
SurfBoard – A Hardware Performance Monitor for SHRIMP

Princeton University Technical Report TR–596–99

Scott C. Karlin, Douglas W. Clark, Margaret Martonosi†

Princeton University
Department of Computer Science

†Department of Electrical Engineering
Princeton, NJ 08544

{scott, doug}@cs.princeton.edu, mrm@ee.princeton.edu

March 2, 1999

Abstract

Growing complexity in many current computers makes performance evaluation and characterization
both increasingly difficult and increasingly important. For parallel systems, performance characteriza-
tions can be especially difficult to obtain, since the hardware is more complex, and the simulation time
can be prohibitive.

This technical report describes the design, implementation, and case studies of a performance moni-
toring system for the SHRIMP multicomputer. This system is based on a hardware performance monitor
which combines several features including multi-dimensional histogram generation, trace generation, and
sophisticated triggering and interrupt capabilities.

Demonstrated in the case studies is the direct measurement of an implicit form of interprocessor
communication implemented on the SHRIMP multicomputer.

1 Introduction

This technical report describes a performance monitoring tool we have developed for the SHRIMP system
and reports how we have used this tool to gain new insights in to the performance of several benchmark
applications.

The SHRIMP (Scalable High-performance Really Inexpensive Multi-Processor) project at Princeton stud-
ies how to provide high-performance communication mechanisms in order to integrate commodity desktop
computers such as PCs and workstations into inexpensive, high-performance multicomputers [4, 5].

While there have been several incarnations of SHRIMP, this technical report applies only to the SHRIMP-
II (hereafter referred to simply as “Shrimp”) system. A key feature of the Shrimp system is an implicit
communication mechanism known as automatic update which makes software based monitoring methods
ineffective.

The SurfBoard (Shrimp Usage Reporting Facility) is designed to measure all communication with minimal
impact to the system. Additionally, the SurfBoard provides several interesting features which can provide
real-time feedback to specialized applications designed to take advantage of performance information about
the system as it operates.

After giving an overview of the Shrimp hardware in Section 2 and the SurfBoard design in Section 3, we
describe several case studies (both “raw” data and analysis) in Section 4. A hardware retrospective appears
in Section 5. We discuss related work in Section 6 and give conclusions in Section 7. Appendix A gives
details of the hardware and Appendix B gives details of the software.

1

2 The Shrimp Multicomputer

The Shrimp multicomputer nodes are unmodified Pentium PC systems, each configured with standard I/O
devices such as disk drives, monitors, keyboards and LAN adaptors. The primary interconnection network is
the Intel Paragon mesh routing backplane [19]. The connection between a network interface and the routing
backplane is via a simple signal-conditioning card and a cable. As each node contains a commodity Ethernet
card, there is a secondary interconnection via standard IP protocols.

A main goal of Shrimp is to provide a low-latency, high-bandwidth communication mechanism whose
performance is competitive with or better than those used in specially designed multicomputers. The Shrimp
Network Interface (SNI) board implements virtual memory-mapped communication to support protected,
user-level message passing, and fine-grained remote updates and synchronization for shared virtual memory
systems. Shrimp supports a variety of programming styles by supporting communication through either
deliberate update or automatic update. With deliberate update, a processor sends out data using an explicit,
user-level message-send command. With automatic update, a sending process can map memory within its
address space as a send buffer; any time the sending process writes to one of these mapped (outgoing)
memory regions, the writes are propagated automatically to the virtual memory of the destination process
to which it is mapped.

Figure 1 shows a Shrimp multicomputer prototype system. The highlighted components in the figure
correspond to the experimental system components being designed and implemented at Princeton. The
right hand side of the figure focuses in on a single Shrimp compute node, a standard PC system. The nodes
interface to the Paragon backplane with a custom designed SNI board. Packet data received by an SNI
board is forwarded to a SurfBoard (SURF) for data measurement. The direct connection from the Xpress
memory bus to the SNI board allows the SNI to snoop memory references; it is this snooping which enables
the SNI board to perform the automatic update communication mechanism.

Paragon Mesh
Routing Backplane

Pentium
CPU

L1
Cache

L2
Cache

Main

SNI

Memory

EISA Bus

Xpress Bus

Shared Virtual
Memory

Parallel File System

Applications

Efficient Message Passing

Performance Tools

Virtual Memory Mapped Communication

Linux

PC System

SURFSNI

Linux

PC System

SURFSNI

Linux

PC System

SURFSNI

SURF

Figure 1: An overview of the components of the Shrimp system.

2.1 VMMC Communication Model

Virtual memory-mapped communication (VMMC) is a communication model providing direct data transfer
between the sender’s and receiver’s virtual address spaces [10]. The idea is to separate the mapping setup from
the data transfer. The Shrimp system uses the LAN to setup the mappings and the Paragon backplane for
data transfer. A key feature of VMMC is that the there is no explicit receive function. Data is transparently

2

delivered into the memory space of the destination node. This means that the receiver of the data does not
know when the data has arrived.

2.2 Automatic Update

Automatic update allows pages in the sender to be mapped to pages in the receiver so that ordinary memory
writes on the sender are propagated through the network to the receiver. Under automatic update, neither
the sender nor the receiver explicitly transfer data. By its very nature, instrumenting an automatic update
based system using only software would likely be very intrusive. One could imagine periodically comparing
the contents of receive buffers with backup copies of the data. However, even this approach could not easily
identify the packet sender.

2.2.1 Combining

With automatic update there needs to be a policy decision as to when to send a packet. One could eagerly
send a separate packet for every memory access, or one could wait and combine multiple writes into a larger
packet before sending the packet. In the later case, one must also decide when to stop combining.

The SNI board supports combining of automatic update memory writes (which are snooped from the
Xpress bus). Combining stops and the packet is completed when any of the following occur:

• Combining is disabled,

• A read memory access is snooped,

• A non-sequential write memory access is snooped (i.e., the address is not one more than the previous
address),

• A user-defined address boundary is crossed (either 256, 512, 1024, 2048, or 4096 bytes), or

• An optional timeout is exceeded.

3 SurfBoard

In a fully configured Shrimp system, a SurfBoard is located at each Shrimp node, and captures information
at the arrival of incoming packets. Figure 2 shows a block diagram of the SurfBoard. (A description of the
block diagram is in Appendix A.1 on page 49.) The board responds to user commands (e.g., start, stop, etc.)
encoded as standard EISA bus writes. Once the monitoring has begun, the SNI board sends the SurfBoard
a copy of each raw packet as it is received, and the monitor parses the raw packet data to extract the fields
of interest. It then updates its statistics memories appropriately, and waits for the next packet. Control
circuitry arbitrates access requests for the statistics memories among incoming packets, EISA cycles, and
local DRAM refresh. Like some previous performance monitors (e.g., [12]) we have a flexible hardware design
based on FPGAs, but we have designed mechanisms into the monitor for runtime flexibility as well. The
subsections below discuss some of the key features in more detail.

3.1 Data Collection Modes

The SurfBoard has three independently data collection modes: word-count mode, histogram mode, and trace
mode. The three modes are independently controlled and can operate simultaneously.

In word-count mode, the SurfBoard keeps a running count of the number of 32-bit payload words received
by the node. The count is kept in a 32-bit register. When the count rolls over to zero, the node CPU can
be notified via a maskable interrupt.

In histogram mode, the SurfBoard increments a count in a 32-bit histogram bin associated with a selected
set of packet characteristics. Section 3.2 describes which packet characteristics can be combined to form a
histogram address. When the count in a bin rolls over to zero, the bin address is placed in a FIFO, and

3

Latency
Generator

Trace
Subsystem

44

EISA Bus

44

System
Controller

Subsystem

and

Category
Register

Interface

Size
Counter

Byte Enable
Register

Histogram

Register

44

Size
Register

Tx Time

Bin

Register

Color

Status
Register

Register

Trace
Register

Address

3

4

6

12

3

25

44

Register

10

4

6

6

16

Rx Time

Latency

and

SH
R

IM
P

In
co

m
in

g
Pa

ck
et

 D
at

a
B

us

16

25

24

2

10

4

6

6

24

10

Histogram
Bin

Selector 24

2

2

24

10

4

6

6

25

4

32

2

24

10

Sender ID
Generator

Counter

Register

Stage 1 Stage 2 Stage 3

Figure 2: SurfBoard Block Diagram.

the node CPU can be notified via a maskable interrupt. Additionally, the node CPU can be notified via a
maskable interrupt based on various FIFO conditions including “not empty”, “almost full”, and “full”.

At the end of an experiment the memory contains a histogram of the various combinations of values
taken on by the packet characteristics. By using more than one characteristic to form the address, the
result is a “multi-dimensional” histogram showing the joint distribution of the packet characteristics. The
Histogram Bin Selector in Figure 2 is implemented as a simple interconnect using a single user configurable
field programmable gate array (FPGA). Because the FPGA simply maps input wires to output wires with
no intervening logic, a new design can be compiled in under 60 seconds and then downloaded in a few
milliseconds without changing any other board state.

In trace mode, the SurfBoard records all collected information about each packet in the 128-bit wide
trace memory. As described in Section 3.6, we also provide a mechanism to determine when tracing starts
and stops.

For all three modes, the SurfBoard’s design is facilitated by its relatively modest speed requirements:
in the Shrimp system the minimum packet rate (start word to start word) is 1080 nanoseconds and the
minimum inter-packet time (end word to start word) is 240 nanoseconds, so that inexpensive dense DRAMs
are used for the histogram and trace memories.

4

3.2 Measurable Variables

The FPGA-based selection scheme lets experimenters select arbitrary bits from five variables for histogram
address selection. These variables are:

• Size: As the packet data arrives, a 10-bit counter tracks size of the payload in units of 32-bit words.

• Category: User-level software can set a 4-bit category register on the monitor board. This allows
users to attribute statistics gathered by the hardware back to the responsible software constructs.

• Color: The SurfBoard has also been designed to provide support for coarse-grained data-oriented
statistics, by allowing different pages in memory to be assigned different “colors” (in the form of a 6-bit
page tag), which can then be used in histogram statistics. These 6-bit tags1 are stored in incoming page
table entries on the SNI board; they are read out at the same time as the page-mapping information
[5]. Updating page tags requires (protected) memory-mapped I/O writes of the appropriate locations
in the page tables.

• Sender ID: The 12-bit identity of the sending node from the packet header is mapped to a 6-bit
value based on a SurfBoard configuration register.

• Latency: Each SNI board and each SurfBoard maintains a 44-bit global clock register.2 These are
controlled by system-wide 10 MHz clock signals distributed by the Paragon backplane. At the sending
node, the SNI board inserts its copy of the global clock into each outgoing packet as a timestamp.
Note that the sending timestamp value is determined when the first word of the packet is written.
With combining enabled, it may be some time before the packet is finally sent. At the receiving node,
the performance monitor reads its copy of the global clock as the packet arrives, and subtracts the
packet’s timestamp from it; this yields the packet’s end-to-end hardware latency in 100 nanosecond
cycles. The Latency Generator in Figure 2 performs this subtraction, scales the value, and limits the
range of values to fit into a 24-bit value. Values greater than the range or less than the range, force
the latency to all 1’s or all 0’s, respectively.

In addition to the above metrics, the trace memory also records the following additional variables:

• Latency Flags: Overflow and underflow.

• Receive Time: 44-bit receive timestamp.

• Interrupt Bit: Indicates if the interrupt bit in the incoming page table was set.

• Packet Address: Bits 26..2 of the packet address. (Bits 31..27 are zero for the Shrimp system.)

• Byte Enables: The 4 byte enables for this packet. These only have meaning if the packet size is a
single word.

