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Where we are and where we’re going

Before:

• Computing estimates on a sample.

Last class: Going from the sample to the population: How
confident are we about our estimates?

• Sampling Distribution

• Estimating the sampling distribution using bootstrapping.

• Confidence intervals using bootstrapping

Today:

• Getting guarantees about confidence intervals (with more
assumptions)
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Review: Sampling Distribution

• Suppose we’re interested in Biden’s approval rating (like
yesterday).

• We pick a sample of 100 people, ask them how they feel about
Biden, and compute the mean (this is our sample mean).

• What’s the sampling distribution?

• Suppose we repeat this sampling procedure 10000 times

• We pick a sample of 100, compute the sample mean for this,
and repeat.

• We now have this set of values, and we can analyze the
distribution.

• This is called the sampling distribution
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Pop Quiz!

Can we compute the sampling distribution in
practice?

No! It’s too time consuming and expensive to keep
picking samples from the population.
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Outline

1 The Central Limit Theorem

2 Using the CLT to compute Confidence intervals

3 p values

4 Statistical Significance



What do sampling distributions look like?

Population distribution

Distribution of sample mean



What do sampling distributions look like?

Population distribution Distribution of sample mean



What do sampling distributions look like?

Now, instead of having a population that has a 0 / 1 rating,
suppose we have people expressing their fraction of support for
Biden, and the population distribution looks like this:

Population distribution

Distribution of sample mean

What do you notice about these sampling distributions?
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What do sampling distributions look like?

• They all appear to have the same shape!

• This shape is called a Normal or a Gaussian distribution.

• You might have also seen it called a bell-curve (but that
covers other distributions as well).
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Normal distributions

Suppose we have a Normal distribution with mean µ and standard
deviation σ.
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Suppose we have a Normal distribution with mean µ and standard
deviation σ.

• It’s symmetric around the mean value



Normal distributions

Suppose we have a Normal distribution with mean µ and standard
deviation σ.

• The mean, median and mode of this distibution is µ



Normal distributions

Suppose we have a Normal distribution with mean µ and standard
deviation σ.

• This distribution occurs naturally pretty often: the height of
people is a Normal distribution within each gender.



An amazing theorem in Statistics

The sampling distribution of the sample means of n
independent, identically distributed random variables
from a population with mean µ and variance σ2

approaches a Normal distribution with mean µ and
standard deviation σ√

n
as the sample size gets larger

This is called the Central Limit Theorem.
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The sampling distribution of the sample means of n
independent, identically distributed random variables from a
population with mean µ and variance σ2 approaches a Normal
distribution with mean µ and standard deviation σ√

n
as the

sample size gets larger

This is defining how we sample: drawing an observation should
not affect any observations we draw after that.
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sample size gets larger

This says that all my observations come from the same
underlying population.



An amazing theorem in Statistics

The sampling distribution of the sample means of n
independent, identically distributed random variables from a
population with mean µ and variance σ2 approaches a
Normal distribution with mean µ and standard deviation σ√

n
as

the sample size gets larger

Notice that we have no other constraints on the population:
the distribution of the population can be anything!



An amazing theorem in Statistics

The sampling distribution of the sample means of n
independent, identically distributed random variables from a
population with mean µ and variance σ2 approaches a Normal
distribution with mean µ and standard deviation σ√

n
as the

sample size gets larger

The text is very important. Let’s see some examples.



Sample size is important for the Central limit Theorem

Suppose we’re drawing samples from a population that looks like
this, and we want to compute the mean.



Sample size = 10



Sample size = 20



Sample size = 30



Sample size = 40



Sample size = 50



Sample size = 100



What do you notice?

• As the sample size increases, the distribution becomes more
Normal.

• The spread of the sampling distribution reduces.
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Pop quiz

True or False: As we increase the sample size, the
distribution of the sample becomes Normal.

