
Streaming QSplat: A Viewer for Networked
Visualization of Large, Dense Models

Szymon Rusinkiewicz
Marc Levoy

Stanford University y

Abstract

Steady growth in the speeds of network links and graphics acceler-
ator cards has brought increasing interest in streaming transmission
of three-dimensional data sets. We demonstrate how streaming visu-
alization can be made practical for data sets containing hundreds of
millions of samples. Our system is based on QSplat, a multiresolution
rendering system for dense polygon meshes that employs a bounding
sphere hierarchy data structure and splat rendering. We show how to
incorporate view-dependent progressive transmission into QSplat, by
having the client request visible portions of the model in order from
coarse to fine resolution. In addition, we investigate interaction tech-
niques for improving the effectiveness of streaming data visualization.
In particular, we explore color-coding streamed data by resolution,
examine the order in which data should be transmitted in order to
minimize visual distraction, and propose tools for giving the user fine
control over download order.

Categories and Subject Descriptors: I.3.2 [Computer Graphics]:
Graphics Systems – Distributed / Network Graphics; I.3.3 [Com-
puter Graphics]: Picture/Image Generation – Viewing Algorithms;
I.3.6 [Computer Graphics]: Methodology and Techniques – Inter-
action techniques.

Keywords: Rendering systems, Level of detail algorithms, Streaming,
Progressive transmission.

1 Introduction

In the past, interactive 3D content has not had a large presence on
the World Wide Web. Despite the availability of standards such as
VRML, 3D models have been constrained to specialized niches be-
cause of long download times and poor interactive performance. To-
day, however, the availability of low-cost, high-performance graphics
cards and the introduction of high-speed residential Internet connec-

yStanford Computer Graphics Lab
Gates Building 3B
Stanford University
Stanford, CA 94305
{smr,levoy}@graphics.stanford.edu

tivity are making it practical to include 3D models as important com-
ponents of web sites.

Given the presently available network bandwidths, however, it
would not be feasible to use large 3D models if those models had
to be downloaded entirely before they could be viewed. The size of
currently attainable models, however, is increasing rapidly because of
the availability of devices and algorithms for scanning large objects at
high resolution; meshes of several hundred million polygons can now
be produced [Levoy 00]. For models of this size, the only practical
way of allowing remote download and visualization is to stream the
data as it is needed, and to permit the viewer to look at and interact
with partially-downloaded models.

The currently dominant strategy for streaming large polygon
meshes is to simplify them and transmit them progressively. How-
ever, most of these algorithms are impractical for models larger than
a few million polygons. QSplat is a system for representing and
rendering large meshes that takes advantage of the fact that connec-
tivity information may be dropped for large, densely and regularly
sampled meshes, and points can be used as the rendering primitive
[Rusinkiewicz 00]. QSplat combines this splat-based renderer with a
multiresolution representation based on a bounding sphere hierarchy
to allow large 3D models to be displayed at interactive rates.

In this paper we introduce a streaming version of QSplat, allowing
large models to be progressively streamed across a network of limited
bandwidth. The system retains the advantages of QSplat, such as low
preprocessing costs and high rendering performance, but adds view-
dependent network streaming of geometry. The extension to stream-
ing is based on the fact that we can terminate the recursion of our data
structure at any time during rendering if we find that portions of the
hierarchy are not yet present on the client; a low-resolution model is
rendered, and the missing nodes are requested from the server. Thus,
portions of the model are downloaded as the user looks at them.

Though progressive transmission of 3D data has been explored be-
fore, most of the effort has focused on either high-speed streaming
from a local disk or low-speed streaming across a slow connection. In
the former case, the available bandwidth is often adequate to mask the
presence of streaming, and research has concentrated on techniques
such as prefetching that attempt to hide the fact that data is being
read progressively at all. With low-speed links, attention has mostly
focused on achieving good approximations to the final model while
transmitting as little data as possible, regardless of the required CPU
time.

