3D Organ Shape Reconstruction from Topogram Images

Elena Balashova¹, Jiangping Wang², Vivek Singh², Bogdan Georgescu², Brian Teixeira², and Ankur Kapoor²
¹ Department of Computer Science, Princeton University
² Siemens Healthineers, Digital Services, Digital Technology and Innovation

Comparison of the variational auto-encoder (VAE) (with and without mask), and generative adversarial network (GAN)-based approaches on volume prediction and shape reconstruction tasks.

Evaluation

Comparison of the variational auto-encoder (VAE) (with and without mask), and generative adversarial network (GAN)-based approaches on volume prediction and shape reconstruction tasks.

Application: Shape Reconstruction

Application: Volume Prediction

Training Pipeline

Image + Mask Pipeline

Image Only Pipeline

Goal

Automatic delineation and measurement of main organs such as liver is one of the critical steps for assessment of hepatic diseases, planning and postoperative or treatment follow-up. However, addressing this problem typically requires performing computed tomography (CT) scanning and complicated post-processing of the resulting scans using slice-by-slice techniques. In this paper, we show that 3D organ shape can be automatically predicted directly from topogram images which are easier to acquire and have limited exposure to radiation during acquisition, compared to CT scans. We evaluate our approach on the challenging task of predicting liver shape using a generative model. We also demonstrate that our method can be combined with user annotations, such as a 2D mask, for improved prediction accuracy. We show compelling results on 3D liver shape reconstruction and volume estimation on 2129 CT scans. In particular, we are able to estimate liver volume to 6% accuracy and predict liver shape to 0.90 Dice coefficient.

Loss Optimization

Kullback-Leibler divergence

\[L = \alpha_1 L_{adv}(s, s') + \alpha_2 L_{KL} + \alpha_3 L_{adv}(s, G(z)) + \alpha_4 L_{mask}(k, \hat{k}), \]

Mask Loss

\[L_{mask}(k, \hat{k}) = -\frac{1}{N} \sum_{n=1}^{N} k_n \log \hat{k}_n + (1 - k_n) \log (1 - \hat{k}_n), \]

BOE Loss

\[L_{BOE}(s, \hat{s}) = -\frac{1}{N} \sum_{n=1}^{N} s_n \log \hat{s}_n + (1 - s_n) \log (1 - \hat{s}_n), \]

Bibliography