3.3 External Interface

The SurfBoard’s external I/O connector supports a single output bit and a single input bit. The output can
be configured to follow the external input value, a bit in a control register, or the histogram bin overflow
condition. The input can be read from a status register; additionally, an event can trigger the trace function.
By interconnecting the external interfaces among several SurfBoards, all boards can trigger on the same
event. This combined with a global timestamp allows system wide traces to be interleaved and correlated.

1The current version of the SNI board has the top two bits hardwired to “01” limiting the color to 4 bits.
2Actually, the SNI board maintains a 45-bit register; the SurfBoard ignores the highest bit. This does not cause a problem

as the SurfBoards will interrupt their host CPUs when their 44-bit count rolls over to zero.

5

3.4 Multiplexing Variables for Flexible Monitoring

Multi-dimensional histograms allow the experimenter to build up a two, three, four or even five-dimensional
array of counters in the histogram memory. For example, one might want to collect histogram statistics
using both packet size and packet sender, to yield the joint frequency distribution of these two variables. A
correlation between the two might indicate that a particular Shrimp node tends to send larger packets on
average.

3.5 Trace Modes

The trace subsystem supports three trace modes. These are defined by the relative location of the trigger
packet after the trace completes. Trigger events are described in the next section. The modes also determine
what actually starts and stops the tracing of packet data. The modes are:

• Beginning: In this mode, the trigger starts the trace which runs until the trace memory is full. This
has the effect of capturing packets which follow the trigger event.

• End: In this mode, the trace runs continuously (treating the trace memory as a circular buffer). When
a trigger occurs, the trace immediately stops. This has the effect of capturing packets which lead up
to the trigger event.

• Middle: In this mode, the trace runs continuously (treating the trace memory as a circular buffer).
When a trigger occurs, the trace continues until a count of packets equal to half the buffer size are
received. This has the effect of capturing packets both before and after the trigger event.

3.6 Trigger Events

For performance monitors to be useful in on-the-fly monitoring, they must be able to take action and/or
interrupt the CPU on certain “interesting” events. Without this ability, higher-level software would have to
query the monitor periodically to determine its status. In a histogram-based monitor, a particular “event”
may involve a large memory region; for instance, detecting packets from a particular sender might mean
checking thousands of bins with that sender’s address. Thus, reading the histogram locations intermittently
throughout the run of a parallel application can often be both time-consuming and disruptive.

The SurfBoard provides efficient support for selective notification. With histogram mode enabled, the
monitor has a interrupt feature that notifies the CPU when a count rolls over to zero. By “preloading” a
selected bin with a count, an arbitrary threshold is set. The SurfBoard also saves the histogram address that
caused the interrupt in a FIFO memory. The software interrupt handler can read the overflow address FIFO
to see which bin(s) caused the interrupt, in order to decide how to react. In extreme situations, threshold
overflow interrupts can occur faster than they can be handled. We limit this problem by allowing individual
threshold interrupts to be masked (the address is still stored in the FIFO) and then interrupting the host
when the FIFO has reached a programmable high-water mark. This allows the software to quickly read
several overflow addresses during a single interrupt. These low-level mechanisms can be used by higher-level
application or operating system policies to take software action in response to monitored behavior.

The monitor can also be configured to use triggered event tracing. That is, when the monitor detects a
threshold event, it not only signals an interrupt, but also can trigger the trace mode automatically. This
feature allows for long periods of histogram-based monitoring, followed by detailed tracing once a particular
condition is detected. Triggered tracing and threshold-based interrupts can both be used in several interesting
ways, including providing on-the-fly information to running software, or capturing error traces once an error
condition is detected.

3.7 Performance Monitor Control Software

Finally, the SurfBoard responds to a set of low-level commands that come in via memory-mapped I/O writes
on the EISA bus. These commands provide a basic library of efficient access routines on top of which
higher-level tools can be built. The command set includes operations to start and stop monitoring, access

6

histogram or trace memory, adjust the resolution of the packet latency, access the category and threshold
registers, and configure the histogram bin selector FPGA.

The SurfBoard’s EISA interface sees the commands, accepts the data, and acts on that data to update
its control registers and read or write DRAM as needed. When commands are generated by the local node,
they incur the overhead of only a single EISA bus write. For many monitoring uses (such as initialization
and post-experiment reading of the histogram memory) this overhead is quite tolerable.

To perform a monitoring experiment, user-level software running on the PC initializes the histogram
memory (often to all zeroes, but not always) by supplying addresses and data via the monitor’s EISA bus
interface. The category registers are also initialized, as are the bits that enable the word-count, histogram,
and trace modes, as well as the trigger configuration. After this initialization, user software can start the
monitor by issuing a special EISA write, and can similarly stop the monitor and read DRAM locations using
different EISA operations.

Because we expect the SurfBoard to support experiments which run for long periods of time, the complete
SurfBoard state (with the exception of the FPGA bitstream) can be saved and restored. This is a key feature
when checkpointing long lived runs.

3.8 Effects of Measurement on Shrimp

The memory impact of the SurfBoard software is small. The kernel module which implements the device
driver currently uses 3 pages (4096 bytes each) which is small compared to the Shrimp driver module which
uses 311 pages.

An application which needs to the control the SurfBoard (to turn on and off measurements) must link
with the surf library which is currently 2138 bytes.

The SurfBoard design requires that the optional Shrimp timestamps are always enabled. According to [3],
enabling timestamps has very little impact on latency (at most a 1% increase for the smallest packets).
However, it does occupy an additional 64-bit position in the SNI board’s outgoing FIFO memory. Since the
minimum sized packet is two 64-bit words (consisting of a 64-bit header and a payload containing 64-bit
trailer), adding a timestamp represents a 50% increase in the packet size. If an application sends minimum
sized packets fast enough to fill (or nearly fill) the outgoing FIFO, the additional overhead of the timestamp
might have a noticeable impact.

Assuming an application did not want to lose any information, a lower bound for the maximum interrupt
rate is due to the roll over of the word count register. At the theoretical peak EISA bus rate of 8.3 Mword/sec,
the word count register will roll over and generate an interrupt every 9 minutes. In practice, this rate will
be much lower.

4 Case Studies

This section describes several experiments which we performed using the SurfBoard.

4.1 Experimental Setup

Our setup consists of four nodes with one instrumented with a SurfBoard.

4.2 Benchmarks

Each of the four parallel benchmark programs use a shared virtual memory (SVM) model. This SVM
implementation is known as Automatic Update Release Consistency (AURC) and is described in [13]. The
programs were instrumented to trace all packets in the parallel phase of the program after an initial startup
phase.

In addition, each of the programs were compiled to create both “combining” and a “no combining”
versions. When combining is enabled, the maximum combining is allowed (up to 1024 words with no

7

timeout) for shared writes. Note that at release time (e.g., barriers), AURC uses deliberate updates to
propagate page updates to other nodes. These deliberate update packets are, in general, larger than 1 word.

Detailed descriptions of the LU, OCEAN, and RADIX programs can be found in [20].

4.2.1 LU

The LU kernel factors a dense matrix into the product of a lower triangular and an upper triangular matrix.
To enhance data locality and to avoid false sharing, we used a version with an optimized data structure
for the matrix, namely a 4-d array, in which each 32× 32 element block is allocated contiguously in virtual
memory and the blocks assigned to a processor are also allocated contiguously. Barriers are used to ensure
synchronization between the processor producing the pivot row blocks and the processors consuming them, as
well as between outermost loop iterations. This kernel exhibits coarse-grain sharing and low synchronization
to computation frequency, but the computation is inherently unbalanced.

4.2.2 OCEAN

The OCEAN fluid dynamics application simulates large-scale ocean movements. Spatial partial differential
equations are solved at each time-step of the program using a restricted Red-Black Gauss-Seidel Multigrid
solver. Ocean is representative of the class of problems that are solved using regular grid near-neighbor
computations. At each iteration the computation performed on each element of the grid requires the values
of its four neighbors. Work is assigned to processors by statically splitting the grid and assigning a partition
to each processor. Nearest-neighbor communication occurs between processors assigned adjacent blocks of
the grid.

4.2.3 RADIX

The RADIX program sorts a series of integer keys into ascending order. The dominant phase of RADIX
is the key permutation phase. In RADIX a processor reads its locally-allocated n/p contiguous keys from
a source array and writes them to a destination array using a highly scattered and irregular permutation.
For a uniform distribution of key values, a processor writes contiguous sets of n/(rp) keys in the destination
array where r is the radix used; the r sets a processor writes are themselves separated by p− 1 other such
sets, and a processor’s writes to its different sets are temporally interleaved in an unpredictable way.

4.2.4 SIMPLE

The SIMPLE program is a micro-benchmark which performs writes to a single page mapped to another
processor (the “next” processor in a ring). The writes are addressed and paced so that different sized
packets will be generated by the underlying hardware. The implementation is an outer loop which counts
the number of groups. The inner loop writes to consecutive addresses (giving a chance for combining) up to
a user specified group size. The pacing is maintained by computing a target “time-to-wait”. (Time is based
on the Pentium cycle counter.) After a write to an automatic update mapped location, SIMPLE enters a
tight loop waiting until the target time. It then calculates the new target time (the previous target time
plus the user specified wait time) and continues.

If interrupt servicing causes the pace to fall behind schedule, writes will occur at the maximum rate
(limited by software overhead) until it gets back on schedule.

For the experiments performed for this technical report, the outer loop count was 512, the inner loop
group size was either 1 word or 1024 words, and the wait time was either 1 or 100 microseconds.

4.3 Raw Data

This section describes the experiments in detail and presents various graphs derived from trace data involving
packet latency, packet size, and receive time (relative to the receive time for the first packet in a given trace).

8

4.3.1 LU, Combining

This section shows the results of 5 runs of the LU
benchmark with combining enabled.

Figures 3–7 show the packet latency distributions.

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 3: LU, Combining, Run 1

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 4: LU, Combining, Run 2

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 5: LU, Combining, Run 3

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 6: LU, Combining, Run 4

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 7: LU, Combining, Run 5

9

Figures 8–12 show the packet size distributions.

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 8: LU, Combining, Run 1

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 9: LU, Combining, Run 2

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 10: LU, Combining, Run 3

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 11: LU, Combining, Run 4

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 12: LU, Combining, Run 5

10

Figures 13–17 show graphs of latency versus time.

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 13: LU, Combining, Run 1

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 14: LU, Combining, Run 2

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 15: LU, Combining, Run 3

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 16: LU, Combining, Run 4

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 17: LU, Combining, Run 5

11

4.3.2 LU, No Combining

This section shows the results of 5 runs of the LU
benchmark with combining disabled.

Figures 18–22 show the packet latency distribu-
tions.

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 18: LU, No Combining, Run 1

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 19: LU, No Combining, Run 2

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 20: LU, No Combining, Run 3

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 21: LU, No Combining, Run 4

1

4

16

64

256

1024

0 5 10 15 20 25 30 35 40 >40

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 22: LU, No Combining, Run 5

12

Figures 23–27 show the packet size distributions.

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 23: LU, No Combining, Run 1

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 24: LU, No Combining, Run 2

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 25: LU, No Combining, Run 3

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 26: LU, No Combining, Run 4

1

4

16

64

256

1024

4096

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 27: LU, No Combining, Run 5

13

Figures 28–32 show graphs of latency versus time.

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 28: LU, No Combining, Run 1

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 29: LU, No Combining, Run 2

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 30: LU, No Combining, Run 3

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 31: LU, No Combining, Run 4

0

5

10

15

20

25

30

35

40

>40

0 1 2 3 4 5 6 7 8 9

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 32: LU, No Combining, Run 5

14

4.3.3 OCEAN, Combining

This section shows the results of 2 runs of the
OCEAN benchmark with combining enabled.

