
princeton univ. F’17 cos 521: Advanced Algorithm Design

Lecture 23: Protecting against Information Loss: Coding
Theory

Lecturer: Matt Weinberg Scribe:Sanjeev Arora

Computer and information systems are prone to data loss—lost packets, crashed or
corrupted hard drives, noisy transmissions, etc.—and it is important to prevent actual loss
of important information when this happens. Today’s lecture concerns error correcting
codes, a stepping point to many other ideas, including a big research area (usually based in
EE departments) called information theory. This area started with a landmark paper by
Claude Shannon in 1948, whose key insight was that data transmission is possible despite
noise and errors if the data is encoded in some redundant way.

Example 1 (Elementary ways of introducing redundancy) The simplest way to
introduce redundancy is to repeat each bit, say 5 times. The cons are (a) large inefficiency
(b) no resistance to bursty error, which may wipe out all 5 copies.

Another simple method is checksums. For instance suppose we transmit 3 bits b1, b2, b3
as b1, b2, b3, b1 ⊕ b2 ⊕ b3 where the last bit is the parity of the first three. Then if one of the
bits gets flipped, the parity will be incorrect. However, if two bits get corrupted, the parity
becomes correct again! Thus this method can detect when a single bit has been corrupted.
It is useful in settings where errors are rare: if an error in the checksum is detected, the
entire information/packet can be retransmitted.

A cleverer checksum method used by some cloud services is to store three bits b1, b2, b3
as 7 bits on 7 servers: b1, b2, b3, b1⊕ b2, b1⊕ b3, b2⊕ b3, b1⊕ b2⊕ b3. It is easily checked that:
if up to three servers fail, each bit is still recoverable, and in fact by querying at most 2
servers. A cleverer design of such data storage codes recently saved Microsoft 13% space on
its cloud servers.

Example 2 (Generalized Checksums) A trivial extension of the checksum idea is to
encode k bits using 2k checksums: take the parity of all possible subsets. This works to
protect the data even if close to half the bits get flipped (though we won’t prove it; requires
some Fourier analysis).

Another form of checksums is to designate some random subsets of {1, 2, . . . , k}, say
S1, S2, . . . , Sm. Then encode any k bit vector using the m checksums corresponding to
these subsets. This works against Ω(m) errors but we don’t know of an efficient decoding
algorithm. (Decoding in exp(k) time is no problem.)

1 Shannon’s Theorem

Shannon considered the following problem: a message x ∈ {0, 1}n has to be sent over a
channel which flips every bit with probability p. How can we ensure that the message is
recovered correctly at the other end? A couple of years later Hamming introduced a related
notion whereby the channel flips up to p fraction of bits —and can adversarially decide

1

2

which subset of bits to flip. He was concerned that real channels exhibit burstiness: make a
lot of errors in one go and then no errors for long periods. By Chernoff bounds, Shannon’s
channel is a subcase (whp) of the Hamming channel since the chance of flipping more than
p+ ε fraction of bits in total is exp(−Θ(n)). Both kinds of channels have been studied since
then and we will actually use Hamming’s notion today.

Shannon suggested that the message be encoded using a function E : {0, 1}n → {0, 1}m
and at the other end it should be decoded using a function D : {0, 1}m → {0, 1}n with the
property that D(E(x) ⊕ η) = x for any noise vector η ∈ {0, 1}m that is 1 in at most pm
indices and 0 in the rest. (Here ⊕ of two bit vectors denotes bitwise parity.)

Clearly, such a decoding is possible if for every two messages x, x′ their encodings differ
in more than 2pm bits: then E(x)⊕η1 will not be confused for E(x′)⊕η2 for any two noise
vectors η1, η2 that only are nonzero in pm bits. We say such a code has minimum distance
at least 2pm.

The famous entropy function appearing in the following theorem is graphed below. (The
notion of Entropy used in the 2nd law of thermodynamics is closely related.)

Figure 1: The graph of H(X) as a function of X.

Theorem 1
Such E,D do not exist if m < n

1−H(p) , and do exist for p ≤ 1/4 if m > n
1−H(2p) . Here

H(p) = p log2
1
p + (1− p) log2

1
1−p is the so-called entropy function.

