
COS 445 - PSet 4

Due online Monday, April 12th at 11:59 pm.

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs!1 If you collaborated with other students, or consulted
an outside resource, submit a (very brief) collaboration statement as well. Please anonymize
your submission, although there are no repercussions if you forget.

• This cheatsheet gives problem solving tips, and guidelines for a “good proof” or “partial
progress”: http://www.cs.princeton.edu/˜smattw/Teaching/cheatsheet445.
pdf.

• Please reference the course collaboration policy here: http://www.cs.princeton.
edu/˜smattw/Teaching/infosheet445sp21.pdf.

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.
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Problem 1: Linear Programming (20 points, no collaboration)
Alice is trying to get enough oranges and bananas to host a fruit party. To successfully host a party
she needs at least 4 oranges and at least 3 bananas. Unfortunately, her local grocery story only
sells fruit in bundles. Bundle A costs 7 dollars and contains 2 oranges and 5 bananas. Bundle B
costs 4 dollars and contains 3 oranges and 2 bananas. Fortunately, the grocery story will allow
Alice to buy fractions of bundles (i.e. she can buy 2.5 bundle As). They will not allow Alice to buy
negative bundles (i.e. she cannot buy -1 bundle As and 3 bundle Bs).

Alice would like to buy xA bundle As and xB bundle Bs to guarantee she has at least 4
oranges and at least 3 bananas. Moreover, she would like to find the solution that minimizes her
dollars spent.

Part a (10 points)
Write a linear program whose solution is the optimal choice of xA, xB for Alice’s problem.

Part b (10 points)
Take the dual of the linear program from part a.

2



Problem 2: Noisy Optimizers aren’t Good Enough (40 points)
For this problem, you should assume that all bidders’ values for the item are non-negative. This
problem will try to address the “robustness” of the second-price auction (or more generally, ideas
used for VCG) to underlying optimization algorithms which are imperfect. Consider the following
error-prone algorithm A for computing the argmaximum of a set {b1, ..., bn} of numbers:

• If the second-highest number is exactly one less than the largest number, then output the
index of the second-highest number (break ties lexicographically).2

• Otherwise, output the index of the largest number (break ties lexicographically).

Consider the following error-prone version of the second-price auction with n buyers and a single
item:

• Accept bids b1, . . . ,bn, all of which are ≥ 0.

• Award the item to the bidder A(b1, ..., bn). Note that if A were not error-prone, this would be
the highest bidder.

• Charge the winning bidder bA(~b−i;−2).
3 To clarify, A(~b−i;−2) means “replace bi with −2 and

keep all other bids the same. Then run A.” Put another way,: find the bidder j which A
selects as the winner on input (~b−i;−2), and charge bidder i bj . Note that if A were not error
prone, j would be the highest bidder among those 6= i.

Part a (10 points)

Prove that for any given~b−i (list of bids submitted by all bidders except for i), there exists a price p
such that no matter what bid bidder i makes, bidder i will either win the item and pay p, or not get
the item (and pay nothing).

Part b (10 points)
Say that vi > vj for all j 6= i (i is the highest bidder). Prove that if all other bidders tell the truth
(that is, bid vj), bidder i’s best response is a bid which wins the item (you do not need to specify
exactly what that bid is).

Part c (10 points)
Prove that the error-prone second-price auction is not incentive compatible by providing (and ana-
lyzing) a vector of values v1, . . . , vn such that if everyone tells the truth, the second-highest bidder
wins and pays strictly more than their value (pick an n and provide a single example. It is OK to
use non-integer values, if desired).

2To be extra clear: if the third-highest number is exactly one less than the largest number, but the second-highest
number is not, then the index of the highest number is output. If there are two numbers with the same highest value,
then the second-highest number is equal to the highest number.

3The choice of −2 is made just to guarantee that A(~b−i;−2) 6= i when all bj ≥ 0.
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Part d (10 points)
Prove that the error-prone second-price auction is not incentive compatible by providing (and an-
alyzing) a vector of values v1, . . . , vn such that if everyone tells the truth, the highest bidder wins,
but the second-highest bidder would have been strictly happier by lying about their value (pick an
n and provide a single example. It is OK to use non-integer values, if desired).
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Problem 3: Revenue Equivalence (50 points)
This problem will recall the following definitions.

Definition 1 (Equal Revenue Curve) The Equal Revenue Curve (denoted by ER) is a distribution
with F (x) = 1− 1

x
for all x ≥ 1, and f(x) = 1

x2 for all x ≥ 1. For x < 1, F (x) = 0 and f(x) = 0.