In contrast to the high- and low-bandwidth extremes, compara-
tively little effort has been devoted to the user interaction issues that
become relevant at intermediate speeds (e.g. a few hundred kbps,
which is becoming an increasingly common rate for residential In-
ternet connectivity). These speeds are high enough that it is often
not worthwhile to implement expensive compression and optimiza-
tion techniques, but are sufficiently low that there is little hope of
concealing the presence of streaming for large models. Thus, we ac-



cept that the streaming process will be visible to the user, and focus
on designing a user interface that lets the user know how much data is
present, minimizes the visual distraction due to streaming, and gives
the user fine control over the streaming process.

We first examine some previous systems that have been used for 3D
streaming and large data visualization. Next, we review the basics of
the QSplat data structure and rendering algorithm, and describe the
extensions that must be made to support 3D streaming. In Section 4,
we discuss interaction issues that influence the design of the streaming
QSplat user interface, focusing on how to aid the user in interpret-
ing the data and understanding and controlling the streaming process.
Finally, we present future work that could be done to broaden the
applicability of streaming QSplat.

2 Previous Work

Several schemes have been proposed for transmitting 3D data across
a network. The simplest ones rely on transmitting a full polygo-
nal model (either directly [VRML 97] or in a compressed format
[Taubin 98]), and therefore require the entire model to be transmitted
before the user can look at it.

More sophisticated systems transmit low-resolution data first, so
the user can begin to interact with the model, then progressively
stream higher-resolution data, time permitting [Gueziec 99]. The
progressive mesh framework [Hoppe 96] represents a mesh as a sim-
ple “base mesh” plus a series of refinements to the mesh based on a
vertex split primitive. Progressive meshes, therefore, are well-suited
to streaming [Prince 00], especially with the addition of compression
[Pajarola 00].

Corrections to a base mesh may also be encoded using wavelets, as
was first proposed in multiresolution analysis [Eck 95]. The model
may then be transmitted by sending the base mesh and streaming the
wavelet coefficients in order of magnitude [Khodakovsky 00]. One
advantage of this approach, explored by Certain et. al., is that color
and geometry wavelets may be streamed independently [Certain 96].

Commercial systems incorporating some of these algorithms are
beginning to appear. MetaStream’s MTS products, for example,
represent geometry as a base mesh together with a series of ver-
tex split operations [Abadjev 99], similar in spirit to progressive
meshes. Other products are available that stream polygonal models
(e.g. [RealityWave]) or voxelized volumetric data (e.g. [Octree]).

Many systems for architectural walkthrough and terrain flythrough
are designed to work with scenes larger than the available memory
[Funkhouser 92, Funkhouser 96, Aliaga 99]. In order to achieve high-
quality renderings, they explicitly manage the way data is transferred
between memory and disk. These systems typically employ the notion
of a potentially-visible set (PVS) of data, comprising both currently-
visible data and data that may come into view in the near future,
given some assumptions about where the user is likely to move and
look next. These systems then perform prefetching to ensure that off-
screen data is loaded into memory before the user looks at it. Network
streaming of potentially-visible sets for such applications has been ex-
plored by Cohen-Or and Zadicario [Cohen-Or 98].

Compared with most of the above systems (both research and com-
mercial), our streaming QSplat implementation has higher rendering
performance (both because it uses simpler rendering primitives and
because it does not require CPU time to be devoted to decompres-
sion), requires less preprocessing time, and uses a standard HTTP
server rather than a custom streaming server. As we discuss in Sec-
tion 3.6, this makes QSplat well-suited for streaming large models
across networks of moderate bandwidths. Our system, however, is not
as bandwidth-efficient as some systems that incorporate more sophis-
ticated geometric compression. In addition, since it uses splats as the

rendering primitive, it will have lower visual quality than polygon-
based systems for certain kinds of scenes.

3 Streaming QSplat

Our system for network streaming of large 3D meshes is based on
QSplat, a multiresolution point rendering system. We first review the
QSplat data structure and rendering algorithm, then describe the ad-
ditions needed to support view-dependent transmission. We also con-
sider the advantages and disadvantages of basing a streaming system
on QSplat.

