GRAPH: a set of OBJECTS with CONNECTIONS

Interesting and useful abstraction

Study of graph algorithms
 - challenging branch of computer science
Study of mathematical properties of graphs
 - challenging branch of discrete mathematics
Hundreds of interesting graph algorithms known
Important applications abound
 - transportation systems
 - scheduling
 - circuit simulation
 - software systems
 - web search
 - computer vision
 - computational biology
Glossary of terms

- Vertex
- Edge
- Graph
- Dense
- Sparse
- Path
- Cycle, Tour
- Tree
- Spanning tree
- Connected
- Connected component
- Undirected
- Digraph
- Weighted
- Network
Graph examples
More graph examples

CONCRETE models: direct representations

Ex: Transportation network
- cities connected by roads

Ex: Electric circuit
- devices connected by wires

Warning: geometric intuition may mislead

Ex: Airline fares (triangle inequality might not hold)

ABSTRACT models: represent other abstractions

Ex: Scheduling
- tasks connected by precedence constraints

Ex: Programming system
- functions that call one another

Ex: CFG
- symbols related by productions

Ex: Game graphs
- vertices: board positions; edges: moves
Representing graphs

Graphs are abstract mathematical objects
ADT implementations require specific representations

AS USUAL
- many different representations possible
- efficiency depends on matching algs to representations

Standard issues apply
- space vs. time
- array vs. linked list
- integers vs. reals
- symbol tables
- duplicate vertices or edges?
- mix of ADT operations
Representing graphs

VERTEX NAMES (A B C D E F G H)
- progs use integers between 0 and V-1
- convert via implicit or explicit symbol table

Two drawings that represent the same graph

```
A
  /\  \\
B /  \C
  \  /
  \G
D---E
  /  \\
F   \L
```

```
G
  /\  \\
I /  \J
  \  /
  \K
I---J---K
  /    /
M    L
  /    /
H    H
```

SET OF EDGES representation
Adjacency matrix representation

A `V-by-V` array gives constant-time edge existence test.

VERTEX-INDEXED ARRAY: one entry for each vertex

ADJACENCY MATRIX:
- vertex-indexed array of vertex-indexed arrays
- `1` in `(i, j)` AND `(j, i)` iff edge `i-j` in graph

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adjacency lists representation

Array of lists takes space proportional to no. of edges

ADJACENCY LISTS representation

A: F C B G
B: A
C: A
D: F E
E: G F D
F: A E D
G: E A
H: I
I: H
J: K L M
K: J
L: J M
M: J L

TWO representations of each edge for UNDIRECTED graphs
Graph ADT

Standard mechanism to separate clients from implementations (plus simple typedef for edges)

GRAPH.h:

 typedef struct { int v; int w; } Edge;
 Edge EDGE(int, int);

 typedef struct graph *Graph;
 Graph GRAPHinit(int);
 void GRAPHinsertE(Graph, Edge);

Typical client program

- calls GRAPHinit to create data structures
- uses Graph handle as arg to graph-processing ADT function
- calls GRAPHinsertE to build graph by adding edges
- calls ADT function to do graph processing

Ex: GRAPHcc computes connected components.
#include "GRAPH.h"

typedef struct node *link;
struct node { int v; link next; };
struct graph { int V; int E; link *adj; };
link NEW(int v, link next)
 { link x = malloc(sizeof *x);
 x->v = v; x->next = next;
 return x;
 }
Graph GRAPHinit(int V)
 { int v;
 Graph G = malloc(sizeof *G);
 G->V = V; G->E = 0;
 G->adj = malloc(V*sizeof(link));
 for (v = 0; v < V; v++) G->adj[v] = NULL;
 return G;
 }
void GRAPHinsertE(Graph G, Edge e)
 { int v = e.v, w = e.w;
 G->adj[v] = NEW(w, G->adj[v]);
 G->adj[w] = NEW(v, G->adj[w]);
 G->E++;
 }
Summary of basic costs

E edges, V vertices

Space requirements:
- Adjacency lists: V+E
- Adjacency matrix: V^2
- Set of edges: E (+V)

Choice of representation affects algorithm efficiency
- even for simple primitives

Ex: Is there an edge from A to B?
- lists: O(E)
- matrix: O(1)

Ex: Is there an edge from A to anywhere?
- lists: O(1)
- matrix: O(V)
Basic graph problems (short list)

PATHS
- Is there a path from A to B?