Figures 33–34 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

0 200 400 600 800 1000 1200 >1200

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 33: OCEAN, Combining, Run 1

1

4

16

64

256

1024

4096

16384

0 200 400 600 800 1000 1200 >1200

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 34: OCEAN, Combining, Run 2

Figures 35–36 show the packet size distributions.
Comparing these figures with those for no com-

bining (Figures 41–42 on page 17) show that the two
spikes near 130 words are due to combining. These,
in turn, correspond to the spikes near 1000µsec in
the latency distribution (Figures 33–34).

1

4

16

64

256

1024

4096

16384

65536

0 20 40 60 80 100 120 140

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 35: OCEAN, Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

0 20 40 60 80 100 120 140

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 36: OCEAN, Combining, Run 2

15

Figures 37–38 show graphs of latency versus time.

0

200

400

600

800

1000

1200

>1200

0 1 2 3 4 5 6

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 37: OCEAN, Combining, Run 1

0

200

400

600

800

1000

1200

>1200

0 1 2 3 4 5 6

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 38: OCEAN, Combining, Run 2

4.3.4 OCEAN, No Combining

This section shows the results of 2 runs of the
OCEAN benchmark with combining disabled.

Figures 39–40 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

0 200 400 600 800 1000 1200 >1200

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 39: OCEAN, No Combining, Run 1

1

4

16

64

256

1024

4096

16384

0 200 400 600 800 1000 1200 >1200

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 40: OCEAN, No Combining, Run 2

16

Figures 41–42 show the packet size distributions.

1

4

16

64

256

1024

4096

16384

65536

0 20 40 60 80 100 120 140

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 41: OCEAN, No Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

0 20 40 60 80 100 120 140

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 42: OCEAN, No Combining, Run 2

Figures 43–44 show graphs of latency versus time.
The steep ramps in these graphs (which appear as
spikes) represent congestion in the SNI board outgo-
ing FIFOs on the sender side.

0

200

400

600

800

1000

1200

>1200

0 1 2 3 4 5 6

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 43: OCEAN, No Combining, Run 1

0

200

400

600

800

1000

1200

>1200

0 1 2 3 4 5 6

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 44: OCEAN, No Combining, Run 2

17

4.3.5 RADIX, Combining

This section shows the results of 5 runs of the RADIX
benchmark with combining enabled.

Figures 45–49 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 >500

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 45: RADIX, Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 >500

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 46: RADIX, Combining, Run 2

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 >500

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 47: RADIX, Combining, Run 3

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 >500

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 48: RADIX, Combining, Run 4

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 >500

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 49: RADIX, Combining, Run 5

18

Figures 50–54 show the packet size distributions.
Comparing these graphs with the no combining case
(Figures 65–69 on page 22) shows that the spikes near
250 words are due to combining.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 50 100 150 200 250 300

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 50: RADIX, Combining, Run 1

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 50 100 150 200 250 300

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 51: RADIX, Combining, Run 2

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 50 100 150 200 250 300

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 52: RADIX, Combining, Run 3

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 50 100 150 200 250 300

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 53: RADIX, Combining, Run 4

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 50 100 150 200 250 300

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 54: RADIX, Combining, Run 5

19

Figures 55–59 show graphs of latency versus time.
Note the clearly defined pattern. For the problem
size used, we expect there to be two cycles of the
main loop consisting of a key permutation (commu-
nication) phase and an internal sort (computation)
phase.

Comparing these graphs with the no combining
case (Figures70–74 on page 23) shows that the laten-
cies over 100µsec are due to combining.

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 55: RADIX, Combining, Run 1

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 56: RADIX, Combining, Run 2

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 57: RADIX, Combining, Run 3

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 58: RADIX, Combining, Run 4

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 59: RADIX, Combining, Run 5

20

4.3.6 RADIX, No Combining

This section shows the results of 5 runs of the RADIX
benchmark with combining disabled.

Figures 60–64 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 600 >600

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 60: RADIX, No Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 600 >600

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 61: RADIX, No Combining, Run 2

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 600 >600

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 62: RADIX, No Combining, Run 3

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 600 >600

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 63: RADIX, No Combining, Run 4

1

4

16

64

256

1024

4096

16384

65536

262144

0 100 200 300 400 500 600 >600

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 64: RADIX, No Combining, Run 5

21

Figures 65–69 show the packet size distributions.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 65: RADIX, No Combining, Run 1

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 66: RADIX, No Combining, Run 2

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 67: RADIX, No Combining, Run 3

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 68: RADIX, No Combining, Run 4

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

0 10 20 30 40 50 60 70

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 69: RADIX, No Combining, Run 5

22

Figures 70–74 show graphs of latency versus time.
These graphs show that there are a few times during
the run which exhibit intense communication result-
ing in large latencies due to back-ups in the outgoing
FIFO of the sending SNI boards.

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 70: RADIX, No Combining, Run 1

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 71: RADIX, No Combining, Run 2

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 72: RADIX, No Combining, Run 3

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 73: RADIX, No Combining, Run 4

0

100

200

300

400

500

>500

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (seconds)

Received Time vs. Latency

Figure 74: RADIX, No Combining, Run 5

23

4.3.7 SIMPLE, 1 Word, 1µsec, Combining

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 word packets at
a 1µsec word pace) with combining enabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 75–79 show the packet latency distribu-
tions.

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 75: SIMPLE, Combining, Run 1

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 76: SIMPLE, Combining, Run 2

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 77: SIMPLE, Combining, Run 3

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 78: SIMPLE, Combining, Run 4

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 79: SIMPLE, Combining, Run 5

24

Figures 80–84 show graphs of latency versus time.
These graphs show that the latency for 1 word pack-
ets is generally in the neighborhood of 5µsec. Note
that some system event (perhaps an interrupt) was
captured in Figure 83.

The large latency of the last packet (the lone point
in the upper right corner of the graphs) is due to a
packet waiting to be combined with another memory
reference, if possible. Eventually, it gets shipped out
with a resulting long latency.

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 80: SIMPLE, Combining, Run 1

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 81: SIMPLE, Combining, Run 2

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 82: SIMPLE, Combining, Run 3

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 83: SIMPLE, Combining, Run 4

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 84: SIMPLE, Combining, Run 5

25

4.3.8 SIMPLE, 1 Word, 1µsec, No Combin-
ing

This section shows the results of 4 runs of the SIM-
PLE benchmark (set to send 512 1 word packets at
a 1µsec word pace) with combining disabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 85–88 show the packet latency distribu-
tions.

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 85: SIMPLE, No Combining, Run 1

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 86: SIMPLE, No Combining, Run 2

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 87: SIMPLE, No Combining, Run 3

1

2

4

8

16

32

64

128

256

0 2 4 6 8 10 12 14 >14

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 88: SIMPLE, No Combining, Run 4

26

Figures 89–92 show graphs of latency versus time.
Note that these graphs have a similar structure to the
combining case (Figures 80–83 on page 25). The dif-
ference is that the latency is slightly smaller because
the packets are aggressively shipped out. As a result,
notice that there is no lone point in the upper right
corner as in the combining case.

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 89: SIMPLE, No Combining, Run 1

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 90: SIMPLE, No Combining, Run 2

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 91: SIMPLE, No Combining, Run 3

0

2

4

6

8

10

12

14

>14

0 200 400 600 800 1000 1200

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (microseconds)

Received Time vs. Latency

Figure 92: SIMPLE, No Combining, Run 4

27

4.3.9 SIMPLE, 1 Word, 100µsec, Combining

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 word packets at a
100µsec word pace) with combining enabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 93–97 show the packet latency distribu-
tions.

Notice that the scale is different in Figure 96.

1

2

4

8

16

32

64

128

256

512

<100 100 101 102 103 104 105 >105

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 93: SIMPLE, Combining, Run 1

1

2

4

8

16

32

64

128

256

512

<100 100 101 102 103 104 105 >105

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 94: SIMPLE, Combining, Run 2

1

2

4

8

16

32

64

128

256

512

<100 100 101 102 103 104 105 >105

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 95: SIMPLE, Combining, Run 3

1

2

4

8

16

32

64

128

256

512

<80 80 85 90 95 100 105 110 115 120 125 >125

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 96: SIMPLE, Combining, Run 4

1

2

4

8

16

32

64

128

256

512

<100 100 101 102 103 104 105 >105

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 97: SIMPLE, Combining, Run 5

28

Figures 98–102 show graphs of latency versus
time. The expectation would be for the latencies de-
picted here to be simply those of the 1µsec case (Fig-
ures 80–84 on page 25) offset by 100µsec. The fact
that they are lower than expected is probably due to
the overall program (running on four nodes) finding
a “better place”. That is, the larger gaps allow the
ensemble to synchronize with one another.

The large latency of the last packet (the lone point
in the upper right corner of the graphs) is due to a
packet waiting to be combined with another memory
reference, if possible. Eventually, it gets shipped out
with a resulting long latency.

Notice that the scale is different in Figure 101.
This was done to better capture the periodic event
spaced every 10 ms (the Linux timer interrupt period)
in this run.

<100

100

101

102

103

104

105

>105

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 98: SIMPLE, Combining, Run 1

<100

100

101

102

103

104

105

>105

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 99: SIMPLE, Combining, Run 3

<100

100

101

102

103

104

105

>105

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 100: SIMPLE, Combining, Run 2

<80

80

85

90

95

100

105

110

115

120

125

>125

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 101: SIMPLE, Combining, Run 4

<100

100

101

102

103

104

105

>105

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 102: SIMPLE, Combining, Run 5

29

4.3.10 SIMPLE, 1 Word, 100µsec, No Com-
bining

This section shows the results of 4 runs of the SIM-
PLE benchmark (set to send 512 1 word packets at a
100µsec word pace) with combining disabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 103–106 show the packet latency distribu-
tions.

1

2

4

8

16

32

64

128

256

512

0 1 2 3 4 5 6 7 8 >8

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 103: SIMPLE, No Combining, Run 1

1

2

4

8

16

32

64

128

256

512

0 1 2 3 4 5 6 7 8 >8

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 104: SIMPLE, No Combining, Run 2

1

2

4

8

16

32

64

128

256

512

0 1 2 3 4 5 6 7 8 >8

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 105: SIMPLE, No Combining, Run 3

1

2

4

8

16

32

64

128

256

512

0 1 2 3 4 5 6 7 8 >8

C
ou

nt

Latency (microseconds)

Latency Histogram

Figure 106: SIMPLE, No Combining, Run 4

30

Figures 107–110 show graphs of latency versus
time. These graphs are similar to those for the 1µsec
case (Figures 89–92). Again, since there is more
time between packets, the system runs synchronously
across the four nodes leading to lower latencies and
tighter latency distributions.

0

1

2

3

4

5

6

7

8

>8

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 107: SIMPLE, No Combining, Run 1

0

1

2

3

4

5

6

7

8

>8

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 108: SIMPLE, No Combining, Run 2

0

1

2

3

4

5

6

7

8

>8

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 109: SIMPLE, No Combining, Run 3

0

1

2

3

4

5

6

7

8

>8

0 10 20 30 40 50 60

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 110: SIMPLE, No Combining, Run 4

31

4.3.11 SIMPLE, 1 Kword, 1µsec, Combining

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 Kword packets at
a 1µsec word pace) with combining enabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Figures 111–115 show the packet latency distribu-
tions.

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 111: SIMPLE, Combining, Run 1

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 112: SIMPLE, Combining, Run 2

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 113: SIMPLE, Combining, Run 3

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 114: SIMPLE, Combining, Run 4

1

2

4

8

16

32

64

128

256

0 0.5 1 1.5 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 115: SIMPLE, Combining, Run 5

32

Figures 116–120 show the packet size distribu-
tions. Note that in the absence of interfering EISA
bus traffic, all packets would be 1024 words.

1

4

16

64

256

1024

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 116: SIMPLE, Combining, Run 1

1

4

16

64

256

1024

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 117: SIMPLE, Combining, Run 2

1

4

16

64

256

1024

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 118: SIMPLE, Combining, Run 3

1

4

16

64

256

1024

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 119: SIMPLE, Combining, Run 4

1

4

16

64

256

1024

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 120: SIMPLE, Combining, Run 5

33

Figures 121–125 show graphs of latency versus
time.