3.1 Data Structure and Rendering Algorithm
QSplat uses a hierarchical bounding sphere data structure for visibility
culling, level-of-detail control, and rendering. Each node in this tree
contains:

� The sphere’s position and radius, quantized relative to the posi-
tion and radius of the node’s parent.

� A per-vertex normal, used for lighting calculations.

� The width of a normal cone, used together with the normal for
hierarchical backface culling.

� Optionally, a per-vertex color.

Each node is 4 bytes without color, 6 bytes with per-vertex color. The
layout of each node is shown in Figure 1.

Width of
Normal ConeNormalPosition and radius Optional Color

13 bits 14 bits 2 bits 16 bits3 bits

Structure
Tree

Figure 1: QSplat node layout.

The hierarchy is constructed as a preprocess from an input polygo-
nal mesh, with each leaf node of the tree corresponding to a vertex of
the original mesh. The connectivity of the original mesh is discarded,
but in order to guarantee hole-free renderings we are careful to make
each leaf sphere large enough to touch its neighbors.

During rendering, we recursively traverse the hierarchy in depth-
first order. At each non-leaf node, we first determine whether the
sphere is entirely off-screen (by projecting the sphere onto the view-
ing plane) or backfacing (by testing whether a cone defined by the
per-vertex normal and cone width faces away from the viewer). If so,
we can ignore the sphere and its children, thus performing visibility
culling. If the subtree is at least partially visible, we compare the pro-
jected screen size of the sphere to a cutoff value. If the sphere is larger
than our threshold, we recurse. If the sphere is smaller than the thresh-
old, or if we reach a leaf node, we draw a splat on the screen with posi-
tion and size determined by the location and radius of the sphere. The
recursion cutoff is adjusted in a feedback loop (based on the time to
render the previous frame) in order to maintain a user-selected frame
rate. Once the user stops moving the mouse, we redraw the model
with progressively smaller thresholds, until we either descend to the
leaves of the tree or reach a splat size of one pixel.

QSplat directly uses the compressed representation during render-
ing, thus requiring no extra time or memory for decompression. In
addition, this means that the on-disk and in-memory representations
of a model are identical, so we can memory map the file from disk.
This places the burden of working set management on the operating
system, which simplifies the implementation. Because we do not have
explicit control over when data is loaded, however, QSplat may expe-
rience glitches in the frame rate when new sections of the model are



a) Appearance
of the model
immediately
after the start
of streaming.

c) 10 seconds
after (a).

b) 1 second
after (a).

d) 60 seconds
after (a).

Figure 2: View-dependent streaming data transmission of a 130 million sample model over a network limited to 384 kbps. See also Figure 4 (color plate).

seen for the first time. These glitches, moreover, become more pro-
nounced when the model is being loaded not from a local disk but
over a networked filesystem. Though the performance is acceptable
given a local server and a fast network, performance becomes much
worse as network bandwidth drops and latency increases. Thus, as
we will see later, a network streaming implementation of QSplat must
take control of its data management, and make explicit requests for
the data it needs. Though the changes required to support this data
management prove modest, the result is a system that effectively al-
lows remote visualization of large data sets, and is flexible enough to
permit an exploration of some of the user-interface issues surrounding
streaming 3D data visualization.

3.2 Network Streaming
The key to network streaming of QSplat models is the observation
that during rendering we can terminate recursive decent of our hi-
erarchical representation at any time. In place of missing geometry,
QSplat displays a splat corresponding to the parent node in the hi-
erarchy. In the system of [Rusinkiewicz 00], recursion is terminated
under two conditions: if the children of a given node are smaller than
a threshold, or if we reach a leaf node. To accommodate streaming, we
need to add one additional condition: we stop recursion if the chil-
dren of a given node have not yet been transmitted from the server
to the client. Thus, with low run-time cost we transparently accom-
modate the presence or absence on the client of various portions of
the hierarchy, including the possibility of having different resolutions
of data present throughout the model. Note that we still perform the

usual feedback-driven frame rate control when the user is dragging the
mouse, so although the frame rate may be higher than the user setting
if not enough data is present, it will not drop lower than requested.
Figure 2 illustrates the results of streaming transmission.

