
Guidelines for Grades on Strategy Design Assignments

All grades are inherently a bit subjective, even in proof-based courses with a clear “correct” answer.
Still, grades on strategy design assignments are inherently a little bit more subjective than the rest
of the course. Below is a brief explantaion of how your grades will be computed.

• Every strategy design assignment will be worth 35 points.

• 20 points can be obtained by “correctly” answering two short prompts given in the
assignment. “Correctly” is in quotes because the questions are not mathematically formal,
and you are not expected to write a proof that your answer is “correct.” You are expected
to rigorously justify your answer using ideas from the course (and it may or may not make
sense to include a proof of a related statement). There may be multiple “correct” answers,
but there will always be at least one that can be deduced using ideas from the course. These
answers will be graded as objectively as any other problem in the course.

• 15 points will depend on the quality of your solution. There are two ways to earn these
points:

– Performance of your solution. We will run everyone’s submitted code, along with a
few submissions by the course staff, ranging from trivial to more interesting. You’ll
receive up to 15 points based on how many course-staff submissions you outperform.
Observe that these points are not zero-sum, as you must only outperform the course
staff. Note: we do this run after the submission deadline, and describe how code scores
were computed in the staff solutions.

– Quality of writeup and strength of justification. This evaluation is inherently more sub-
jective than the rest of the course and will be graded based on “how well you convinced
the grader that your solution is a good approach.” You should focus on why your strat-
egy is good, and not what your strategy does (although obviously the what is necessary
to get into the why). You will receive up to 15 points for this portion.

– Your score will be the maximum of these two.

• There will be 5 strategy designs throughout the semester. Your lowest of the 5 grades will
be dropped. You may wind up dropping your first grade because you found the instruc-
tions unclear at first, the last assignment because you’re happy with your first 4 grades, or
any assignment during an unusually busy period. You do not need to declare which grade
you would like dropped, your lowest grade will be automatically dropped (including empty
submissions).

Collaboration: The emphasis of these projects are on design of strategies, not implementation. As
such, you may use snippets of code provided by staff, or that you find online (provided that those
snippets were not written with the intent of solving this strategy design exercise). You may not use
snippets of code written by other students in this class or any previous iterations of this class.1

1For example, if for some reason your solution wants to find the minimum spanning tree in a graph, you may search
for a solution online and copy it. But you may not copy your classmate’s code (although you may discuss extensively
with your classmate how you plan to solve the problem, before coding on your own).

1



Some Tips for Strategy Designs
Here are a few thoughts to help you get a sense of how we view/grade the assignments.

• The Strategy Designs are not Programming Assignments. For example:

– It is possible to get full credit just through the writeup.

– The “hard part” of the code you write is deciding what to code, rather than figuring out
how to implement it.

– The course staff will not read your code (we will just run your code).

– The course staff may not help you debug problems that are specific to your code (we
will debug issues with our own infrastructure). You can still post any quick questions
on Ed. Other students in the class tend to be helpful, and the course staff will still try to
be helpful, but this isn’t the primary focus of the assignment.

– All provided infrastructure is a ‘bonus’ to help you design strategies, if you choose to
use it, and there is no expectation that you choose to do so. The course staff will try our
best to keep the leaderboard running, but it may be down for extended periods of time.2

When this happens, please let us know with a public post on Ed, but be prepared that
it might stay down for a while. The course staff will also provide a test kit in TigerFile
to help confirm that your code compiles, but we don’t promise that it will catch every
possible bug. If you find any issues with the provided infrastructure, please let us know.
But please also think of the infrastructure as a bonus, and do not rely on it to complete
the assignment — the assignments are designed so that none of this infrastructure is
required.3

• That being said, implementing your strategy will:

– Directly improve your score via part c.

– Indirectly improve your score, because it will force you to have a concrete plan in mind
(rather than vague ideas).

– Feel fun to test your strategy against the course staff and your classmates (hopefully).

• Each Strategy Design should feel comparable in size to one problem on one PSet (rather than
an entire PSet).4

• Each Strategy Design may take a while just to understand the model (moreso than a PSet
question). I suggest setting aside time to do this first (and office hours are an appropriate
place to do this).

• Parts a and b on each Strategy Design are a warmup. I suggest doing parts a and b before
thinking at all about part c.

2Often, this is due to bugs in code submitted by your peers, or due to bugs/outages in TigerFile.
3A short historical note: originally, there was no provided infrastructure, other than a template with a sample

strategy that correctly compiles. The assignments are designed so that strong strategies can be designed using just
this template. Over the past several years, students on the course staff had fun providing extra infrastructure to make
testing/design easier, which is now quite good (but the course-staff benchmark has not changed).

4In previous years, it was indeed one problem on one PSet. But because PSets are biweekly, it was suggested to
spread out the due dates.

2



– Sometimes, part a and part b will ask what you would do in a simplified version. If you
can figure out what to do in the simplified version, it will guide you towards what to do
in the real version.

– Sometimes, part a and part b will ask what you would do in a special case. If you
can figure out what to do in a special case, you can sanity check your final strategy to
confirm that it does the right thing in these special cases.

• Finally, here are some possible approaches for an effective part c:

– Theory-heavy: one approach might make a concrete prediction about what other stu-
dents will do, and then give a proof outline that your strategy is the best thing you could
possibly do in response. For full credit, such a solution should give a brief argument
why the concrete prediction is reasonable, and the proof should be correct (but it is OK
to skip calculations and be less rigorous than a PSet).

– Experiment-heavy: another approach might propose a parameterized framework, and
then optimize parameters set using experiments. For full credit, such a solution should
argue why the framework makes sense (i.e. why the framework is rich enough that
some setting of parameters is likely to be an awesome strategy). The solution should
also briefly argue why the experiments should be reasonably predictive of the student
submissions.

– Principle-heavy: another approach might be to come up with good principles behind
their solution, but not necessarily prove anything, nor run experiments. For full credit,
such a solution should argue why these same principles lead to a correct answer to parts
a/b, and give a few brief nuggets of insight for why these principles are likely to lead
to a good solution for the general case (i.e. among all the other ways to solve parts a/b,
why is yours good?).

– In all cases, it may be helpful to explicitly appeal to parts a and b. For example, if you
make a prediction about what other students will do in general, does that prediction
match your answer for parts a/b? If you choose an experimental framework, is your
framework rich enough to contain a “correct” answer for parts a and b? In general, can
you explicitly argue that your solution does something “correct” for parts a and b?

– In all cases, you should focus your writeup on logical arguments. It is completely fine
to draw intuition from practice, but your own justification needs to be based on logic
rather than appealing to practice.

– These are all just suggestions for how to approach part c. These assignments are, by
design, extremely open-ended, and it is possible to get full credit without reading this
document.

3