0

0.5

1

1.5

2

>2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 121: SIMPLE, Combining, Run 1

0

0.5

1

1.5

2

>2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 122: SIMPLE, Combining, Run 2

0

0.5

1

1.5

2

>2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 123: SIMPLE, Combining, Run 3

0

0.5

1

1.5

2

>2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 124: SIMPLE, Combining, Run 4

0

0.5

1

1.5

2

>2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 125: SIMPLE, Combining, Run 5

34

4.3.12 SIMPLE, 1 Kword, 1µsec, No Com-
bining

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 Kword packets at
a 1µsec word pace) with combining disabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 126–130 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.5 1 1.5 2 2.5 3 3.5 4 >4.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 126: SIMPLE, No Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.5 1 1.5 2 2.5 3 3.5 4 >4.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 127: SIMPLE, No Combining, Run 2

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.5 1 1.5 2 2.5 3 3.5 4 >4.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 128: SIMPLE, No Combining, Run 3

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.5 1 1.5 2 2.5 3 3.5 4 >4.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 129: SIMPLE, No Combining, Run 4

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.5 1 1.5 2 2.5 3 3.5 4 >4.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 130: SIMPLE, No Combining, Run 5

35

Figures 131–135 show graphs of latency versus
time. Notice that there are periods of no traffic fol-
lowed by periods of high latency traffic. Since com-
bining is disabled, all packets are 1 word in size and
have maximum overhead relative to their size. The
increase in overhead causes the outgoing FIFOs in the
sending SNI boards more often than the combining
case (with lower overhead). As a result, the overall
run times are longer than for the combining case (See
Figures 121–125 on page 34).

Figures 163–167 on page 45 explore some of the
detail near the 89 msec point in run 1 (Figure 131).

0

0.5

1

1.5

2

2.5

3

3.5

4

>4.0

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 131: SIMPLE, No Combining, Run 1

0

0.5

1

1.5

2

2.5

3

3.5

4

>4.0

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 132: SIMPLE, No Combining, Run 2

0

0.5

1

1.5

2

2.5

3

3.5

4

>4.0

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 133: SIMPLE, No Combining, Run 3

0

0.5

1

1.5

2

2.5

3

3.5

4

>4.0

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 134: SIMPLE, No Combining, Run 4

0

0.5

1

1.5

2

2.5

3

3.5

4

>4.0

0 0.5 1 1.5 2 2.5

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 135: SIMPLE, No Combining, Run 5

36

4.3.13 SIMPLE, 1 Kword, 100µsec, Combin-
ing

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 Kword packets at
a 100µsec word pace) with combining enabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Figures 136–140 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

0 50 100 150 200 250 300 350 >350

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 136: SIMPLE, Combining, Run 1

1

4

16

64

256

1024

4096

0 50 100 150 200 250 300 350 >350

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 137: SIMPLE, Combining, Run 2

1

4

16

64

256

1024

4096

0 50 100 150 200 250 300 350 >350

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 138: SIMPLE, Combining, Run 3

1

4

16

64

256

1024

4096

0 50 100 150 200 250 300 350 >350

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 139: SIMPLE, Combining, Run 4

1

4

16

64

256

1024

4096

0 50 100 150 200 250 300 350 >350

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 140: SIMPLE, Combining, Run 5

37

Figures 141–145 show the packet size distribu-
tions. Note that in the absence of interfering EISA
bus traffic, all packets would be 1024 words. The
distribution shows that approximately 25% of the
512 packets are full 1024 word packets. All other sizes
in the distribution are due to packet fragmentation.

1

4

16

64

256

1024

4096

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 141: SIMPLE, Combining, Run 1

1

4

16

64

256

1024

4096

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 142: SIMPLE, Combining, Run 2

1

4

16

64

256

1024

4096

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 143: SIMPLE, Combining, Run 3

1

4

16

64

256

1024

4096

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 144: SIMPLE, Combining, Run 4

1

4

16

64

256

1024

4096

0 128 256 384 512 640 768 896 1024

C
ou

nt

Size (x 32 bit payload words)

Packet Size Histogram

Figure 145: SIMPLE, Combining, Run 5

38

Figures 146–150 show graphs of latency versus
time.

An interesting feature of these graphs is the
thin line of points with a latency of approximately
200 msec. This is probably due to the Linux sched-
uler which uses a quantum of 200 msec.

0

50

100

150

200

250

300

350

>350

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 146: SIMPLE, Combining, Run 1

0

50

100

150

200

250

300

350

>350

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 147: SIMPLE, Combining, Run 2

0

50

100

150

200

250

300

350

>350

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 148: SIMPLE, Combining, Run 3

0

50

100

150

200

250

300

350

>350

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 149: SIMPLE, Combining, Run 4

0

50

100

150

200

250

300

350

>350

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 150: SIMPLE, Combining, Run 5

39

4.3.14 SIMPLE, 1 Kword, 100µsec, No Com-
bining

This section shows the results of 5 runs of the SIM-
PLE benchmark (set to send 512 1 Kword packets at a
100µsec word pace) with combining disabled. Only
packets associated with the benchmark’s data page
are shown. The small number of packets (less than
10) associated with barriers at the beginning and end
of the run have been removed.

Because all packets are of size 1, the size distribu-
tions are not shown.

Figures 151–155 show the packet latency distribu-
tions.

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.4 0.8 1.2 1.6 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 151: SIMPLE, No Combining, Run 1

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.4 0.8 1.2 1.6 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 152: SIMPLE, No Combining, Run 2

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.4 0.8 1.2 1.6 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 153: SIMPLE, No Combining, Run 3

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.4 0.8 1.2 1.6 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 154: SIMPLE, No Combining, Run 4

1

4

16

64

256

1024

4096

16384

65536

262144

0 0.4 0.8 1.2 1.6 2 >2.0

C
ou

nt

Latency (milliseconds)

Latency Histogram

Figure 155: SIMPLE, No Combining, Run 5

40

Figures 156–160 show graphs of latency versus
time. With combining disabled, the outgoing FIFOs
repeatedly fill (indicated by the steep ramps); how-
ever, the 100µsec pace allows the FIFOs to empty
more often than the 1µsec case resulting in lower
maximum latencies (see Figures 131–135 on page 36).

0

0.4

0.8

1.2

1.6

2

>2.0

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 156: SIMPLE, No Combining, Run 1

0

0.4

0.8

1.2

1.6

2

>2.0

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 157: SIMPLE, No Combining, Run 2

0

0.4

0.8

1.2

1.6

2

>2.0

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 158: SIMPLE, No Combining, Run 3

0

0.4

0.8

1.2

1.6

2

>2.0

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 159: SIMPLE, No Combining, Run 4

0

0.4

0.8

1.2

1.6

2

>2.0

0 5 10 15 20 25 30 35 40 45 50 55

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (seconds)

Received Time vs. Latency

Figure 160: SIMPLE, No Combining, Run 5

41

4.4 Analysis

In this section we provide some analysis of the raw data presented in Section 4.3.

4.4.1 Backplane Effects

Previous analysis[3] suggests that the bandwidth of the Paragon backplane is fast enough that it will not be
the bottleneck in application benchmarks (e.g., RADIX). To confirm this, we look at the joint distributions
of run 1 of RADIX with combining enabled. (Other views of the same dataset can be found in Figures 45,
50, and 55.)

0 us

100 us

200 us

300 us

400 us

500 us

>500 us
(1,0)

(0,2)
(1,2)

1

4

16

64

256

1024

4096

16384

65536

262144

Latency

Sender Node Offset (x,y)

Count

Figure 161: RADIX, Combining, Run 1 – Joint Latency and Sender Distribution

Figure 161 shows the joint latency and sender distribution. (There are 3 possible senders in a 4 node
system.) From this we can see that the sender location has little effect on the final packet latency.

Figure 162 shows the joint latency and size distribution. Looking along the latency axis where the packet
size is 1, we see that a size 1 packet can have many different latency values. This is due to the fact that
there is a varying amount of time after a shared page write and before another non-consecutive access which
forces the SNI to send the packet. Looking along the size axis where the latency is small, we see that for
packets which are sent immediately (presumably deliberate update packets at release time), the size doesn’t
have a strong correlation with latency.

4.4.2 Combining Effects

Table 1 shows the effect combining has on packet counts for Run 1 of each benchmark. Table 2 shows the
effect combining has on average packet sizes for Run 1 of each benchmark. In both tables, the SIMPLE
benchmarks shown are only the ones in which combining was possible (combining enabled and group sizes
of 1024 words).

For our benchmarks, combining did not have a significant effect on the overall runtime. It did, however,
have a significant effect on the SNI board’s outgoing FIFO (especially in the case of the SIMPLE benchmark).
With combining disabled, the additional packet overhead causes the outgoing FIFO to fill up. When this
occurs, the SNI board interrupts the CPU and enters a busy loop in the device driver waiting for the FIFO
to empty to a low water mark.

42

0 us

100 us

200 us

300 us

400 us

500 us

>500 us

 0
 10

 20
 30

 40
 50

 60
>60

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

1048576

Latency

Size (32-bit words)

Count

Figure 162: RADIX, Combining, Run 1 – Joint Latency and Size Distribution

Packet Count
Packet Count Packet Count Packet Count % drop due

Benchmark No Combining Combining Drop to Combining
LU 6458 6452 6 0.1
OCEAN 54477 33148 21329 39.2
RADIX 401789 394011 7778 1.9
SIMPLE 1µs 524288 579 523709 99.9
SIMPLE 100µs 524288 3146 521142 99.4

Table 1: Combining Effects on Packet Counts

Words/Packet
Words/Packet Words/Packet Words/Packet % increase due

Benchmark No Combining Combining Increase to Combining
LU 35.4 34.4 −1.1 −3.1
OCEAN 12.4 20.4 8.0 64.5
RADIX 1.0 1.0 0.0 2.0
SIMPLE 1µs 1.0 905.5 904.5 90550.6
SIMPLE 100µs 1.0 166.7 165.7 16565.2

Table 2: Combining Effects on Packet Size

43

Combining also interacts with the EISA bus occupancy. With combining disabled, each automatic update
write becomes a separate packet. At the receiving node, each packet requires the SNI board to become the
EISA bus master so that it can perform the DMA operation to move the packet data to the final location.
When the CPU is actively writing data to memory (which is more common under automatic update as the
caches are set to write-through), there can be significant contention for the EISA bus.

To see this effect, we take a closer look at Figure 131 on page 36: the latency vs. time graph of the
SIMPLE benchmark (no combining, 1 rmKword groups, 1µsec pace).

Figures 163 through 167 show increasing detail as we zoom in at the activity 90 msec into the run (as
measured from the receipt of the first data packet).

At the highest resolution, Figure 167, we see that packets are arriving approximately every 2µsec with
latencies that increase by approximately 500 nsec. By the nature of the SIMPLE program, all these packets
are from the same sender and, in particular, come from the same outgoing FIFO on the SNI board.

An EISA bus acquisition time of 3–4 bus cycles corresponds to 500 nsec. It seems that the CPU on the
receiving node is in contention with the receiving SNI board for the EISA bus. At the 1µsec pace, the node
is not able to arbitrate back and forth between these two masters fast enough to keep up with the data. As
a result there are long stretches of time characterized by packets with latencies increasing in increments of
the EISA bus acquisition time.