To allow for network streaming, therefore, we need three compo-
nents:

� A bitmask indicating which regions of the model are present on
the client.

� A prioritized request queue containing a set of regions of the
model that the client would like to receive, given the current
camera position.

� A separate thread on the client that makes requests to a server, lis-
tens for responses, and updates the tree data structure and avail-
ability mask as data is received.

Given these, the rendering algorithm is shown in Figure 3.

3.3 Availability Mask
In order to perform rendering correctly, we must have a data structure
that maintains information about which portions of the model have
been received from the server. For maximum flexibility, we would like
to have the mask as fine-grained as possible – ideally, we would store
availability information at the granularity of a single node of the tree –
so that we can download precisely the areas of the model in which
we are interested. For efficiency of download and to minimize the
memory spent on the mask, however, we must use a larger granularity.



TraverseHierarchy(node)
{

if (node not visible)
skip this branch of the tree

else if (node is a leaf node)
draw a splat

else if (benefit of recursing further is too low)
draw a splat

else if (any child is not present)
draw a splat
RequestQueue.insert(children(node), priority)

else
for each child in children(node)

TraverseHierarchy(child)
}

DrawFrame(model)
{

RequestQueue.clear
TraverseHierarchy(model.root)
if (not RequestQueue.empty)

n (estimated net bandwidth) / (frame rate)
for i 1 .. n

SendRequest(RequestQueue.top)
RequestQueue.pop()

}

Figure 3: Streaming QSplat algorithm for rendering and progressive download.

In our system, we represent availability at the granularity of fixed-size
(typically 1 kilobyte) blocks. In addition, to simplify the bookkeeping,
we increase the storage per chunk to two bits, so that we can represent
four states for each block: not present, desired (i.e., present in the
request queue), requested from the server, and present.

3.4 Request Queue
As we traverse the hierarchy during rendering and encounter chunks
that are not present on the client, we push requests for these blocks
onto a priority queue (implemented as a max-heap). As we will see in
Section 4.2, the priority for a node is determined from the projected
screen size and position of that node’s parent (which triggered the re-
quest for the node). The priority of a chunk is the highest priority of
all nodes within that chunk.

The request queue is cleared before every rendered frame. This
ensures that:

� The request queue never gets too large, since its size will be pro-
portional to the number of rendered nodes, rather than the total
number of nodes in the model.

� A chunk that moves out of the field of view will be dropped from
the request queue, preventing the system from wasting time on
downloading sections of the model that are no longer relevant
to the user’s viewpoint.

If the request queue is ever empty after rendering a frame, meaning
that all currently-visible data was already present on the client, we
first download data in the vicinity of the viewpoint, then revert to
downloading any remaining parts of the model in order from the root
of the tree to the leaves.

3.5 Network Communication
The streaming QSplat client uses a separate thread to make requests
from the server and listen for responses. The number of requests to
make per frame is based on an estimate of the network bandwidth,

so that there are never too many outstanding requests. The data re-
quested from the server consists of ranges of the original file; thus, the
server need not have any special knowledge of the QSplat file format.
In our implementation of the streaming QSplat client we have chosen
to use the HTTP/1.1 protocol (including the byte-range and persis-
tent connection features [Fielding 97]) to issue requests, so we may
stream models from any standard web server (e.g. Apache); a separate
streaming server is not required.

3.6 Discussion
Let us now examine some of the advantages and disadvantages in-
volved in using QSplat, as compared to traditional polygonal repre-
sentations, as the basis of a network streaming system.

Suitability of QSplat for Network Streaming: Streaming QSplat
retains most of the advantages and disadvantages of QSplat in its suit-
ability for representing various classes of geometric models. In partic-
ular, streaming QSplat will work best for large, dense models contain-
ing relatively regular, uniformly-spaced data points (e.g. as produced
by VRIP [Curless 96] and marching cubes [Cline 88]) and high geo-
metric detail at fine scales. In contrast, a QSplat representation of a
model with large flat regions, subtle curves, or sharp corners will not
look as good as a polygonal or spline model of equal size. Moreover, a
low-resolution version of any model, when rendered with splats, will
contain visible artifacts of the splat shape.