False. The sampling distribution of the sample
means approximates a Normal.
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Key Assumption

Our sample size is large enough so that the central
limit theorem holds, i.e, the sampling distribution is
close to being a Normal distribution.

We can compute percentiles of the assumed
distribution to get confidence bounds.
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Percentiles of a Normal Distribution

Image from Wikipedia: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:
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Percentiles of a Normal Distribution

For a Normal distribution with mean µ and variance σ,

Pr(X ≥ µ− σ and X < µ+ σ) = 0.682

Image from Wikipedia: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:
Standard_deviation_diagram_micro.svg
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Percentiles of a Normal Distribution

For a Normal distribution with mean µ and variance σ,

Pr(X ≥ µ− 2σ and X < µ+ 2σ) = 0.9558

Image from Wikipedia: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:
Standard_deviation_diagram_micro.svg

https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Standard_deviation_diagram_micro.svg
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Percentiles of a Normal Distribution

For a Normal distribution with mean µ and variance σ,

Pr(X ≥ µ− 3σ and X < µ+ 3σ) > 0.99

Image from Wikipedia: https://en.wikipedia.org/wiki/Normal_distribution#/media/File:
Standard_deviation_diagram_micro.svg

https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Standard_deviation_diagram_micro.svg
https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Standard_deviation_diagram_micro.svg


Computing confidence intervals assuming Normality

• Suppose we knew the variance σ2 of the population.

• Now, given a sample, we want to ask what the probability of
this sample mean X lying far away from the mean of the
sampling distribution µ is.

• Let’s say that we want to compute 95% confidence intervals.
Thus, we want to compute the 2.5 and 97.5 percentiles for a
Normal distribution with mean µ and standard deviation σ√

n
.

(We’ll show you how to do this for different percentile values
tomorrow in precept)

• The 2.5 percentile for this distribution is µ− 1.96 σ√
n
.

• The 97.5 percentile for this distribution is µ+ 1.96 σ√
n
.

• Thus, 95% of the sampling distribution lies between
[µ− 1.96 σ√

n
, µ+ 1.96 σ√

n
].
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Computing confidence intervals assuming Normality
• Thus, 95% of the sampling distribution lies between
[µ− 1.96 σ√

n
, µ+ 1.96 σ√

n
].

• We can write this out mathematically:

Pr(X ≥ µ− 1.96
σ√
n
and X ≤ µ+ 1.96

σ√
n
) = 0.95

with X representing the sample mean.

• Let’s rearrange this statement:

Pr(X + 1.96
σ√
n
≥ µ and X − 1.96

σ√
n
≤ µ) = 0.95

• Or,
Pr(X − 1.96

σ√
n
≤ µ ≤ X + 1.96

σ√
n
) = 0.95

Problem: We actually don’t know σ (the standard deviation of the
population).
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Computing confidence intervals assuming Normality

Pr(X − 1.96
σ√
n
≤ µ ≤ X + 1.96

σ√
n
) = 0.95

• σ is the population standard deviation.

• We can approximate σ using the sample standard deviation
instead.

• What is the formula for the sample variance?

σ̂2 =
1

n − 1

∑
i

(Xi − X )2

• Thus, we get a 95% confidence interval of :

[X − 1.96
σ̂√
n
,X + 1.96

σ̂√
n
]
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What does this look like in practice?

Let’s say we’re calculating Biden’s popularity rating using a sample
of size 100.

Within the sample, we find that the mean is 0.38 and the sample
standard deviation is 0.4878.
Let’s say we want to estimate 95% confidence intervals. How
would we do that?

• Let’s assume that the sample size is large enough for the
sampling distribution to approximate a Normal.

• What’s the standard deviation of the sampling distribution?
We don’t know. But we can estimate it using σ̂√

100
= 0.04878.

• Thus, we can estimate 95% confidence intervals as
[0.38−1.96×0.04878, 0.38+1.96×0.04878] = [0.2844, 0.4756].
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would we do that?