44

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (milliseconds)

Received Time vs. Latency

Figure 163: SIMPLE, No Combining, Run 1

0

0.5

1

1.5

2

2.5

3

3.5

75 80 85 90 95 100

L
at

en
cy

 (
m

ill
is

ec
on

ds
)

Received Time (milliseconds)

Received Time vs. Latency

Zoom in

Figure 164: SIMPLE, No Combining, Run 1

0

5

10

15

20

25

30

35

40

45

50

55

60

89.4 89.45 89.5 89.55 89.6 89.65 89.7

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 165: SIMPLE, No Combining, Run 1

0

5

10

15

20

25

89.53 89.535 89.54 89.545 89.55 89.555 89.56 89.565 89.57

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 166: SIMPLE, No Combining, Run 1

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

89.55 89.552 89.554 89.556 89.558 89.56

L
at

en
cy

 (
m

ic
ro

se
co

nd
s)

Received Time (milliseconds)

Received Time vs. Latency

Figure 167: SIMPLE, No Combining, Run 1

45

5 Hardware Retrospective

This section describes the differences between this design and the previously proposed design [16] as well as
some lessons learned.

5.1 Design Differences

Here is a list of some of the major design differences from the original performance monitor and the SurfBoard:

• Histogram address selection. Originally designed using an elaborate multiplexing scheme to allow
immediate reconfiguration across a limited number of configurations. The new design uses an FPGA
to implement the multiplexing. While a new configuration cannot be set in real-time, the simple
design space allows for compilation and down load in approximately one minute. The new approach
also allows for arbitrary selection of the bits from the input variables.

• Histogram and Trace modes are now independent and can operate simultaneously.

• Histogram overflow can trigger concurrent trace.

• Histogram memory width reduced from 40 to 32 bits, increase FIFO from a small size (implemented
in an FPGA) to 1365 entries. Matching the memory width to the bus width simplified the design.

• No global threshold register, event occurs on overflow. Preset allows each bin to effectively have its
own threshold.

• External triggering.

5.2 Lessons Learned

This was an ambitious hardware and software undertaking. Because of its large size and relatively late start
in the development of the Shrimp system, the SurfBoard did not come “on line” until near the end of the
useful life of the project. By this point most of the measurements that the SurfBoard can make directly
were already made by instrumenting the software or by direct measurements using commercially available
high-speed logic analyzers.

One of the factors which slowed the testing and integration of the SurfBoard and the SNI board was the
interface specification between the two boards. Given the academic nature of the project and the natural
“turn over” in personnel (i.e., graduate students) it is not uncommon for specification problems to arise.

The independent design of the word count, histogram, and trace modes simplified the hardware debugging
as the modes could “cross check” each other’s results.

Lessons learned:

• Reduce the scope of the design.

• For components which must work together (e.g., the SNI board board and the SurfBoard), design,
build, and test both components in parallel.

• Overlapping functionality (i.e., word count, histogram, and trace modes) simplified hardware debug-
ging.

6 Related Work

The design of the SurfBoard was originally based on the Shrimp performance monitor design described
in [16].

This section discusses the relationship of the SurfBoard to several previously developed projects. For
example, the Stanford DASH multiprocessor [15] included a per-cluster histogram-based performance monitor

46

[12]. In the DASH monitor, histogramming is fixed at the time the FPGA was compiled. While the
SurfBoard’s histogramming is also fixed at the time the FPGA is compiled, the FPGA implements only
the interconnections (there are no storage elements) of the histogram. As a result, we can recompile a new
histogram configuration in about one minute. The histograms allow statistics to be categorized into two user
and two operating system categories, or by subsets of the data address bits. A later DASH performance
monitor configuration was designed specifically to allow CPU interrupts and OS responses based on observed
per-page statistics, but did not allow for general interrupts based on any observed statistic. In contrast, our
hardware monitor supports both such specific studies as well as more general monitoring.

The performance monitoring system for Cedar used simple histograms [14], while IBM RP3 used a small
set of hardware event counters [6]. The Intel Paragon includes rudimentary per-node counters [18], but
cannot measure message latency. Histogram-based hardware monitors were also used to measure uniprocessor
performance in the VAX models 11/780 and 8800 [8, 11]. These monitors offered less flexible histogramming,
and could not categorize statistics based on data regions or interrupt the processor based on a user-set
threshold.

On-chip performance monitors are becoming more common for CPU chips. For example, Intel’s Pentium
line of CPUs incorporate extensive on-chip monitoring [17]. The Pentium performance counters include
information on the number of reads and writes, the number of read misses and write misses, pipeline stalls,
TLB misses, etc. Here also, there is no support for categorization of statistics or for selective CPU notifi-
cation. In contrast, the Alpha 21064 does provide some base level of performance monitoring with selective
CPU notification [9]. Its on-chip cache performance counter is used by initializing it to a particular value,
and then decrementing it whenever a cache miss occurs; when the counter value reaches zero, the CPU is
interrupted.

Some researchers have examined using monitoring information to guide operating system policy decisions.
For example, Bershad et al. proposed a special-purpose hardware monitor (Cache Miss Lookaside Buffer) that
would keep per-page statistics on memory behavior in order to guide operating system decisions about virtual-
to-physical page mappings [2]. Chandra et al. investigated the potential of dynamically using measured data
from a more general purpose hardware performance monitor to guide operating system scheduling and page
migration decisions [7]. This approach is closer to ours, but they used an existing performance monitor [12]
and focused their attention mainly on determining appropriate operating system policies.

7 Conclusions

This technical report has described the design of the hardware and software that make up Shrimp Usage
Reporting Facility (SURF) system and reported the results from benchmark studies on an SVM architecture
using the SurfBoard.

The SurfBoard design provides flexible instrumentation mechanisms such as multi-dimensional packet-
based histograms, page tags, histogram categories, and threshold-driven interrupts.

The Shrimp SVM implementation (AURC) uses an implicit form of interprocessor communication which
is very difficult to measure without hardware monitoring. We have shown that the SurfBoard can easily
measure this implicit traffic and can determine to what extent packet combining is taking place for a given
application.

Acknowledgments

We extend our thanks to Richard Alpert, Angelos Bilas, Yuqun Chen, Liviu Iftode, Rob Shillner, and
Yuanyuan Zhou of the Shrimp team who offered us their generous assistance during this research. Matthias
Blumrich designed the SNI board.

This project is sponsored in part by ARPA under grant N00014–95–1–1144, by NSF under grant MIP–
9420653, and by Intel Corporation. Margaret Martonosi is supported in part by an NSF Career award.

47

References
[1] BCPR Services Inc. EISA Specification, Version 3.12, 1992.

[2] B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen. Avoiding Conflict Misses Dynamically in Large Direct-
Mapped Caches. In Proceedings of the 6th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 158–170, October 1994.

[3] M. A. Blumrich. Network Interface for Protected, User-Level Communication. PhD thesis, Princeton University,
1996.

[4] M. A. Blumrich, C. Dubnicki, E. Felten, K. Li, and M. Mesarina. Virtual Memory Mapped Network Interfaces.
IEEE MICRO, pages 21–28, February 1995.

[5] M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W. Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. In Proceedings of the 21st Annual International Symposium
on Computer Architecture, pages 142–153, April 1994.

[6] W. C. Brantley, K. P. McAuliffe, and T. A. Ngo. RP3 Performance Monitoring Hardware. In Simmons, Koskela,
and Bucher, editors, Instrumentation for Future Parallel Computing Systems, pages 35–43. ACM Press, 1989.

[7] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and Page Migration for Mul-
tiprocessor Compute Servers. In Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 12–24, October 1994.

[8] D. W. Clark, P. J. Bannon, and J. B. Keller. Measuring VAX 8800 Performance with a Histogram Hardware
Monitor. In Proceedings of the 15th Annual International Symposium on Computer Architecture, pages 176–185,
May 1988.

[9] Digital Equipment Corporation. DECChip 21064 RISC Microprocessor Preliminary Data Sheet. Technical
report, 1992.

[10] C. Dubnicki, L. Iftode, E. W. Felten, and K. Li. Software Support for Virtual Memory-Mapped Communication.
In Proceedings of the IEEE 10th International Parallel Processing Symposium, April 1996.

[11] J. S. Emer and D. W. Clark. A Characterization of Processor Performance in the VAX–11/780. In Proceedings
of the 11th Annual International Symposium on Computer Architecture, pages 301–310, June 1984.

[12] M. A. Heinrich. DASH Performance Monitor Hardware Documentation. Stanford University, Unpublished
Memo, 1993.

[13] L. Iftode, C. Dubnicki, E. W. Felten, and K. Li. Improving Release-Consistent Shared Virtual Memory us-
ing Automatic Update. In Proceedings of the 2nd International Symposium on High-Performance Computer
Architecture, February 1996.

[14] D. Kuck, E. Davidson, D. Lawrie, et al. The Cedar System and an Initial Performance Study. In Proceedings of
the 20th Annual International Symposium on Computer Architecture, pages 213–223, May 1993.

[15] D. Lenoski, J. Laudon, et al. The DASH Prototype: Logic Overhead and Performance. IEEE Transactions on
Parallel and Distributed Systems, pages 41–61, January 1993.

[16] M. Martonosi, D. Clark, and M. Mesarina. The SHRIMP Performance Monitor: Design and Applications. In
ACM SIGMETRICS Symposium on Parallel and Distributed Tools, 1996.

[17] T. Mathisen. Pentium Secrets. Byte, pages 191–192, July 1994.

[18] J. Rattner. Paragon System. Presentation: DARPA High Performance Software Conference, January 1992.

[19] R. Traylor and D. Dunning. Routing Chip Set for Intel Paragon Parallel Supercomputer. In Proceedings Hot
Chips 1992 Symposium, August 1992.

[20] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Methodological Considerations and Characterization
of the SPLASH–2 Parallel Application Suite. In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, May 1995.

48

A Hardware Specification

This section describes the SurfBoard hardware in detail.

A.1 Architecture

The design of the SurfBoard is a three stage pipeline (see Figure 2 on page 4).

Stage 1 runs at twice the EISA bus BCLK rate, or approximately 16.7 MHz. The EISA specification allows
the PC motherboard to occasionally stretch cycles; we have observed this in our systems. The SNI board
sends packet data which is synchronized to this clock. The exception is the block labeled “Rx Time Counter
and Register” which implements the 44-bit timestamp counter and runs off the Paragon global 10 MHz clock
supplied by the SNI board. A framing signal (PMEN_L) from the SNI board synchronizes a local state machine
which causes the various registers in Stage 1 to sample the packet data at the correct time. Additionally,
there is a 10-bit size counter which counts the number of words in a packet as it arrives.

After a complete packet arrives and Stage 1 has sampled data from the packet, Stage 2 is signaled to continue
processing the data. Stage 2 runs at 25 MHz. This higher clock rate is used so that the 44-bit subtraction
performed by the Latency Generator can be implemented using a single 16-bit ALU (the ALU performs the
subtraction in three stages). After the Latency Generator, the Histogram Bin Selector (also known as the
Histogram Address Selector) reduces 50 bits of packet information to a 24 bit address. The Trace Register
samples all 126 bits of collected packet data. At the end of Stage 2, the histogram address, trace data, packet
size, and latency flags are presented to Stage 3.

Stage 3 consists of the Histogram Subsystem, the Trace Subsystem, and the System Controller. This stage
also runs at 25 MHz (with the exception of the EISA bus interface section of the System Controller which
runs at the BCLK rate of approximately 8.3 MHz. The Histogram Subsystem contains the histogram memory
and word counter. These share a 32-bit ALU which performs both the histogram bin increment and the
word count accumulation. The Trace Subsystem contains the trace memory and counters which track the
current index into the memory. The System Controller controls the operation of the SurfBoard including
memory arbitration between the incoming packet data, EISA bus requests, and DRAM refresh.

A.2 SNI board to SurfBoard Interface

The external connectors of the SurfBoard use the pin numbering scheme which gives the wire numbers in
the ribbon cable the same number as the connected pin. The pin numbers are marked on the SurfBoard.
Note that this is different than the convention used by the SNI board.

49

J3 SurfBoard Pin Out (Connects to J7 on the SNI board.)