A second property of QSplat that becomes useful for streaming
is the fact that parts of a model may be transmitted in any order,
subject only to the constraint that parent nodes must be transmitted
before children. This makes it easy to incorporate various strategies
for choosing the order in which parts of the model are transmitted.
By contrast, some geometric compression techniques require that the
model be transmitted in a particular order, since they represent vertex
positions and connectivity by encoding deltas along a particular path
through the vertices of the model.

Compressed Data Size: One difference between QSplat and most
other geometric compression techniques is that QSplat uses the same
data representation on disk and in memory, thus not requiring ex-
tra time or space for decompression. In designing streaming QS-
plat, we have chosen to use this same data representation for network
transmission as well. By eliminating the need to encode and decode
a compressed format, we simplify the requirements for the network
server, and we minimize run-time overhead in the client when using
moderate- or high-speed links.

The tradeoff is that QSplat may not be as bandwidth-efficient as al-
gorithms that incorporate more sophisticated geometric compression.
As an example, QSplat requires per-vertex normals to be stored and
transmitted explicitly. Although QSplat’s representation of normals
is reasonably efficient (14 bits per node), normals could instead be
computed by the client from transmitted polygon geometry, thereby
saving network bandwidth. (QSplat could not use this approach, since
it does not use polygons.)

4 Interaction Techniques for 3D Streaming

As mentioned earlier, we have chosen to focus on the user interaction
techniques that become relevant to streaming at moderate network
bandwidths (e.g. a few hundred kbps), rather than on the low- or high-
bandwidth extremes. Our motivation for this is the observation that,
after remaining static for many years, typical network speeds appear to
be rising, especially in residential settings. These speeds, however, are
still not sufficiently high that streaming becomes invisible. Therefore,
since the user will be able to observe the streaming, we explore color
coding to communicate the relative resolution of data present at vari-
ous points. In addition, we investigate several options for the order in



which to stream data, including a user-controlled “magnifying glass”
tool that directly controls download order. Finally, we examine the
role of prefetching at these speeds.

4.1 Color-coding by Resolution
In a view-dependent streaming system such as ours, the model may,
because of previous camera movements, have different sections avail-
able at different resolutions. Similar situations arise in other multires-
olution rendering systems, such as the hierarchical splatting of Laur
and Hanrahan [Laur 91]. When looking at such models, it is pos-
sible to mistake low-resolution splats for plausible object geometry.
Thus, users need visual cues that allow them to distinguish a transi-
tion between areas of different resolutions from an actual feature of
the object. To accomplish this, streaming QSplat provides an optional
user-selected color coding of the downloaded data, so that areas of
different resolutions appear in different colors. This provides visual
feedback for the user about the resolution at which various areas of
the model are being rendered, and which areas are still being down-
loaded. The color coding is used in the figures in the color plate.

4.2 Streaming Order
When the camera is positioned to look at some portion of the model
that has not been seen before, we must choose the order in which to
stream the nodes within the view frustum. This reduces to defining a
priority function for a given node, since the position of nodes within
the request queue determines the order in which they will be down-
loaded. There are several possibilities for this ordering:

1. We may base the priority function on the level of a node within
the bounding sphere hierarchy. This will have the effect of
downloading (a portion of ) the tree in order from root to leaves,
such that all nodes at any given level of the tree will be down-
loaded before we start on the next level within the tree. This has
the benefit of being simple to compute, but has the drawback
that it may assign the same weight to differently-sized pieces of
the model. As a result, nodes downloaded at the same time may
have different sizes.

2. We may prioritize nodes by size (i.e. sphere radius) in object
space. This is also simple to compute, but has a drawback
similar to option 1 because it may assign the same weight to
equally-sized pieces of the model regardless of their distance to
the viewer. Thus, far-away nodes occupying a relatively small
area on the screen may be assigned the same priority as close-by
nodes that appear larger on the screen.

