
COS 445 - PSet 3

Due online Monday, March 29th at 11:59 pm.

Instructions:

• Some problems will be marked as no collaboration problems. This is to make sure you have
experience solving a problem start-to-finish by yourself in preparation for the midterms/final.
You cannot collaborate with other students or the Internet for these problems (you may still
use the referenced sources and lecture notes). You may ask the course staff clarifying ques-
tions, but we will generally not give hints.

• Submit your solution to each problem as a separate PDF to codePost. Please make sure
you’re uploading the correct PDFs!1 If you collaborated with other students, or consulted
an outside resource, submit a (very brief) collaboration statement as well. Please anonymize
your submission, although there are no repercussions if you forget.

• This cheatsheet gives problem solving tips, and guidelines for a “good proof” or “partial
progress”: http://www.cs.princeton.edu/˜smattw/Teaching/cheatsheet445.
pdf.

• Please reference the course collaboration policy here: http://www.cs.princeton.
edu/˜smattw/Teaching/infosheet445sp21.pdf.

1We will assign a minor deduction if we need to maneuver around the wrong PDFs. Please also note that depending
on if/how you use Overleaf, you may need to recompile your solutions in between downloads to get the right files.
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Problem 1: Repeated Prisoner’s Dilemma (50 points)
Consider the following payoff matrix for prisoner’s dilemma. The left number in each entry de-
notes the payoff for Alice, and the right denotes the payoff for Bob. The left two strategies denote
Alice’s actions, and the top two strategies denote Bob’s.

(Alice, Bob) Cooperate Defect
Cooperate (2,2) (0,5)

Defect (5,0) (1,1)

In this problem, we’ll consider the case where Alice and Bob repeatedly play prisoner’s dilemma
for 1000 rounds. That is, for all t from 1 to 1000, Alice and Bob each choose to Cooperate or De-
fect. Based on their actions, they each receive some payoff according to the payoff matrix above.
When deciding which strategy to use in round t, Alice and Bob each know the entire history of
decisions made by the other player (and theirself) for the first t − 1 rounds. We’ll call this game
Repeated Prisoner’s Dilemma.

Observe that a complete strategy for Repeated Prisoner’s Dilemma must decide for all t, as a
function of the history from the first t− 1 rounds, which action to play in round t.

Part a: No Dominant Strategies (10 points)
Prove that neither Alice nor Bob has a dominant strategy in Repeated Prisoner’s Dilemma.

Hint: Make sure you’ve understood exactly what a strategy is for Repeated Prisoner’s Dilemma,
and what it would mean for that strategy to be dominant.

Part b: Iterated Deletion of Dominated Strategies (20 points)
Recall that iterated deletion of weakly dominated strategies repeatedly finds a strategy for some
player that is weakly dominated and deletes that strategy (possibly updating which strategies of the
other player are weakly dominated), and terminates when both players have no weakly dominated
strategies remaining. Recall also that this process is not well-defined, because it may terminate
differently depending on how you execute this process (i.e. how you choose which strategies to
delete).

Prove that there exists an execution of iterated deletion of weakly dominated strategies that ter-
minates with Alice and Bob each only having a single remaining strategy (and state that strategy).

Hint: Again, make sure you’ve understood exactly what a strategy is for Repeated Prisoner’s
Dilemma, and shown that every strategy (except the remaining one) must be deleted.

Part c: Tit-for-Tat (20 points)
Prove that if Alice plays the “Tit-for-Tat” strategy (defined below), then no matter what Bob does,
Bob’s total payoff after 1000 rounds is at least as large as Alice’s.

Definition 1 (Tit-for-Tat) The Tit-for-Tat strategy plays Cooperate in round one. In any round
t > 1, it copies its opponent’s strategy from round t− 1.
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Problem 2: Limited Information Scoring Rules (50 points)
In this problem you’ll examine whether it’s necessary that the predictor be allowed to report their
entire belief and not just properties of their belief, even when you only care about one property of
their belief. In all parts below, X is a random variable supported on R (this just means that X is
always a real number).

Hint 1: You may use the following fact without proof: the derivative of Ex←X [f(x, y)] with respect
to y is equal to Ex←X [

∂f(x,y)
∂y

]. Here, recall that Ex←X [f(x)] means “take the expectation of f(x),
when x is drawn according to distribution X .”

