 30 40 50 60 70 80 90

91

List Schedule makespan = 19
42

Load Balancing

Is our analysis tight?

■ Essentially yes.

■ We give instance where solution is almost factor of 2 from optimal.
– m machines, m(m-1) jobs with of length 1, 1 job of length m
– 10 machines, 90 jobs of length 1, 1 job of length 10

Machine 55 15 25 35 45 55 65 75 85
Machine 66 16 26 36 46 56 66 76 86
Machine 77 17 27 37 47 57 67 77 87
Machine 88 18 28 38 48 58 68 78 88

Machine 11 11 21 31 41 51 61 71 81
Machine 22 12 22 32 42 52 62 72 82
Machine 33 13 23 33 43 53 63 73 83
Machine 44 14 24 34 44 54 64 74 84

Machine 99 19 29 39 49 59 69 79 89
Machine 1091

Optimal makespan = 10

50
60
70
80

10
20
30
40

90
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Load Balancing:  State of the Art

What’s known.

■ 2-approximation algorithm.

■ 3/2-approximation algorithm:  homework.

■ 4/3-approximation algorithm: extra credit.

■ PTAS.