3. To remedy the above problem, we may assign priorities based
on a node’s projected screen size. With this priority function,
nodes that appear the same size for a given camera position will
be downloaded at roughly the same time. This exposes a second
problem, however: the (x, y ) screen location at which data is be-
ing streamed will be constantly varying in a seemingly-random
fashion. This proves to be somewhat distracting for the user,
since data appears to be changing at unpredictable locations on
the screen.

4. A potential fix for the above problem is to stream based on the
screen-space y coordinate. This refines the model in a single pass
from the top of the screen to the bottom, which appears more
ordered and thus less objectionable for the user. This approach,
however, has the drawback that the single pass over the screen
is slow, since the user must wait for full-resolution data to be
downloaded at each y location.

5. The advantages of approaches 3 and 4 can be combined by pri-
oritizing the nodes such that we perform a number of top-to-

bottom sweeps over the data. Each of these passes has its own
screen-space cutoff for node size, and we download only the
nodes larger than this cutoff. A similar strategy has been used
for progressive download of images, e.g. progressive GIFs. A
priority function that implements this behavior is

Priority (n) = dlogkSplatsize (n.radius)e � 1000 +
Project (n.center).y

This bases the priority on a (logarithmically) quantized version
of the node’s screen size, with a secondary ordering based on
the screen y coordinate. The base of the logarithm, k, deter-
mines how much data is downloaded per pass. We have exper-
imentally determined that using k =

p
2 produces acceptable

results, roughly doubling the number of downloaded nodes on
each pass.

We have chosen to use the algorithm described in option 5 in our
implementation. The effect of using this priority function is demon-
strated in Figure 5 (color plate) and in the accompanying video. We
believe that it offers a good compromise of downloading the most rel-
evant data as soon as possible while minimizing visual distraction.

4.3 Magnifying Glass
For certain model inspection tasks it is desirable to have finer-grained
control over download order than the above algorithm provides. For
example, in a large, complex model there may be a feature of inter-
est that a user wishes to examine at the highest possible level of de-
tail. Given only the above algorithm, the only way to accomplish
this quickly (i.e., without waiting for the entire screen to be refined
to the desired resolution) would be to zoom in on the given feature.
Sometimes, however, it is desirable to see the feature of interest in the
context of the surrounding geometry, for which lower resolutions are
often sufficient. Under such circumstances, we can introduce tools
that allow the user to boost the priority of certain points on the model
or regions of the screen. As an example, we have implemented a “mag-
nifying glass” tool that temporarily increases the priority of a region
of the screen (the magnifying glass metaphor in user interfaces has
been explored before, e.g. in the work on “Magic Lenses” by Bier
et. al. [Bier 93]). The magnifying glass may be dragged around to
permit the user to focus on any locations on the screen. The effect
is illustrated in Figure 6 (color plate). Note that color coding is es-
pecially useful in this case to illustrate what sections of the model are
present at what resolution.

4.4 Prefetching
Architectural walkthrough and terrain rendering systems often use
prefetching to improve the quality of renderings and to avoid laten-
cies in the availability of high-resolution data when the user moves to
new parts of the model. We have implemented a prefetching algo-
rithm for streaming QSplat that places nodes slightly outside the view
frustum onto the request queue with a low priority. After some exper-
imentation, however, we have found that using prefetching does not
improve the quality of interaction with QSplat to the extent it does
with architectural walkthrough and terrain rendering systems. The
chief causes of this are:

� In contrast with walkthrough systems, QSplat is best suited to
visualizing objects, not environments. Because of this, and be-
cause of the trackball interface used by QSplat (as compared to
a “flythrough” interface), the camera movements during inter-
action with QSplat tend to be less predictable than in walk-
through systems. This results in larger potentially-visible sets,
so resources devoted to prefetching are spread out over a larger
area of the model.



� Systems in which prefetch is most effective stream data from
disk, which can be done at a sufficiently high rate that they
successfully create the illusion that high-resolution data is al-
ways available. In contrast, we assume a network link with sig-
nificantly lower bandwidth. Coupled with the fact that QS-
plat draws more primitives per frame than most comparable
polygon-based systems, we can not hope to maintain the illu-
sion that highest-resolution data is always available.