Hint 2: For part of this problem, you may find yourself wanting to show that the unique maximum
of a function occurs at a place where the derivative is undefined. Here you should remember that
in order to prove a point is the unique maximum, you need to show that it is strictly larger than
all points to its left (in which case, you only need to consider the left derivative), and also that
it is strictly larger than all points to its right (in which case you only need to consider the right
derivative).

Part a (15 points)
Let also X have a unique median: there exists a unique real number M(X) such that Pr[X ≥
M(X)] ≥ 1/2 and Pr[X ≤M(X)] ≥ 1/2. You are interested only in learning M(X), the median
of X .

Design a function S such that for all X , the unique argmaximum (over y) of Ex←X [S(y, x)] is
y =M(X).2 That is, design a proper scoring rule which takes as input only the reported median of
X , and strictly incentivizes the predictor to report the true median ofX (and prove that it is proper).

Part b (15 points)
Let also E[X] be finite (not±∞). Now, you are interested in learning only the expected value ofX ,
E[X]. Design a function S such that for all X , the unique argmaximum (over y) of Ex←X [S(y, x)]
is y = E[X]. That is, design a proper scoring rule which takes as input only the reported mean of
X , and strictly incentivizes the predictor to report the true mean of X (and prove that it is proper).

Part c (20 points)
Finally, you are interested in learning only the variance of X , E[X2] − (E[X])2. Prove that there
does not exist any function S such that for allX , the unique argmaximum (over y) of Ex←X [S(y, x)]
is y = E[X2]− (E[X])2. That is, prove that no scoring rule which takes only as input the reported
variance of X can strictly incentivize the predictor to report the true variance of X .

Hint: Assume for contradiction that such an S existed. Consider two random variables X and
Y with the same variance, and a third distribution Z which is equal to X with probability 1/2
and Y with probability 1/2. Assuming that S succeeds for X and Y , what can you say about
argmaxy{Ez←Z [S(y, z)]}?

2The argmaximum is the value y maximizing Ex←X [S(y, x)].
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Problem 3: Noisy Cascades (60 points)
Recall the model of information cascades from class: I have a bag containing some number of
colored balls. With probability 1/2 the bag contains 2 red balls and 1 blue ball, and with probability
1/2 the bag contains 2 blue balls and 1 red ball. One by one, people observe a ball randomly
selected from the bag, and guess (based on this observation and all prior guesses) whether the bag
has more red balls or blue balls.

In this problem we’ll examine a variant of this game. Assume that all players are perfectly
rational and guess to maximize their probability of being correct, and know that all other players
are perfectly rational and are guessing to maximize their probability of being correct. If the player
ever believes that both cases are equally likely, assume that they tie-break to guess the color of their
own draw.

The difference between this problem and lecture is that each person’s guess is revealed noisily;
that is, with probability α, each player’s true guess is replaced by a uniformly random color before
it is announced to the other players (and everyone knows α, and everyone knows that everyone
knows α). But each player is aware of their own draw, without noise.

To be extra clear: if player one truly guesses blue, then this is turned into a revealed guess of
blue with probability 1− α/2 and a revealed guess of red with probability α/2. The other players
withness this revealed guess, and have no other information about the true guess.

Note: Most parts of this problem involve non-trivial calculations. You should both “show your
work” for any non-trivial calculations, and also state in text why your calculations are correct (e.g.
if you apply Bayes’ rule, you should state which equality follows from Bayes’ rule. You do not
need to argue why your algebra/formula manipulation is correct).

Part a (10 points)
Assume that we have not yet reached an information cascade (that is, assume that so far every
player’s true guess is equal to their draw from the urn). Let S = 〈G1, . . . , Gk〉 be an ordered se-
quence of revealed guesses, where each Gi is either red or blue, and let exactly B of the k revealed
guesses be blue, and R = k − B of the revealed guesses be red. What is the probability, as a func-
tion of α, conditioned on the bag containing two red balls and one blue ball, that you will observe
exactly the sequence S of guesses?

Hint: First, try to compute the probability that a particular revealed guess Gi is red, conditioned on
the bag containing two red balls and one blue ball. As a sanity check, make sure your formula is
correct when α = 1 and α = 0.