Pin Signal Pin Signal Pin Signal Pin Signal
1 S DATA(31) 11 S DATA(21) 21 S DATA(11) 31 nc
2 S DATA(30) 12 S DATA(20) 22 nc 32 nc
3 S DATA(29) 13 S DATA(19) 23 nc 33 S COLOR(5)
4 S DATA(28) 14 S DATA(18) 24 nc 34 S COLOR(4)
5 S DATA(27) 15 S DATA(17) 25 nc 35 S COLOR(3)
6 S DATA(26) 16 S DATA(16) 26 nc 36 S COLOR(2)
7 S DATA(25) 17 S DATA(15) 27 nc 37 S COLOR(1)
8 S DATA(24) 18 S DATA(14) 28 nc 38 S COLOR(0)
9 S DATA(23) 19 S DATA(13) 29 nc 39 nc

10 S DATA(22) 20 S DATA(12) 30 nc 40 nc

J2 SurfBoard Pin Out (Connects to J8 on the SNI board.)

Pin Signal Pin Signal Pin Signal Pin Signal
1 S DATA(63) 11 S DATA(53) 21 S DATA(43) 31 S DATA(33)
2 S DATA(62) 12 S DATA(52) 22 S DATA(42) 32 S DATA(32)
3 S DATA(61) 13 S DATA(51) 23 S DATA(41) 33 PMEN L
4 S DATA(60) 14 S DATA(50) 24 S DATA(40) 34 nc
5 nc 15 S DATA(49) 25 S DATA(39) 35 nc
6 S DATA(58) 16 S DATA(48) 26 S DATA(38) 36 S EOD L
7 S DATA(57) 17 S DATA(47) 27 S DATA(37) 37 S GCLK
8 S DATA(56) 18 S DATA(46) 28 S DATA(36) 38 S GRST L
9 S DATA(55) 19 S DATA(45) 29 S DATA(35) 39 nc

10 S DATA(54) 20 S DATA(44) 30 S DATA(34) 40 nc

A.3 LED Assignments

LED # Color Signal Description
1 Red X IN L External Input (at 0 volts)
2 Red ANYRST L Any Reset (Power-on or EISA)
3 Red TRG L Trigger Occurred (HTCR.TRG)
4 Yellow FNE L FIFO Not Empty
5 Yellow TEN L Trace Enabled (HTCR.TEN)
6 Yellow E ACCESS L EISA Access
7 Yellow E IRQPEND L EISA IRQ Pending (ISCR.PEND)
8 Green T RUN2 L Packet in Stage 2
9 Green T RUN1 L Packet in Stage 1
10 Green ULED L User Defined (PCLR.LED)

A.4 Software Interface Description

The SurfBoard is a 32-bit EISA slave board [1]. Except where noted, all I/O space registers, memory mapped
registers, the histogram, and the trace memory can be accessed (read or write) using 8-bit, 16-bit, or 32-bit
transfers. The EISA bus is little endian.

50

A.5 I/O Space Registers / Bit Descriptions

The I/O registers are slot specific per the EISA specification (denoted by a “z” in the port address). The
following is a list of I/O space registers. They are described in detail on the referenced page.

Page
Port R/W Name Description Reference

0zC80 R EPIR EISA Product Identification Register 51
0zC84 R/W EBCR EISA Board Configuration Register 51

EPIR EISA Product Identifier Register (read only) 0zC80
Bits Field Description

31..28 PNUM Product Number (low 4 bits)
27..24 RLEV Revision Level
23..16 PNUM Product Number (high 8 bits)
15..13 MC2 Manufacturer Code 2nd Letter (low 3 bits)
12..8 MC3 Manufacturer Code 3rd Letter

7 ZERO This bit must be zero. It is used to check for the existence of a board in this slot.
6..2 MC2 Manufacturer Code 2nd Letter (high 2 bits)
5..0 MC1 Manufacturer Code 1st Letter

MCn – The EISA manufacturer code is encoded using 3 letters each consisting of 5 bits. The letters
A to Z map to values from 0x01 to 0x1A respectively. In the case of the SurfBoard, the
letters are “SRF”.

PNUM – The 12-bit product number. In the case of the SurfBoard, the product number is 0x001.

The concatenation of the manufacturer code, the three digit product number, and the one digit revision level
is known as the product ID string.

The SurfBoard EISA configuration revision level history is as follows:

Produce ID EPIR Value
Date Rev String (32-bit read)

11–Jan–1998 0 SRF0010 0x1000464E

The EISA configuration file name consists of an exclamation point followed by the product ID string with
the file extension of “CFG”. The name of the revision 0 SurfBoard EISA configuration file is therefore,
!SRF0010.CFG.

EBCR EISA Board Configuration Register 0zC84
Bits Field Description

31..16 RBASE Memory Mapped Register Base Address
15..11 MBASE Memory Base Address
10..8 IRLEV Interrupt Request Level
7..1 Unused. Reserved by EISA specification.
0 ENABLE Board Enable. (0 = disable; 1 = enable)

51

PNUM – The 12-bit product number. In the case of the SurfBoard, the product number is 0x001.

RBASE – The top 16 bits of the 32-bit base address of the 64Kbyte memory mapped register address
space.

MBASE – The top 5 bits of the 32-bit base address of the trace memory and histogram memory
128Mbyte address space. The trace memory begins at offset 0 and the histogram memory
begins at offset 0x04000000.

IRLEV – A three bit value indicating the interrupt level used by the board. The SurfBoard supports
interrupts on levels 5, 9, 10, 12, 14, and 15 based on IRLEV as follows:

000 – Disabled 100 – IRQ 10
001 – Disabled 101 – IRQ 12
010 – IRQ 5 110 – IRQ 14
011 – IRQ 9 111 – IRQ 15

ENABLE – This bit is the EISA required enable bit. When disabled (the default after power-up), the
board only responds to EISA slot-specific I/O operations on the EPIR and EBCR registers.
All interrupts are disabled, packet monitoring is disabled, memory mapped register access is
disabled, and the external open-collector output signal is disabled. Refresh cycles continue
on the histogram and trace DRAM to preserve data. Monitoring registers and the histogram
index FIFO retain their values (but are inaccessible).

A.6 Memory Mapped Registers / Bit Descriptions

The register offsets are relative to RBASE in the EBCR. The address space for the memory mapped registers
is 64 Kbytes. The following registers are redundantly mapped 1024 times in the address space. They are
described in detail on the referenced page.

Page
Port R/W Name Description Reference

0x0000 R/W FCCR FPGA Configuration Control Register 52
0x0004 R/W FCDR FPGA Configuration Data Register 53
0x0008 R/W ACDR Application Configuration Data Register 54
0x000C R/W TTCR Trace Trigger Configuration Register 55
0x0010 R/W ECDR External Connector Data Register 57
0x0014 R/W PCLR Packet Category / LED Register 57
0x0018 R/W ISCR Interrupt Status / Control Register 57
0x001C R/W IEMR Interrupt Event Mask Register 59
0x0020 R/W HTCR Histogram / Trace Command Register 59
0x0024 R/W WCDR Word Count Data Register 60
0x0028 R/W HFCR Histogram FIFO Control Register 60
0x002C R/W HFDR Histogram FIFO Data Register 61
0x0030 R/W TICR Trace Index Count Register 61
0x0034 R/W TECR Trace Event Count Register 61
0x0038 R/W TPIR Trigger Packet Index Register 62
0x003C Unused. Writes ignored. Reads undefined.

52

FCCR FPGA Configuration Control Register 0x0000
Bits Field Description

31..12 Unused. Reads as 0 bits. Writes are ignored.
11..8 TSPD Trace SIMM Presence Detect (read only)
7..4 HSPD Histogram SIMM Presence Detect (read only)
3 DONE Done (read only)
2 ERR Error (read only)
1 CFG Configuration (read only)
0 PROG Program

TSPD – Trace SIMM Presence Detect. This is the JEDEC defined 4-bit value from the Trace DRAM
SIMM. It can be used to determine the type and speed of the SIMM. The MSB of this field
corresponds to PRD4 and the LSB corresponds to PRD1. (See table below.)

HSPD – Histogram SIMM Presence Detect. This is the JEDEC defined 4-bit value from the His-
togram DRAM SIMM. It can be used to determine the type and speed of the SIMM. The
MSB of this field corresponds to PRD4 and the LSB corresponds to PRD1.

Presence Detect
Memory Module (SIMM) Type PRD4 PRD3 PRD2 PRD1
Micron 1 M× 32 60 ns MT8D132 1 1 0 0
Micron 4 M× 32 60 ns MT8D432 1 1 1 0
Empty SIMM Socket 1 1 1 1

For the SIMMs we are currently using (listed in the table above), the presence detect will
unambiguously detect the size of the device. However, this may not be the case with
other SIMMs we may use in the future. In the case where the presence detect does not
unambiguously determine the memory size, an algorithm must be implemented to determine
the memory size by writing and reading to various memory locations to determine the
memory extent.

DONE – This bit indicates that the FPGA has completed configuration. This status bit follows the
DONE pin on the FPGA.

ERR – This bit indicates that an error occurred during the configuration of the FPGA. This status
bit is the logical inversion of the INIT* pin on the FPGA.

CFG – This bit indicates that the FPGA is in the configuration mode. This status bit follows the
HDC pin on the FPGA.

PROG – Writing a 1 forces the FPGA into the configuration mode. This signal is inverted and drives
the PROG* pin on the FPGA. After power-on reset, this bit will be set to a 1 keeping the
FPGA in configuration mode until the initialization software is ready to program the device.

The FPGA uses the “Slave Serial Mode” of configuration as described in the device data sheet.

53

FCDR FPGA Configuration Data Register 0x0004
Bits Field Description
31..1 Unused. Reads as 0 bits. Writes are ignored.

0 DATA Data

DATA – Each time this register is written, the value of DATA is clocked (using CCLK) into the DIN pin
of the FPGA. Reading this register returns the value of the last stage in the shift register
and does not move any bits.

ACDR Application Configuration Data Register 0x0008
Bits Field Description
31..1 Unused. Reads as 0 bits. Writes are ignored.

0 DATA Data

DATA – Each time this register is written, the value of DATA is clocked into the 28-bit shift register
used to configure the SurfBoard’s packet monitoring. Reading this register returns the value
of the last stage in the shift register and does not move any bits. By reading and then writing
this location a total of 28 times, the entire configuration will be recirculated one time.

The shift register contents are in the following table. Items which are listed first are shifted in last. In other
words, bits are shifted “in” at the top of the list and bits are shifted “out” at the bottom of the list. Items
with more than one bit are shifted in LSB first.

Name Description Bits
SENDID Sender Identification 3
RDBK A Readback A (unused/reserved) 1
CATMUX Category Multiplexer 1
RDBK B Readback B (unused/reserved) 3
LAT S Latency Configuration (S) 5
LAT N Latency Configuration (N) 4
RDBK C Readback C (unused/reserved) 3
TSIZE Trace DRAM size 2
RDBK D Readback D (unused/reserved) 2
RDBK F Readback F (unused/reserved) 4

SENDID – Sender Identification (3 bits). This setting selects how the 6-bit Sender ID field
is generated based on the sender’s X and Y coordinates as follows:

000 – 32× 2 (1 LSB of Y concatenated with 5 LSB of X)
001 – 16× 4 (2 LSB of Y concatenated with 4 LSB of X)
010 – 8× 8 (3 LSB of Y concatenated with 3 LSB of X)
011 – 4× 16 (4 LSB of Y concatenated with 2 LSB of X)
100 – 2× 32 (5 LSB of Y concatenated with 1 LSB of X)
101 – undefined
110 – undefined
111 – undefined

RDBK A – Readback A (1 bit). Readback bits occupy positions in the shift register. They
are unused and are reserved for future use.