� It is difficult to determine an acceptable value for the relative
priority to be assigned to on-screen and off-screen data. If not
enough weight is given to on-screen data, the refinement rate
of the visible portion of the model slows down to an undesirable
degree. If the off-screen data is not weighted enough, there is lit-
tle visible difference compared to not performing any prefetch-
ing. This is because the off-screen data is downloaded at a slow
rate compared to the speed at which it will be downloaded as
soon as it comes into view.

Because of the above factors, it is difficult to find circumstances un-
der which it is clearly useful to perform prefetching in QSplat. In fact,
after some experimentation we have decided to abandon prefetching
entirely, and only fetch off-screen data once the entire viewport is fully
refined (i.e., to a node size of one pixel), at which point the system is
idle and might as well spend its time prefetching.

5 Conclusions and Future Work

We have demonstrated a system for view-dependent network stream-
ing and interactive display of large, complex 3D models. The im-
plementation works with a standard web server, incurs low run-time
overhead on the client, and takes advantage of the low preprocessing
costs, compact storage, and real-time rendering capabilities of QSplat.

As mentioned earlier, the per-node storage requirements of QSplat
are higher than those achievable by some other geometric compression
algorithms, largely because QSplat must store per-vertex normals. Al-
though it would not be practical to eliminate QSplat’s per-vertex nor-
mals completely, their storage cost could be considerably reduced in
cases in which low per-primitive cost is critical (e.g. low-speed modem
links). By combining incremental encoding of normals (i.e., encod-
ing the normal of each node as a displacement relative to the normal
of its parent node) with an entropy coding technique (e.g. Huffman
coding [Huffman 52]), we could reduce the storage requirements for
a normal from the present 14 bits to perhaps 3-5 bits per node. In ad-
dition, using Huffman coding for vertex position, sphere radius, and
color could further reduce the per-node storage requirements of QS-
plat, to be competitive with state-of-the-art polygonal compression
techniques. Adding this extra compression, however, would require
devoting CPU time to decompressing the network-streamed data be-
fore it could be rendered, thus decreasing rendering performance (es-
pecially on a single-CPU machine) and increasing the latency with
which newly-downloaded blocks could be used in rendering.

A second improvement would be to eliminate the need for tempo-
rary storage on the client. Because the present implementation is based
closely on QSplat, the client requires a local temporary file equal in size
to the size of the model. This file is memory mapped, and blocks are
written to the file as they are received. For widest applicability, such
as a web browser plugin, the client machine should not be required
to have this much free disk space (which for a model of hundreds
of millions of samples may approach a gigabyte). The temporary file
could be eliminated by adding an additional level of indirection to the
mapping from the logical position of a section of a model to physical
location in memory. This extra pointer would also permit sections of
the model to be discarded in an LRU fashion, to limit total memory

usage. For certain systems, the virual memory system can provide the
same capabilities.

References
[Abadjev 99] Abadjev, V., del Rosario, M., Lebedev, A., Migdal, A., and

Paskhaver, V. “MetaStream,” Proc. VRML, 1999.

[Aliaga 99] Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erik-
son, C., Hoff, K., Hudson, T., Stuerzlinger, W., Bastos, R., Whitton, M.,
Brooks, F., and Manocha, D. “MMR: An Interactive Massive Model Ren-
dering System Using Geometric and Image-Based Acceleration,” Proc. Sym-
posium on Interactive 3D Graphics, 1999.

[Bier 93] Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. “Toolglass
and Magic Lenses: The See-Through Interface,” Proc. SIGGRAPH, 1993.

[Certain 96] Certain, A., Popović, J, DeRose, T., Duchamp, T., Salesin, D.,
and Stuetzle, W. “Interactive Multiresolution Surface Viewing,” Proc. SIG-
GRAPH, 1996.

[Cline 88] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and
Teeter, B. C. “Two Algorithms for the Three-Dimensional Reconstruction
of Tomograms,” Medical Physics, Vol. 15, No. 3, 1988.