Proof: We only prove existence; the method does not give efficient algorithms to en-
code/decode. For any string y ∈ {0, 1}m let Ball(y) denote the set of strings that differ
from y in at most 2pm indices. The number of strings in Ball(E(x)) is at most(

m

0

)
+

(
m

1

)
+ · · ·

(
m

2pm

)
,

which is at most 2H(2p)m by Stirling’s approximation.1

Define the encoding function E using the following greedy procedure. Number the
strings in {0, 1}n from 1 to 2n and one by one assign to each string x its encoding E(x) as

1We won’t do the complete calculation, but here’s some intuition: when p ≤ 1/4, of the terms above,(
m

2pm

)
is the largest. Using Stirling’s approximation, this is at most (m

2pm
)2pm ·(m

(1−2p)m
)(1−2p)m = (1/2p)2pm ·

(1/(1−2p))(1−2p)m = 2−2p log2(2p)m−(1−2p) log2(1−2p)m = 2H(2p)m. Of course, this ignores the previous 2pm−1
terms, but the use of Stirling’s approximation was weak, and they balance out. Again, just intuition.

3

follows. The first string is assigned an arbitary string in {0, 1}m. At step i the ith string is
assigned an arbitary string that lies outside Ball(E(x)) for all x ≤ i− 1.

By design, such an encoding function satisfies that E(x) and E(x′) differ in at least
2pm fraction. Thus we only need to show that the greedy procedure succeeds in assigning
an encoding to each string. To do this it suffices to note that if 2m > 2n2H(2p)m then the
greedy procedure never runs out of strings to assign as encodings.

The nonexistence is proved in a similar way. Now for y′ ∈ {0, 1}m let Ball′(y) be the
set of strings that differ from y in at most pm indices. By a similar calculation as above,
this has cardinality about 2H(p)m. If an encoding function exists, then Ball′(E(x)) and
Ball′(E(x′)) must be disjoint for all x 6= x′ (since otherwise any string in the intersection
would not have an unambiguous encoding). Hence 2n × 2H(p)m < 2m, which implies that
m > n

1−H(p) . 2

2 Finite fields and polynomials

Below we will design error correcting codes using polynomials over finite fields. Here finite
field will refer to Zq, the integers modulo a prime q. Recall that one can define +,×,÷ over
these numbers, and that x× y = 0 iff at least one of x, y is 0. A degree d polynomial p(x)
has the form

a0 + a1x+ a2x
2 + · · ·+ adx

d.

It can be seen as a function that maps x ∈ Zq to p(x).

Lemma 2 (Polynomial Interpolation)
For any set of n+ 1 pairs (x0, y0), (x1, y1), . . . , (xn, yn) where the xi’s are distinct elements
of Zq, there is a unique degree n polynomial g(x) satisfying g(xi) = yi for each i.

Proof: Let a0, a1, . . . , an be the coefficients of the desired polynomial. Then the constraint
g(xi) = yi corresponds to the following linear system.

Figure 2: Linear system corresponding to polynomial interpolation; matrix on left side is
Vandermonde.

This system has a unique solution iff the matrix on the left is invertible, i.e., has nonzero
determinant. This is nothing but the famous Vandermonde matrix, whose determinant is∏

i≤n
∏

j<i(xi − xj). This is nonzero since the xi’s are distinct. Thus the system has

4

a solution. Actually the solution has a nice description via the Lagrange interpolation
formula:

g(x) =
n∑

i=0

yi
∏
j 6=i

(x− xj)
xi − xj

.

Above, one can verify that when k 6= i, the term yi
∏

j 6=i
xk−xj

xi−xj
= 0, as there is a term

(xk − xk) in the product. So the only non-zero term is when i = k, and it is exactly yk. So
g(xk) = yk. The previous linear algebra shows that this polynomial is the unique solution.
2

Corollary 3
If a degree d has more than d roots (i.e., points where it takes zero value) then it is the zero
polynomial.

3 Reed Solomon codes and their decoding

The Reed Solomon code from 1960 is ubiquitous, having been used in a host of settings
including data transmission by NASA vehicles and the storage standard for music CDs.
It is simple and inspired by Lemma 2. The idea is to break up a message into chunks of
blog qc bits, where each chunk is interpreted as an element of the field Zq. If the message
has (d + 1)blog qc bits then it can be interpreted as coefficients of a degree d polynomial
p(x). The encoding consists of evaluating this polynomial at n points u1, u2, . . . , vn ∈ Zq

and defining the encoding to be p(u1), p(u2), . . . , p(un).
Suppose the channel corrupts k of these values, where n− k ≥ d+ 1. Let v1, v2, . . . , vn

denote the received values. If we knew which values are uncorrupted, the decoder could use
polynomial interpolation to recover p. Trouble is, the decoder has no idea which received
value has been corrupted. We show how to recover p if k < n−d

2 − 1 (n > d+ 2k + 1).