54

CATMUX – Category Multiplexer (1 bit). This bit selects which value will be used as the
category for the packet. To use the value of the PCLR.CAT register as the packet category,
set this bit to a 0. To use the upper four bits of the first 32-bit word of user data as the
packet category, set this bit to a 1.

RDBK B – Readback B (3 bits). Readback bits occupy positions in the shift register.
They are unused and are reserved for future use.

Latency Configuration: The next two fields in the shift register configure the operation
of the latency generator. The latency generator subtracts the 44-bit transmit time from the
44-bit receive time to obtain a 44-bit latency. The resolution of the latency is 100 ns. A
24-bit “window” is chosen from the 44-bit latency based on two settings:

NUM: the number of bits from the 44-bit latency to put in the 24-bit window. Allowed
values of NUM are even integers from 2 to 24.

START: the starting bit position of interest in the 44-bit latency. Allowed values of START
are even integers from 0 to 40.

As an example, if we choose NUM=12 and START=6, the resolution of our window is
26 × 100 ns = 6.4µs and the largest value we can represent is (212 − 1)× 6.4µs = 26.2 ms.

Since both NUM and START must be even integers, we use N and S to represent NUM/2
and START/2 respectively.

LAT S – Latency Configuration S (5 bits). START/2. S may be any of 0 to 20 inclusive.

LAT N – Latency Configuration N (4 bits). NUM/2. N may be any of 1 to 12 inclusive.

RDBK C – Readback C (3 bits). Readback bits occupy positions in the shift register.
They are unused and are reserved for future use.

TSIZE – Trace DRAM size (2 bits). At board initialization time, software should determine
the actual amount of trace memory and select the corresponding value for the trace DRAM
size as follows:

00 – 256 Bytes (for testing)
01 – 4 MBytes
10 – 16 MBytes
11 – 64 MBytes

RDBK D – Readback D (2 bits). Readback bits occupy positions in the shift register.
They are unused and are reserved for future use.

RDBK E – Readback E (4 bits). Readback bits occupy positions in the shift register.
They are unused and are reserved for future use.

RDBK F – Readback F (4 bits). Readback bits occupy positions in the shift register. They
are unused and are reserved for future use.

55

TTCR Trace Trigger Configuration Register 0x000C
Bits Field Description
31..9 Unused. Reads as 0 bits. Writes are ignored.

8 EIP External Input Polarity.
7 EOP External Output Polarity.
6 MEOD Mask External Output Data.
5 MEI Mask External Input.
4 MBV Mask Bin Overflow.

3..2 MODE Trace Mode.
1..0 QUAL Trigger Packet Qualifier.

The external connector uses open-collector active-low signaling. The normal polarity for the output is that
a TRUE will cause the line to go low. Any other devices connected to this signal may also pull the line low
using wired-OR logic. The normal polarity for the input is that a low level will be interpreted as TRUE.

EIP – External Input Polarity. (1 = Invert; 0 = No-invert). When inverted, interpret a low signal
on the input as a FALSE.

EOP – External Output Polarity. (1 = Invert; 0 = No-invert). When inverted, the output is driven
low when the output should be considered FALSE.

The logical value for the external connector is determined by the following equation:

Output = (MEOD · ECDR.DATA) + (MEI · Input) + (MBV · BOC)

MEOD – Mask External Output Data. When this bit is 0, the DATA bit of the ECDR will masked
out and will not contribute to the external output value.

MEI – Mask External Input. When this bit is 0, the logical value (TRUE/FALSE) of the external
input will be masked out and will not contribute to the external output value.

MBV – Mask Bin Overflow. When this bit is 0, the bin overflow condition (BOC) will be masked
out and will not contribute to the external output value. The BOC is set when a histogram
bin overflows; the BOC is cleared when a 1 is written to bit BV of the ISCR register.

MODE – These bits select where the trigger packet occurs in a trace:

00 – trigger is at the beginning of the trace
01 – trigger is at the middle of the trace
10 – trigger is at the end of the trace
11 – reserved

QUAL – These bits determine the qualifier (after the trace is enabled by the HTCR register) needed
for a packet to be the trigger packet:

00 – Any packet will trigger a trace.
01 – External input. If the external input is TRUE

when a packet arrives, that packet will be the
trigger.

10 – Histogram bin overflow. Any packet which causes
a histogram bin overflow will trigger a trace.

11 – The logical-OR of the previous two conditions.

56

When trace is enabled (HTCR.TEN = 1) and a qualifying packet arrives, HTCR.TRG is
set to 1. This in turn will cause ISCR.TP to be set.

ECDR External Connector Data Register 0x0010
Bits Field Description
31..1 Unused. Reads as 0 bits. Writes are ignored.

0 DATA Data

DATA – Logical Output Data. (1 = logical TRUE; 0 = logical FALSE). See the MEOD field of the
TTCR register for details.

PCLR Packet Category / LED Register 0x0014
Bits Field Description
31..5 Unused. Reads as 0 bits. Writes are ignored.

4 LED LED Indicator.
3..0 CAT Category.

LED – LED Indicator. Writing a 1 or a 0 turns the user LED on or off, respectively.

CAT – Category. Each incoming packet is assigned a 4-bit category which can be used to differen-
tiate among packet types. If the SurfBoard is configured for local category (the Category
mux of the application shift register is 0), incoming packets will be assigned the category
of this 4-bit field. When remote category is selected, the top four bits of the first word of
the incoming packet is used as the category. Because there are three stages in the packet
processing pipeline, up to three packets may be processed with the previous value of the
category register.

ISCR Interrupt Status / Control Register 0x0018
Bits Field Description
31 PEND Interrupt Pending. (read only)

30..14 Unused. Reads as 0 bits. Writes are ignored.
13 RTV Receive Time Overflow (read only)
12 LU Latency Underflow (write 1 to clear)
11 LV Latency Overflow (write 1 to clear)
10 PV Pipeline Overflow (write 1 to clear)
9 WCV Word Counter Overflow (write 1 to clear)
8 BV Bin Overflow (write 1 to clear)
7 FV FIFO Overflow (write 1 to clear)
6 FF FIFO Full (read only)
5 FAF FIFO Almost Full (read only)
4 FPF FIFO Partially Full (read only)
3 FNE FIFO Not Empty (read only)
2 EXT External Input (write 1 to clear)
1 TP Trigger Packet (write 1 to clear)
0 TC Trace Complete (write 1 to clear)

There are 14 different conditions which may cause an interrupt. The PEND bit will be a one when the board
is actively asserting one of the IRQ lines on the EISA bus. The PEND bit is the sign bit of a typical 32-bit

57

signed integer so that testing if this board has caused an interrupt can be made by checking the sign of the
ISCR register. Note that the interrupt conditions (bits 13..0) reflect actual status and are not masked by
the IEMR.

PEND – Interrupt Pending. This status bit is a 1 when the SurfBoard is actively asserting an
interrupt on the EISA bus.

RTV – Receive Time Overflow. The 44-bit receive time counter has overflowed. To clear this
condition, the receive time counter must be reset using a global reset signal from the SNI
board.

LU – Latency Underflow. This indicates that a packet was received before it was sent (as indicated
by the timestamps). In this case the latency for the packet will be reported as zero. To
clear this condition, write a 1 in this bit position to this register.

LV – Latency Overflow. This indicates that a packet was received with a latency greater than
can be represented by the 24-bit window. In this case the latency for the packet will be
reported as all ones. To clear this condition, write a 1 in this bit position to this register.

PV – Pipeline Overflow. This indicates that packets have arrived too fast for the SurfBoard to
process and that at least one packet has been dropped. By design, this should “never
happen”. It is included to facilitate testing and debugging of the hardware. To clear this
condition, write a 1 in this bit position to this register.

WCV – Word Counter Overflow. This indicates that the 32 bit word counter has wrapped around
zero. To clear this condition, write a 1 in this bit position to this register.

BV – Bin Overflow. A histogram bin count has wrapped around to 0. The index of the histogram
bin which overflowed will be written to the FIFO. To clear this condition, write a 1 in
this bit position to this register. This (sticky) bit is known as the Bin Overflow Condition
(BOC) and is also used to determine the external connector output (see the TTCR register
for details).

FV – FIFO Overflow. An attempt was made to write a histogram bin address (caused by a
histogram bin overflow) to the FIFO when it was full. To clear this condition, write a 1 in
this bit position to this register. Note that writing to the FIFO from the EISA bus via the
HFDR register will not cause a FIFO overflow.

FF – FIFO Full. The FIFO is full. To clear this condition, either read at least one item from the
FIFO or reset the FIFO using the HTCR register.

FAF – FIFO Almost Full. The FIFO has fewer available slots than specified by the full offset in
the HFCR register. To clear this condition, either read items from the FIFO until the full
offset threshold is crossed or reset the FIFO using the HTCR register.

FPF – FIFO Partially Full. The number of occupied slots in the FIFO is at least that specified by
the empty offset in the HFCR register. To clear this condition, either read items from the
FIFO until the empty offset threshold is crossed or reset the FIFO using the HTCR register.

FNE – FIFO Not Empty. The FIFO has at least one occupied slot. To clear this condition, either
read items from the FIFO until it is empty or reset the FIFO using the HTCR register.

58

EXT – External Input. There has been a FALSE-to-TRUE transition on the external input. The
TTCR.EIP bit controls the definition of TRUE and FALSE. Note that if the external input
is at a constant level, toggling the TTCR.EIP will effectively cause a transition. To clear
this condition, write a 1 in this bit position to this register.

TP – Trigger Packet. A trigger packet has arrived. (Specifically, HTCR.TEN was a 1 and a 0 to 1
transition of HTCR.TRG occurred.) The TPIR register contains the index in the trace
memory of the packet. To clear this condition, write a 1 in this bit position to this register.

TC – Trace Complete. When the trace mode is set to either trigger at the beginning or to trigger
at the middle, the trace is complete when the trace memory is full. When the trace mode
is set to trigger at the end, the trace is complete when the trigger packet arrives. To clear
this condition, first clear the underlying condition by either setting TECR to 0 for MODE
00 and 01 or clearing the HTCR.TRG for MODE 10, then write a 1 in this bit position to
this register.

IEMR Interrupt Event Mask Register 0x001C
Bits Field Description

31..14 Unused. Reads as 0 bits. Writes are ignored.
13 RTV Receive Time Overflow.
12 LU Latency Underflow.
11 LV Latency Overflow.
10 PV Pipeline Overflow.
9 WCV Word Counter Overflow.
8 BV Bin Overflow.
7 FV FIFO Overflow.
6 FF FIFO Full.
5 FAF FIFO Almost Full.
4 FPF FIFO Partially Full.
3 FNE FIFO Not Empty.
2 EXT External Input.
1 TP Trigger Packet.
0 TC Trace Complete.

These bits correspond precisely to the bits in the ISCR register. When a bit is a 1 (unmasked), it allows
the corresponding event to cause an interrupt. When a bit is a 0 (masked), the corresponding event will not
cause an interrupt. Note that a masking an interrupt will not change the status value read from the ISCR
register.

When the board is disabled by either a power-on reset or setting the ENABLE bit of the EBCR register to
zero, the IEMR register is reset to all zeros. All interrupts will be masked and the previous value of the
IEMR register will be lost.

59

HTCR Histogram / Trace Command Register 0x0020
Bits Field Description
31..6 Unused. Reads as 0 bits. Writes are ignored.

5 PRS Pipeline Reset.
4 FRS FIFO Reset.
3 TRG Trigger Occurred.
2 WEN Word Counter Enable.
1 HEN Histogram Enable.
0 TEN Trace Enable.

PRS – Pipeline Reset. When this bit is a 1, the packet pipeline state machines are held in a reset
state. When this bit is set back to a 0, the next word of data from the SNI board will be
interpreted as the beginning of a new packet. This reset is needed only if the last packet
from the SNI board was not properly terminated with an end-of-data signal and there was
no EISA bus reset (reboot) to reset the packet pipeline state machines.