CYCLES
- Does the graph contain a cycle?

CONNECTIVITY (SPANNING TREE)
- Is there a way connect all the vertices?

BICONNECTIVITY
- Is there a vertex whose removal will disconnect the graph?

PLANARITY
- Is there a way to draw the graph without edges crossing?

SHORTEST (LONGEST) PATH
- What is the shortest (longest) way from A to B?

MINIMAL SPANNING TREE
- What is the best way connect the vertices?

HAMILTON TOUR
- Is there a cycle that uses each vertex exactly once?

ISOMORPHISM
- Do two given adj matrices represent the same graph?
Traversing graphs

Goal: VISIT every vertex in the graph

Depth-first search (DFS)

- To VISIT a node k
 - mark it
 - (recursively) VISIT all unmarked vertices connected to k

- To TRAVERSE a graph
 - initialize all nodes to be unmarked
 - VISIT each unmarked node

Solves some simple graph problems

- connectivity
- cycles

basis for solving some difficult graph problems

- biconnectivity
- planarity
Traversing a graph’s components

Needed for any implementation of VISIT UNLESS graph is known to be connected

IF visit(k) marks all nodes connected to k
THEN traverse(G) marks all of G’s nodes

int mark[maxV]; int cnt = 0;
traverse(Graph G)
{
 int k;
 for (k = 1; k <= G->V; k++) mark[k] = 0;
 for (k = 1; k <= G->V; k++)
 if (mark[k] == 0) visit(G, k);
}
DFS implementation

Adjacency matrix

```c
visit(Graph G, int k)
{
    int t;
    mark[k] = ++cnt;
    for (t = 1; t <= V; t++)
        if (G->adj[k][t] != 0)
            if (mark[t] == 0) visit(G, t);
}
```

Adjacency lists

```c
visit(Graph G, int k)
{
    link t;
    mark[k] = ++cnt;
    for (t = G->adj[k]; t != z; t = t->next)
        if (mark[t->v] == 0) visit(G, t->v);
}
```
DFS example (adjacency lists)

visit A
- visit F (first on A’s list)
 - check A on F’s list (been there)
 - visit E (second on F’s list)
 - visit G (first on E’s list)
 - check E on G’s list (been there)
 - check A on G’s list (been there)
 - check F on E’s list (been there)
 - visit D (third on E’s list)
 - check F on D’s list (been there)
 - check E on D’s list (been there)
 - check D on F’s list (done that)
- visit C (second on A’s list)
- visit B (third on A’s list)
- check G on F’s list (done that)
- ...

“been there”: currently working on it
“done that”: totally finished dealing with it
DFS tree (adjacency lists)

Tree structure captures dynamics of DFS

TREE links
- first encounter: recursive call
- second encounter: been there

BACK links
- first encounter: been there
- second encounter: done that

A: F C B G
B: A
C: A
D: F E
E: G F D
F: A E D
G: E A
H: I
I: H
J: K L M
K: J
L: J M
M: J L
Is there a path from s to t?