[Cohen-Or 98] Cohen-Or, D. and Zadicario, E. “Visibility Streaming for
Network-based Walkthroughs,” Proc. Graphics Interface, 1998.

[Curless 96] Curless, B. and Levoy, M. “A Volumetric Method for Building
Complex Models from Range Images,” Proc. SIGGRAPH, 1996.

[Eck 95] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M.,
and Stuetzle, W. “Multiresolution Analysis of Arbitrary Meshes,” Proc. SIG-
GRAPH, 1995.

[Fielding 97] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Berners-Lee, T.
“Hypertext Transfer Protocol – HTTP/1.1,” RFC 2068, UC Irvine, DEC,
MIT/LCS, 1997.

[Funkhouser 92] Funkhouser, T., Séquin, C., and Teller, S. “Management
of Large Amounts of Data in Interactive Building Walkthroughs,” Proc.
Symposium on Interactive 3D Graphics, 1992.

[Funkhouser 96] Funkhouser, T. “Database Management for Interactive Dis-
play of Large Architectural Models,” Proc. Graphics Interface, 1996.

[Gueziec 99] Gueziec, A., Taubin, G., Horn, B., and Lazarus, F. “A Frame-
work for Streaming Geometry in VRML,” IEEE Computer Graphics & Ap-
plications, Vol. 19, No. 2, 1999.

[Hoppe 96] Hoppe, H. “Progressive Meshes,” Proc. SIGGRAPH, 1996.

[Huffman 52] Huffman, D. “A Method for the Construction of Minimum
Redundancy Codes,” Proc. IRE, Vol. 40, No. 9, 1952.

[Khodakovsky 00] Khodakovsky, A., Schröder, P., and Sweldens, W. “Progres-
sive Geometry Compression,” Proc. SIGGRAPH, 2000.

[Laur 91] Laur, D. and Hanrahan, P. “Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering,” Proc. SIGGRAPH, 1991.

[Levoy 00] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,
Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J.,
and Fulk, D. “The Digital Michelangelo Project: 3D Scanning of Large
Statues,” Proc. SIGGRAPH, 2000.

[Octree] Octree Corporation, Inc., “Octree Graphics,” Web page:
http://www.octree.com/graphics.shtml

[Pajarola 00] Pajarola, R. and Rossignac, J. “Compressed Progressive
Meshes,” IEEE Transactions on Visualization and Computer Graphics, Vol.
6, No. 1, 2000.

[Prince 00] Prince, C. Progressive Meshes for Large Models of Arbitrary Topology,
M. S. Dissertation, University of Washington, 2000.

[RealityWave] RealityWave, Inc., “VizStream Technology,” Web page:
http://www.realitywave.com/technology.asp

[Rusinkiewicz 00] Rusinkiewicz, S. and Levoy, M. “QSplat: A Multiresolu-
tion Point Rendering System for Large Meshes,” Proc. SIGGRAPH, 2000.

[Taubin 98] Taubin, G. and Rossignac, J. “Geometric Compression Through
Topological Surgery,” ACM Trans. on Graphics, Vol. 17, No. 2, 1998.

[VRML 97] Virtual Reality Modeling Language, ISO/IEC Standard 14772-
1:1997.



(a) (b)

Figure 4: (a) Appearance of a region of the model after 60 seconds of streaming (same as Figure 2d).
(b) Appearance of the model immediately after zooming out. Note that high-resolution data has been
streamed only in the region on which we were zoomed in.

Figure 5: Streaming within a frame is performed in a series of top-to-bottom sweeps that each download all nodes larger than a certain screen-space tolerance. Here,
we show the appearance of the model at three points during refinement. Because the refinement order is based on screen-space size, the splats present within a frame
tend to be close to each other in size (as long as the viewpoint is not changed).

>16 16 8 4 2 1
Splat size (pixels)

Figure 7: The color coding used by streaming QSplat.

Figure 6: A “magnifying glass” tool is used to provide fine control over
download order. As illustrated by the color coding, higher-resolution
data has been streamed in the area of the face.