Lemma 4
There exists a nonzero degree k polynomial e(x) and a polynomial c(x) of degree at most
d+ k such that

c(ui) = e(ui)p(vi) for i = 1, 2, . . . , n. (1)

Proof: Let I ⊆ {1, 2, . . . , n}, with |I| = k be the subset of indices i such that vi has been
corrupted. Then (1) is satisfied by e(x) =

∏
i∈I(x−ui) and c(x) = e(x)p(x) since e(ui) = 0

for each i ∈ I and nonzero outside I. 2

The polynomial e in the previous proof is called the error locator polynomial. Now note
that if we let the coefficients of c, e be unknowns, then (1) is a system of n equations in
d+2k+2 unknowns. This system is overdetermined since the number of constraints exceeds
the number of variables. But Lemma 4 guarantees this system is feasible, and thus can be
solved in polynomial time by Gaussian elimination. Note at this point that we can just
recover some candidate e(·), c(·). If we recovered exactly the e(·), c(·) defined in the proof
of Lemma 4, we’d be in great shape: we can exactly see where the errors are by the divisors
of e(·). But maybe there are multiple solutions and the polynomial we recover isn’t the
desired e(·). Below, we’ll show that no matter what polynomial we recover, we can locate
the errors (and then do polynomial interpolation).

5

We will need the notion of a polynomial dividing another. For instance x2 + 2 divides
x3 + x2 + 2x + 2 since x3 + x2 + 2x + 2 = (x2 + 2)(x + 1). The algorithm to divide one
polynomial by another is the obvious analog of integer division.

Lemma 5
If n > d + 2k + 1 then any solution c(x), e(x) to the system of Lemma 4 satisfies (i) e(x)
divides c(x) as a polynomial (ii) c(x)/e(x) is p(x).

Proof: The polynomial c(x)− e(x)p(x) has a root at ui whenever vi is uncorrupted since
p(ui) = vi. Thus this polynomial, which has degree d + k, has n − k roots. Thus if
n − k > d + k + 1 this polynomial is identically 0 (meaning that c(x) = e(x)p(x) as
polynomials. 2

Let’s just check now what we can do with this code as compared to repetition. Say
that the error rate is 1/(4 log2 q), and we have a total of (d + 1) log2 q bits to send. If we
want to tolerate independent errors, then we need to repeat each bit Ω(log d log2 q) times to
guarantee that each bit (we didn’t go over how to prove this in class, but it’s essentially by
showing that you need this many repetitions to get a Chernoff bound to work for each bit,
and that the Chernoff bound is approximately tight). So the total communication would
be Ω(d log2 q log(d log2 q)).

If instead we use the Reed-Solomon code, we need to send n > d+ 2k+ 1 pairs of points
in Zq, where k is the number of tolerated errors. Because each bit is flipped with probability
1/(4 log2 q), we expect the total number of mistaken bits to be d/4, and let’s assume in the
worst case that they occur all in different pairs. So we want to tolerate ≈ k = d/2 errors,
and therefore we need to send O(d) pairs of points in Zq (and each pair takes 2 log2 q bits
to represent). So our total communication will be just O(d log2 q).

4 Code concatenation

Technically speaking, the Reed-Solomon code only works if the error rate of the channel is
less than 1/ log2 q, since otherwise the channel could corrupt one bit in every value of the
polynomial.

To allow error rate Ω(1) one uses code concatenation. This means that we encode each
value of p —which is a string of t = dlog2 qe bits—with another code that maps t bits to
O(t) bits and has minimum distance Ω(t). Wait a minute: you might say. If we had such a
code all along then why go to the trouble of defining the Reed-Solomon code?

The reason is that we do have such a code by Shannon’s construction (or by trivial
checksums; see Example 2): but since we are only applying it on strings of size t it can be
encoded and decoded in exp(t) time, which is only q. Thus if q is polynomial in the message
size, we still get encoding/decoding in polynomial time.

This technique is called code concatenation. One can also use any other error correcting
code instead of Shannon’s trivial code.