Definition 2 (All-Pay Auction) In the All-Pay Auction, each bidder i submits a bid bi. The item is
awarded to the highest bidder (tie-breaking lexicographically), and all bidders pay their bids. So
if bidder i wins the auction, their utility is vi − bi. If they lose, their utility is −bi.

Definition 3 (Bidding Strategy) A bidding strategy is a function b(·) that takes as input a value v
and proposes a bid b(v) to make in the auction.

Definition 4 (Bayes-Nash Equilibrium) A bidding strategy b(·) is a Bayes-Nash equilibrium for
the All-Pay Auction with two bidders drawn from ER if for all v1, given that bidder 2 is going
to draw a value v2 ← ER and bid b(v2), your expected utility is (weakly) maximized by bidding
b(v1).4

The following parts will guide you to find a Bayes-Nash Equilibrium using Revenue Equiva-
lence. You should complete all parts and not provide an alternative proof.

Part a (10 points)
What is the expected revenue of the second-price auction when two bidders with values indepen-
dently drawn from equal-revenue curves bid their true value?

Part b (10 points)
In the second-price auction, what is the expected payment made by bidder one, conditioned on
bidding v1, and that bidder two truthfully reports v2 ← ER?

Note that we are not conditioning on bidder 1 winning. To be extra formal, let P SPA
1 (v1, v2)

denote the random variable that is equal to v2 if v1 > v2, and 0 otherwise. For a fixed v1, what is
Ev2←ER[P

SPA
1 (v1, v2)]?

Part c (10 points)
Consider the bidding strategy b(·) defined by b(v1) := Ev2←ER[P

SPA
1 (v1, v2)]. Prove that if both

bidders use bidding strategy b(·) in the All-Pay auction, then the bidder with the highest value will
always win the item.

Part d (10 points)
Assume that bidder two is using the bidding strategy b(·) from part c in the All-Pay auction. If
bidder one’s value is v1, what is the expected utility that bidder one achieves by bidding b1? For-
mally, if U1(v1, b, b1) is a random variable that is equal to v1 − b1 when b(v2) ≤ b1, and −b1 when
b(v2) > b1, what is Ev2←ER[U1(v1, b, b1)]?5

4You may want to see Lecture 16 for how we proved something is a Bayes-Nash equilbrium for two bidders drawn
from Uniform([0, 1]). for the First-Price Auction.

5To be extra clear: for a given v1 ≥ 1, and b1 ≥ 0, your answer should say the expected utility that bidder one
achieves by bidding b1. So the variables b1, v1 should appear in your answer.
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Part e (10 points)
Prove that the same b(·) from part c is a Bayes-Nash Equilibrium of the All-Pay auction for two
bidders with values drawn independently from the equal-revenue curve. Your solution should in-
clude a (brief) justification of why the mathematical optimization you formulate correctly solves the
problem, and also a (brief) justification of why you solved the mathematical optimization correctly.
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Extra Credit: Walrasian Equilibria
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partici-
pation grade. Some extra credits are quite challenging and will contribute significantly.

For this problem, you may collaborate with any students and office hours. You may not consult
course resources or external resources, as this is a proof of a well-known result.6

In a combinatorial auction there are m items for sale to n buyers. Each buyer i has some
valuation function vi(·) which takes as input a set S of items and outputs that bidder’s value for that
set (so vi(S) = 5 means that bidder i gets value 5 for receiving set S). These functions will always
be monotone (vi(S ∪ T ) ≥ vi(S) for all S, T ), and satisfy vi(∅) = 0. A Walrasian Equilibrium is a
non-negative price for each item ~p such that:

• Each buyer i selects to purchase a set Bi ∈ argmaxS{vi(S)−
∑

j∈S pj}.

• The sets Bi are disjoint, and ∪iBi = [m].

Prove that a Walrasian equilibrium exists for v1, . . . , vn if and only if the optimum of the LP
relaxation below (called the configuration LP) is achieved at an integral point (i.e. where each
xi,S ∈ {0, 1}).

max
∑
i

∑
S

vi(S) · xi,S

∀i,
∑
S

xi,S = 1

∀j,
∑
S3j

∑
i

xi,S ≤ 1

∀i, S, xi,S ≥ 0.

Finally, provide an example of two valuation functions v1, v2 over two items where a Walrasian
equilibrium doesn’t exist.

6You may consult course resources for general refreshers on Linear Programming, but not for anything specific to
this problem.
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