COS 226 Lecture 22: Mincost Flow

MAXFLOW: assign flows to edges that
 - equalize inflow and outflow at every vertex
 - maximize total flow through the network

MINCOST MAXFLOW: find the BEST maxflow

Mincost maxflow is important for two primary reasons

- it is a GENERAL PROBLEM-SOLVING MODEL
 - solves (through reduction) numerous practical problems

- it is TRACTABLE and PRACTICAL
 - we know fast algorithms that solve mincost flow problems
 - basic data structures play a critical role

One step closer to a single ADT for combinatorial problems
Mincost flow

Add COST to each edge in a flow network
FLOW COST: sum of cost*flow over all edges

Maxflows have different costs

<table>
<thead>
<tr>
<th></th>
<th>cap</th>
<th>cost</th>
<th>flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0-2</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1-3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1-4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2-4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3-5</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4-5</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>flow</th>
</tr>
</thead>
</table>
| cost: 21
| cost: 20
| cost: 22

MINCOST FLOW: find a minimal-cost maxflow
Distribution problem

SUPPLY vertices (produce goods)

DEMAND vertices (consume goods)

DISTRIBUTION points (transfer goods)

Feasible flow problem
- Can we make supply to meet demand?

Distribution problem
- Add costs, find the lowest-cost way

Ex: Walmart

Ex: McDonald’s

THM: Feasible flow reduces to maxflow

THM: Distribution reduces to mincost maxflow

Proof: Add source to provide supply, sink to take demand
Transportation problem

No distribution points
- feasibility: is there a way?
- transportation: find best way

<table>
<thead>
<tr>
<th>supply</th>
<th>channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 3</td>
<td>0-6: 2</td>
</tr>
<tr>
<td>1: 4</td>
<td>0-7: 1</td>
</tr>
<tr>
<td>2: 6</td>
<td>0-8: 5</td>
</tr>
<tr>
<td>3: 3</td>
<td>1-6: 3</td>
</tr>
<tr>
<td>4: 2</td>
<td>1-5: 1</td>
</tr>
<tr>
<td>demand</td>
<td>2-8: 3</td>
</tr>
<tr>
<td>5: 6</td>
<td>2-9: 4</td>
</tr>
<tr>
<td>6: 6</td>
<td>3-6: 2</td>
</tr>
<tr>
<td>7: 7</td>
<td>3-7: 1</td>
</tr>
<tr>
<td>8: 3</td>
<td>4-9: 6</td>
</tr>
<tr>
<td>9: 4</td>
<td>4-5: 3</td>
</tr>
</tbody>
</table>

Seems easier, but that is not the case (!)

THM: Maxflow reduces to maxflow for acyclic networks

THM: Transportation reduces to mincost maxflow
Mincost flow reductions

SHORTEST PATHS
MAXFLOW
DISTRIBUTION and TRANSPORTATION

ASSIGNMENT
Minimal weight matching in weighted bipartite graph

MAIL CARRIER
Find a cyclic path that includes each edge AT LEAST once

SCHEDULING (example)
Given a sport's league schedule, which teams are eliminated?

POINT MATCHING
Given two sets of N points, find minimal-distance pairing

ALL of these problems reduce to mincost flow
Cycle canceling

RESIDUAL NETWORK

for each edge in original network
- flow \(f \) in edge \(u-v \) with capacity \(c \) and cost \(x \)

define TWO edges in residual network
- FORWARD edge: capacity \(c-f \) and cost \(x \) in edge \(u-v \)
- BACKWARD edge: capacity \(f \) and cost \(-x\) in edge \(v-u \)

THM: A maxflow is mincost iff
there are NO negative-cost cycles in its residual network

GENERIC method for solving mincost flow problems:

start with ANY maxflow
REPEAT until no negative cycles are left
- increase the flow along ANY negative cycle

Implementation: use Bellman-Ford to find negative cycles
Cycle canceling example

cap cost flow

<table>
<thead>
<tr>
<th></th>
<th>0-1</th>
<th>0-2</th>
<th>1-3</th>
<th>1-4</th>
<th>2-3</th>
<th>2-4</th>
<th>3-5</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

initial maxflow

cap cost flow

<table>
<thead>
<tr>
<th></th>
<th>0-1</th>
<th>0-2</th>
<th>1-3</th>
<th>1-4</th>
<th>2-3</th>
<th>2-4</th>
<th>3-5</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

total cost: 22

Negative cycles:

- 4-1-0-2-4
- 3-2-0-1-3
- 3-2-0-1-3

augment +1 on 4-1-0-2-4 (cost -1)

cap cost flow

<table>
<thead>
<tr>
<th></th>
<th>0-1</th>
<th>0-2</th>
<th>1-3</th>
<th>1-4</th>
<th>2-3</th>
<th>2-4</th>
<th>3-5</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0-2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3-5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4-5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

total cost: 21

Negative cycle:

- 3-2-0-1-3

augment +1 on 3-2-0-1-3 (cost -1)

cap cost flow

<table>
<thead>
<tr>
<th></th>
<th>0-1</th>
<th>0-2</th>
<th>1-3</th>
<th>1-4</th>
<th>2-3</th>
<th>2-4</th>
<th>3-5</th>
<th>4-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0-2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3-5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4-5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

total cost: 20
void addflow(link u, int d)
 { u->flow += d; u->dup->flow -=d; }
int GRAPHmincost(Graph G, int s, int t)
 { int d, x, w; link u, st[maxV];
 GRAPHmaxflow(G, s, t);
 while ((x = GRAPHnegcycle(G, st)) != -1)
 {
 u = st[x]; d = Q;
 for (w=u->dup->v; w != x; w=u->dup->v)
 { u = st[w]; d = (Q > d ? d : Q); }
 u = st[x]; addflow(u, d);
 for (w=u->dup->v; w != x; w=u->dup->v)
 { u = st[w]; addflow(u, d); }
 }
 return GRAPHcost(G);
 }

Cycle canceling implementation
Cycle canceling analysis

No need to compute initial maxflow
- use dummy edge from sink to source that carries maxflow

THM: Generic cycle canceling alg takes $O(VE^2CM)$ time

Proof:
- each edge has at most capacity C and cost M
- total cost could be ECM
- each augment reduces cost by at least 1
- Bellman-Ford takes $O(VE)$ time

There exist $O(VE^{2\log^2 V})$ cycle-canceling implementations
- mincost maxflow is therefore TRACTABLE

EXTREMELY pessimistic UPPER bounds
- not useful for predicting performance in practice
- algs that achieve such bounds would be useless
- algs are typically fast on practical problems
Network simplex algorithm

An implementation of the cycle-canceling algorithm

Identify negative cycles quickly by
- maintaining a tree data structure
- reweighting costs at vertices

Edge classification
- EMPTY
- FULL
- PARTIAL

FEASIBLE SPANNING TREE
- Any spanning tree that contains all the partial edges

VERTEX POTENTIALS
- a set of vertex weights (vertex-indexed array phi)
REDUCED COST (rewighted edge cost)
- \(c^*(u, v) = c(u, v) - (\phi(u) - \phi(v)) \)

VALID vertex potentials for a spanning tree
- all tree edges have reduced cost 0

ELIGIBLE EDGE
- nontree edge that creates negative cycle with tree edges

THM: A nontree edge is eligible iff it is either
- a full edge with positive reduced cost, or
- an empty edge with negative reduced cost

Proof:
- cycle cost equals cycle reduced cost
- edge cost is negative of cycle reduced cost
 (since reduced costs of tree edges are all zero)

THEREFORE, it is easy to identify eligible edges
Network simplex algorithm

still a generic algorithm for the mincost flow problem

start with ANY feasible spanning tree

REPEAT until no eligible edges are left
 • ensure that vertex potentials are valid
 • add to the tree an eligible edge
 • increase the flow along the negative cycle formed
 • remove from the tree an edge that is filled or emptied

Problem: could have zero flow on cycle

THM: IF the algorithm terminates, it computes a maxflow

Implementation challenges
 • cope with zero-flow cycles
 • strategy to choose eligible edges
 • data structure to represent tree
Feasible spanning tree data structure

Operations to support
- compute valid vertex potentials
- find cycle created by nontree edge
- replace tree edge by nontree edge

use PARENT-LINK representation!

to compute vertex potentials
- start with root at potential 0
- for each vertex
 follow parent links to vertex with known potential
 (recursively) set each vertex potential on path
 to make reduced edge costs 0

to follow cycle created by nontree edge u-v
- follow parent links from each to their LCA

to delete nontree edge that fills or empties
- REVERSE the parent links from u or v
Computing vertex potentials (example)
Spanning tree update example
Network simplex basic implementation

```c
#define R(u) u->cost - phi[u->v] + phi[u->dup->v]

int GRAPHmincost(Graph G, int s, int t)
{
    int v; link u, x, st[maxV];
    GRAPHinsertE(G, EDGE(t, s, M, 0, C));
    initialize(G, s, t, st);
    for (valid = 1; valid++; )
    {
        for (v = 0; v < G->V; v++)
            phi[v] = phiR(st, v);
        for (v = 0, x = G->adj[v]; v < G->V; v++)
            for (u = G->adj[v]; u!=NULL; u = u->next)
                if (R(u) < R(x)) x = u;
        if (R(x) == 0) break;
        update(st, augment(st, x), x);
    }
    return GRAPHcost(G);
}
```
Network simplex variations

OBJECTIVES
- guarantee terminination
- reduce number of iterations
- reduce cost per iteration

Eligible edge selection strategies
- random
- find next
- queue of eligible edges

Lazy vertex potential calculation
Tree representations
- triply-linked, threaded

Guided by practical performance, not worst-case bounds
- DATA STRUCTURES are the key to good performance

Different implementations for different reductions??

BOTTOM LINE
- accessible code for powerful problem-solving model