• Let’s assume that the sample size is large enough for the
sampling distribution to approximate a Normal.

• What’s the standard deviation of the sampling distribution?

We don’t know. But we can estimate it using σ̂√
100

= 0.04878.

• Thus, we can estimate 95% confidence intervals as
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Frequentist interpretation of this confidence interval

If we were to repeat this sampling many many times, the mean
would lie within the confidence interval 95% of the time.
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Another way to think about uncertainity

• Suppose Biden’s true approval rating was 10%

• And our sample was actually drawn from that distribution.

• What is the probability that we see sample values as extreme
as we do?

This probability is called the p-value.



Another way to think about uncertainity

• Suppose Biden’s true approval rating was 10%

• And our sample was actually drawn from that distribution.

• What is the probability that we see sample values as extreme
as we do?

This probability is called the p-value.



Another way to think about uncertainity

• Suppose Biden’s true approval rating was 10%

• And our sample was actually drawn from that distribution.

• What is the probability that we see sample values as extreme
as we do?

This probability is called the p-value.



Another way to think about uncertainity

• Suppose Biden’s true approval rating was 10%

• And our sample was actually drawn from that distribution.

• What is the probability that we see sample values as extreme
as we do?

This probability is called the p-value.



Another way to think about uncertainity

• Suppose Biden’s true approval rating was 10%

• And our sample was actually drawn from that distribution.

• What is the probability that we see sample values as extreme
as we do?

This probability is called the p-value.



Another example

• Suppose we want to measure Biden’s approval rating among
Democrats and Republicans (to see if there is a difference)

• We can pick a sample, and calculate the approval rating
among Democrats and the approval rating among
Republicans.

• Suppose the distribution of the ratings among Democrats and
Republicans was exactly the same. The p-value measures the
probability that we see a sample as extreme as our current
sample assuming that the distribution of the ratings is exactly
the same.

• Using our conditional probability notation:

p-value = Pr(Sample is this extreme | population distribution of

Democrats and Republicans are the same)
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Statistical significance

• Very often, in research articles, you’ll see the term
statistically significant (P < 0.05).

• By that, what they mean is the probability of their sample
being drawn from the different hypothetical population is
lower than 0.05.

• Or a claim that these results are statistically significant
because the confidence intervals exclude 0. (for example, if we
want to measure the difference in approval ratings for Biden
among Democrats and Republicans.)

• Much like picking 95% confidence intervals, the threshold for
significance is arbitrary. Why P < 0.05 or P < 0.01? Why not
P < 0.04?

• Notion of a simple yes-or-no answer for statistical significance
doesn’t really make sense : design choices like the size of the
sample, how the data is collected, how the analysis is done is
often a lot more important.
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• In reality, things that are statistically significant might not be
significant.
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Statistical significance versus significance

• Suppose a drug is measured to lower blood pressure of
participatants by 0.1, with P = 0.01.

• This means that if our data was drawn from a population
where the effect of this drug is negligible, the probability of
getting our measurements as extreme as ours is 0.01.

• Is this statistically significant?

Yes – the p value is very small.

• Is this actually significant? Probably not!
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Statistical significance versus significance

• Researchers measured the effect of quiet time between 1 and
3 pm at a post-partum ward.

• They found that this increased the women’s exclusive
breastfeeding rates by 14%.

• The P-value here was 0.39. Is this statistically significant?

No.

• But, this is a low-cost, easy to implement solution that
benefited some mothers.

• And thus, might still be useful to implement (Polit and Beck
(2012))
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Where we are and where we’re going

Before:

• Computing estimates on a sample.

This week: Going from the sample to the population: How
confident are we about our estimates?

• Sampling Distribution

• Estimating the sampling distribution using bootstrapping.

• Confidence intervals using bootstrapping

• Central limit theorem

• Getting guarantees about confidence intervals (with more
assumptions)

Next week:

• Causality
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