UNION-FIND (lecture 1)
- query: $O(\log^* V)$
- preprocessing: $O(E \log^* V)$
- space: $O(V)$

DFS
- query: $O(1)$
- preprocessing: $O(E)$
- space: $O(V)$

UF advantage: can intermix query and edge insertion
DFS advantage: can give client the path
 - change arg to pass EDGE taken to visit the vertex
 - maintain parent-link representation of DFS tree
 - [see text]
Connected-components ADT functions (DFS)

GRAPHcc: preprocessing (DFS)

GRAPHconnect: query

cc: vertex-indexed array in graph representation

```c
void dfsRcc(Graph G, int v, int id)
{
    link t;
    G->cc[v] = id;
    for (t = G->adj[v]; t != NULL; t = t->next)
        if (G->cc[t->v] == -1) dfsRcc(G, t->v, id);
}

int GRAPHcc(Graph G)
{
    int v, id = 0;
    G->cc = malloc(G->V * sizeof(int));
    for (v = 0; v < G->V; v++)
        G->cc[v] = -1;
    for (v = 0; v < G->V; v++)
        if (G->cc[v] == -1) dfsRcc(G, v, id++);
    return id;
}

int GRAPHconnect(Graph G, int s, int t)
{
    return G->cc[s] == G->cc[t];
}
```
Graph-search overview

DFS is one of a family of graph-search functions
- all visit all nodes and edges
- strategy to use dictated by problem at hand

GENERALIZED GRAPH SEARCH
To TRAVERSE a graph
- initialize all nodes to be unmarked
- put some vertex on a generalized queue (GQ)
- while the GQ is nonempty
 - remove a vertex and mark it
 - put all unmarked adjacent vertices on the GQ

ISSUE: duplicate vertices on queue
- ignore the new one or forget the old one?
Stack-based graph traversal

Use explicit stack instead of recursive calls

```c
visit(Graph G, int k)
{
    link t;
    STACKpush(k);
    while (!STACKempty())
    {
        k = STACKpop(); mark[k] = ++id;
        for (t = G->adj[k]; t != z; t = t->next)
            if (mark[t->v] == 0)
                { STACKpush(t->v); mark[t->v] = -1; }
    }
}
```
Stack-based traversal example (adjacency lists)

visit A
 • push F, push C, push B, push G
 • visit G
 push E, been to A
 visit E
 been to G, been to F, push D
 visit D
 been to F, been to E
 • visit B
 been to A
 • visit C
 been to A
 • visit F
 been to A, done with E, done with D
Stack-based search

NOT the same as recursive DFS. Why?

Algs differ in treatment of vertices that are adjacent to partially visited vertices
- DFS: visits such a vertex
- stack-based: avoids it
 (it is on the stack and will get visited later)

Nonrecursive DFS: PUSH next node on adj list
- equivalent to disallowing duplicate vertices on stack

No particular reason to use stack
- other ADTs work as well (stay tuned)

GRAPH SEARCH: generalized-queue--based traversal
Graphs and mazes

vertices: intersections
edges: hallways

DFS
- mark ENTRY and EXIT halls at each vertex
- leave by ENTRY when no unmarked halls

Stack-based?
Breadth-first search (BFS)

Put unvisited nodes on a QUEUE, not a stack

```c
visit(Graph G, int k)
{
    link t;
    QUEUEput(k);
    while (!QUEUEempty())
    {
        k = QUEUEget(); mark[k] = ++id;
        for (t = G->adj[k]; t != z; t = t->next)
            if (mark[t->v] == 0)
                { QUEUEput(t->v); mark[t->v] = -1; }
    }
}
```
BFS vs DFS example

Depth-first search

Breadth-first search
Search order depends on graph representation
DFS example (continued)

Same graph, different order of edges on adj lists
Same graph, random choice of edges on adj lists
Problem: PATHS
 - Is there a path from A to B?
Solution: DFS, BFS, any graph search

Problem: SHORTEST PATH
 - Find a shortest path (fewest edges) from A to B.
Solution: BFS

Problem: EULER PATH (existence)
 - Is there a cycle that uses each EDGE exactly once?
Solution: Yes, if degrees of all vertices are

Problem: EULER TOUR
 - Find a cycle that uses all the graph’s edges.
Solution: interesting exercise [see text]

Problem: HAMILTON TOUR
 - Is there a cycle that uses each VERTEX exactly once?
Solution: ?? (NP-complete)