FRS – FIFO Reset. When this bit is a 1, the Histogram Index FIFO is held in a reset state. When
this bit is set back to a 0, the FIFO will be empty, the FIFO control registers will be set to
their default values, and the control register pointer will be reset to point to the LSB of the
Empty Offset. At power on, this bit is set to 1. Therefore, in order to use the FIFO, this
bit must be set to a 0 in software.

TRG – Trigger Occurred. This bit is set when a trigger packet arrives. It can be set to aid in
debugging and to restore the state of the SurfBoard.

WEN – Word Counter Enable. (1 = enable; 0 = disable). This bit enables the word counter. At
power on, this bit is reset to 0.

HEN – Histogram Enable. (1 = enable; 0 = disable). This bit enables the histogram function. At
power on, this bit is reset to 0.

TEN – Trace Enable. (1 = enable; 0 = disable). This bit enables the trace function. At power on,
this bit is reset to 0.

WCDR Word Count Data Register 0x0024
Bits Field Description
31..0 DATA Data
8-bit or 16-bit writes to this register are ignored.

DATA – This register contains the number of 32-bit words received.

When this counter overflows the WCV bit in the ISCR register is set. At the highest word rate (limited by
the 8.3 Mwords/sec EISA bandwidth), the counter will roll over every 9 minutes.

HFCR Histogram FIFO Control Register 0x0028
Bits Field Description
31..8 Unused. Reads as 0 bits. Writes are ignored.

0 DATA Data

60

DATA – FIFO Data.

This register accesses the FIFO offset registers. They define how full or empty the FIFO must be before it
asserts the FAF (FIFO almost full) or the FPF (FIFO partially full) flags.

HFDR Histogram FIFO Data Register 0x002C
Bits Field Description
31..9 Unused. Reads as 0 bits. Writes are ignored.

8 LSB Least Significant Byte Indicator.
7..0 DATA Data

DATA – Each time this register is written, the value of DATA is clocked (using CCLK) into the DIN pin
of the FPGA. Reading this register returns the value of the last stage in the shift register
and does not move any bits.

LSB – Least Significant Byte Indicator. An 8-bit FIFO is used to store 24-bit histogram indices
using 3 slots per index. This bit indicates that the current 8-bit value is the LSB of the
24-bit index. The LSB is read first.

DATA – FIFO Data. If the FIFO is empty, any data read will be undefined. If the FIFO is full, any
data written will be ignored.

Note that reading or writing to the FIFO will effect the FIFO status bits in the ISCR and could cause a
corresponding interrupt. Note that an 8-bit read will ignore the LSB field and that an 8-bit write will store
an unknown value into the LSB field.

TICR Trace Index Count Register 0x0030
Bits Field Description

31..22 Unused. Reads as 0 bits. Writes are ignored.
21..0 DATA Data
8-bit or 16-bit writes to this register are ignored.

DATA – This 22-bit index contains the index where the next 64-bit trace value will be written.

The actual size of the DATA field in this register can be 4, 18, 20, or 22 bits when the the setting of the 2-bit
TSIZE field of the ACDR shift register is 00, 01, 10, or 11, respectively. When TSIZE specifies a register
size smaller than 22 bits, the high order bits will read as zero and writes to these upper bits are ignored.

TECR Trace Event Count Register 0x0034
Bits Field Description

31..23 Unused. Reads as 0 bits. Writes are ignored.
22..0 DATA Data
8-bit or 16-bit writes to this register are ignored.

DATA – This 23-bit counter indicates how many events have been recorded in the trace memory
since starting the trace.

61

TPIR Trigger Packet Index Register 0x0038
Bits Field Description

31..22 Unused. Reads as 0 bits. Writes are ignored.
21..0 DATA Data

DATA – This 22-bit index indicates which 128-bit trace value corresponds to the trigger packet.

A.7 Trace Memory

The trace memory space begins at offset 0 from MBASE in the EBCR register and is 64 MBytes in size. Each
packet which is traced requires 16 bytes of memory. The SurfBoard supports 32-bit wide (72 pin) SIMMs of
4 MBytes, 16 MBytes, or 64 MBytes. This allows 218, 220, or 222 packets to be sampled, respectively. Each
sample is 128 bits and is stored as four 32-bit words as follows:

Trace Memory Word (Offset 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sender ID V U Latency

V: Latency Overflow, U: Latency Underflow

Trace Memory Word (Offset 1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Category Size Color Receive Time (High)

Trace Memory Word (Offset 2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Receive Time (Low)

Trace Memory Word (Offset 3)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I P Packet Address (bits 26..2) B

I: Interrupt, P: Presence, B: Byte Enables

The presence bits can be used to indicate where valid trace data exists in the trace memory. These bits can
be initialized by software to be non-zero; the trace hardware will always store a zero in these bits when a
packet arrives. The Shrimp hardware only uses bits 26..2 of the address. This limits the locations where a
packet can be stored to the low 128 MBytes of physical address space.

A.8 Histogram Memory

The histogram memory space begins at offset 0x04000000 from MBASE in the EBCR register and is
64 MBytes in size. The SurfBoard supports 32-bit wide (72 pin) SIMMs of 4 MBytes, 16 MBytes, or

62

64 MBytes. This allows up to 220, 222, or 224 histogram bins each containing a 32-bit count. Data from
incoming packets is extracted and distilled to create the bin address which is incremented. When a histogram
bin increments from 0xFFFFFFFF to 0 (wraps around), the bin address is stored in the histogram address
FIFO. This bin overflow can optionally trigger a trace and/or interrupt the CPU. The histogram memory
must be initialized before use. The memory can be randomly accessed and any value can be preloaded into
each location.

A.9 Programming Sequences

A.9.1 Initialization

After either a power-on reset or an EISA reset, the board will be disabled and will only respond to accesses
on the slot specific I/O mapped registers EPIR and EBCR. The ENABLE.EBCR bit will be cleared. As a
result, the IEMR register will be cleared masking all interrupts.

The EISA configuration sequence automatically assigns the interrupt level, assigns the memory address space
for the registers and memory, and enables the board using the EBCR register.

The device driver must initialize the board. The device driver also determines the memory size of the trace
and histogram memory.

A.9.2 Collecting Data

To begin an experiment the board is accessed as follows:

• Write a 0 to the IEMR register to mask all interrupts.

• Disable data collection using the HTCR register.

• Load the application shift register using the ACDR register.

• Set the external I/O, trace mode, and qualifier using the TTCR and ECDR registers.

• Initialize the histogram memory.

• Initialize TICR and TECR registers.

• Clear interrupt sources of interest by:

– writing to the ISCR register

– ensuring that the FIFO is empty by using the HIFR register.

– ensuring that the external input line is not asserted.

– ensuring that the word counter is not full by writing to the HTCR register.

• Set the user LED and the local category with PCLR.

• Enable interrupts as appropriate using the IEMR register.

• Enable data collection with the HTCR register.

63

B Software Specification

B.1 Driver Interface

Interaction with the SurfBoard is provided by a character mode device driver. The following is a list of
functions available in the Surf library which control the SurfBoard through the driver. The Calling sequences
and return values can be found in the header file surflib.h.

surf_Open Open the SurfBoard device.
surf_Open Open the SurfBoard device.
surf_Close Close the SurfBoard device.
surf_GetReg Read a specific SurfBoard register.
surf_PutReg Write a specific SurfBoard register.
surf_GetTSize Get the size of the trace memory in bytes.
surf_GetTMem Copy a block of trace memory to local memory.
surf_PutTMem Copy a block of local memory to trace memory.
surf_GetHSize Get the size of the histogram memory in bytes.
surf_GetHMem Copy a block of histogram memory to local memory.
surf_PutHMem Copy a block of local memory to histogram memory.
surf_ConfigHAS Load a bitstream into the Histogram Address Selector FPGA.
surf_WaitException Waits until an exception (interrupt) occurs or until a timeout has occurred.
surf_ClearException Clears the exception state in the driver.

B.2 Utility Programs

B.2.1 User Interface to the SurfBoard

The surf utility provides a user interface to the SurfBoard. In addition to modifying register values and
loading the histogram address configuration FPGA, it can transfer data between the histogram and trace
memory and files.

Here is an example of a short session using the help, show, and quit commands:

node1:~$ surf
> help
Available Commands:

QUIT - Quit Program
EXIT - Quit Program
HELP - Show this message
SHOW - Display Registers
DO <filename> - Execute Commands in file
CLEAR <memtype> - Clear Memory
FPGA <filename> - Load FPGA configuration
LOAD <memtype> <filename> - Load Memory from file
SAVE <memtype> <filename> - Save Memory to file
<register> = <value> - Modify Register

Where:
<memtype> - TRACE, HISTOGRAM, or FIFO
<register> - A register or register.field
<value> - An unsigned integer. Hex by default.

End with decimal point to specify decimal.
> show
FCCR 00000EE8 TSPD E HSPD E DONE 1 ERR 0 CFG 0 PROG 0

64

ACDR 02006080 SENDID 1 CATMUX 0 LAT_S 00 LAT_N C TSIZE 2
TTCR 00000000 EIP 0 EOP 0 MEOD 0 MEI 0 MBV 0 MODE 0 QUAL 0
ECDR 00000000 DATA 0
PCLR 00000000 LED 0 CAT 0
ISCR 00000002 TP
IEMR 00000000
HTCR 00000000 PRS 0 FRS 0 TRG 0 WEN 0 HEN 0 TEN 0
HFCR -------- EMPTY 007 FULL 007
TPIR 00000000
TICR 00000207
TECR 00000207 (519.)
WCDR 0000020D (525.)
> quit
node1:~$

B.2.2 Trace and Histogram Data Processing Utilities

This section gives brief descriptions of utility programs which can process trace or histogram format files
produced by the surf program (previous section). Because the SurfBoard can quickly generate large amounts
of data, we needed to develop several utility programs which could manipulate the data as a preprocessing
step to plotting.

A histogram file is composed of lines containing two fields separated by a space: a 6-digit hexadecimal bin
address and an 8-digit hexadecimal count. A trace file is composed of lines containing five fields separated
by spaces: a 6-digit hexadecimal index followed by four 8-digit hexadecimal values which are offsets 0, 1, 2,
and 3 of the 128-bit trace value (see Section A.7). In addition, in either format file, a pound sign (#) begins
a comment which extends to the end of a line. Blank lines are allowed and are ignored.

A common format used by spreadsheets and plotting programs, is a comma separated value (CSV) file.
Several of these utilities process CSV files.

hist3dcsv Produce a multidimensional histogram in CSV format from a histogram file.
histfold Fold a (multidimensional) histogram file by combining the bin counts of bins whose

addresses are identical when masked with a given value.
traceCheck Analyze a trace file and gives a brief report. The report includes a record count, a

count of instances when the receive time decreases, count of latency flags, histogram
by sender ID.

traceFilter Filter a trace file. Trace entries can be filtered on ranges of sender ID, latency, size,
and address page.

makeHist Convert a trace file to a histogram file. (Uses a histogram mapping of the 10-bit
packet size concatenated with the low 12 bits of latency.)

sizeHist Produce a packet size histogram in CSV format from a trace file.
latHist Produce a latency histogram in CSV format from a trace file.
pageHist Produce a page address histogram in CSV format from a trace file.
reduceXY Reduce a comma separated file (with two fields) as a preprocessing step for graphing.

The command line options include the X and Y ranges, the physical size of the final
graph, and the resolution of the output device. Redundant points which would plot
to the same point are removed. There is a histogram mode which combines the
counts from bins which would overlap in the final graph.

rxtVlat Read a trace file from standard input and produces a comma separated receive time
vs. latency data file. Input lines are truncated to 80 characters.

scale Scale fields in CSV value file.

65