Part b (10 points)
Imagine that you have seen exactly the sequence S of revealed guesses before you, where S has B
blue revealed guesses, and R red revealed guesses, and you yourself draw a red ball from the urn.
Conditioned on this, what is the probability, as a function of α, that the bag contains two red balls
and one blue ball (again, assuming that all true guesses before you are equal to that player’s draw)?

Hint: Use Bayes’ rule. Part a helps you find the probability of seeing S (plus you draw a red)
conditioned on there being two red balls and one blue ball.

4



Part c (15 points)
As a function of α, how many more red revealed guesses than blue revealed guesses (or vice versa)
would you have to see before you decide to ignore your own draw (again, assuming that all true
guesses before you copied the color of their draw)?

Use this to briefly argue that, for all α < 1, a cascade will eventually happen. Also briefly argue
that when α = 1, a cascade will never happen.

Hint: The math will be simpler if you try to argue that you believe it is more likely the urn is red
versus blue, rather than trying to argue that the probability that the urn is red is > 1/2.

Part d (10 points)
When α < 1, let S = 〈G1, . . . , Gk〉 be an ordered sequence of revealed guesses so that a red
cascade begins right after revealed guess k (that is, the (k+ 1)st player will ignore their draw). Let
S ′ be the ordered sequence S, but with all reds and blues flipped (that is, all reds are now blue, and
blues are now reds).

As a function of α, what is Pr[S|two reds one blue]/Pr[S ′|two reds one blue]?

Part e (15 points)
When α < 1, as a function of α, what is the probability that the eventual cascade is correct?
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Extra Credit: Another Algorithm for Nash
Recall that extra credit is not directly added to your PSet scores, but will contribute to your partici-
pation grade. Some extra credits are quite challenging and will contribute significantly.

For this problem, you may collaborate with any students. You may not consult course resources
or external resources. In this problem we will guide you through the proof of a well-known result,
so you should not copy the proof from one of the course texts (nor should you try to find a proof
from external sources). You must follow the guide below (and not provide an alternative proof).

Consider any symmetric two-player game. That is, p1(x, y) = p2(y, x) for all x, y. Consider
also the following system of inequalities. We’ll refer to this as the Lemke-Howson Polytope.

• Variables x1, . . . , xn.

• (Non-negativity) xi ≥ 0 for all i.

• (Responsiveness)
∑

j xjp1(i, j) ≤ 1.

Part a
Say that an action i is covered in ~x if either the non-negativity constraint is tight (i.e. xi = 0) or
the Responsiveness constraint is tight (i.e.

∑
j xjp1(i, j) = 1), or both. Prove that if ~x is inside the

Lemke-Howson polytope, and ~x 6= 0, and all actions i are covered in ~x, then ~x/|~x|1 is a symmetric
Nash equilibrium (that is, ~x/|~x|1 is a best response to itself).

Part b
For this part, you should assume that any set of n equations taken above have a solution, and that
this solution is unique.

The Lemke-Howson algorithm starts from the point~0 and repeatedly pivots. That is, the current
point will always have exactly n tight constraints. The pivot will pick one of these constraints and
“relax” it (keeping the other n − 1 tight). A new constraint will become tight, and this will be the
new point (you do not need to prove that this procedure is well-defined).

From ~0, the pivot rule simply picks an arbitrary tight constraint to relax (let’s say x1 = 0). This
causes a new constraint to become tight. If it’s the 1st Responsiveness constraint, then by Part a
we’ve found a Nash and are done! If not, then we have exactly one double-covered action. That is,
there is some action i such that the non-negativity and Responsiveness constraints are both tight.
We pick the non-negativity constraint for i to relax next.

In general, for our current point ~x 6= ~0, if there is no double-covered action we terminate (and
hope that it’s a Nash and not back at ~0). If there’s a double-covered action, it’s because we just
made one of the constraints for i tight. So relax the other one and continue.

Prove that the Lemke-Howson algorithm will never revisit a vertex ~y without first revisiting
the origin. You may use without proof the fact that if ~z pivots to ~w when constraint C is relaxed,
causing constraint D to become tight, then ~w pivots to ~z when constraint D is relaxed, causing
constraint C to become tight.

Part c
Prove that the Lemke-Howson algorithm cannot ever return to~0. Conclude that the Lemke-Howson
algorithm finds a Nash after at most

(
2n
n

)
pivots.

Hint: You may want to prove that the algorithm terminates as soon as 1 becomes covered.
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