GRAPH: a set of OBJECTS with CONNECTIONS

Interesting and useful abstraction

Study of graph algorithms
 - challenging branch of computer science
Study of mathematical properties of graphs
 - challenging branch of discrete mathematics

Hundreds of interesting graph algorithms known

Important applications abound
 - transportation systems
 - scheduling
 - circuit simulation
 - software systems
 - web search
 - computer vision
 - computational biology

Glossary of terms

Vertex
Edge
Graph
Dense
Sparse
Path
Cycle, Tour
Tree
Spanning tree
Connected
Connected component
Undirected
Digraph
Weighted
Network

CONCRETE models: direct representations
Ex: Transportation network
 - cities connected by roads
Ex: Electric circuit
 - devices connected by wires
Warning: geometric intuition may mislead
Ex: Airline fares (triangle inequality might not hold)

ABSTRACT models: represent other abstractions
Ex: Scheduling
 - tasks connected by precedence constraints
Ex: Programming system
 - functions that call one another
Ex: CFG
 - symbols related by productions
Ex: Game graphs
 - vertices: board positions; edges: moves
Representing graphs

Graphs are abstract mathematical objects. ADT implementations require specific representations.

As usual:
- Many different representations possible.
- Efficiency depends on matching algs to representations.

Standard issues apply:
- Space vs. time
- Array vs. linked list
- Integers vs. reals
- Symbol tables
- Duplicate vertices or edges?
- Mix of ADT operations.

Adjacency matrix representation

V-by-V array gives constant-time edge existence test.

Vertex-indexed array of vertex-indexed arrays: One entry for each vertex.

Adjacency matrix: Vertex-indexed array of vertex-indexed arrays.
- 1 in (i,j) AND (j,i) iff edge i-j in graph.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Adjacency lists representation

Array of lists takes space proportional to no. of edges.

Adjacency lists: Representation.

- Two drawings that represent the same graph.

Vertex names (A B C D E F G H)
- Progs use integers between 0 and V-1.
- Convert via implicit or explicit symbol table.

Set of edges representation:

TWO representations of each edge for undirected graphs.
Graph ADT

Standard mechanism to separate clients from implementations
(plus simple typedef for edges)

GRAPH.h:
- typedef struct { int v; int w; } Edge;
- Edge EDGE(int, int);
- typedef struct graph *Graph;
- Graph GRAPHinit(int);
- void GRAPHinsertE(Graph, Edge);

Typical client program
- calls GRAPHinit to create data structures
- uses Graph handle as arg to graph-processing ADT function
- calls GRAPHinsertE to build graph by adding edges
- calls ADT function to do graph processing

Ex: GRAPHcc computes connected components.

Adjacency lists Graph ADT implementation

```c
#include "GRAPH.h"
typedef struct node *link;
struct node { int v; link next; };
struct graph { int V; int E; link *adj; };
link NEW(int v, link next)
{ link x = malloc(sizeof *x);
  x->v = v; x->next = next;
  return x;
}
Graph GRAPHinit(int V)
{ int v;
  Graph G = malloc(sizeof *G);
  G->V = V; G->E = 0;
  G->adj = malloc(V*sizeof(link));
  for (v = 0; v < V; v++) G->adj[v] = NULL;
  return G;
}
void GRAPHinsertE(Graph G, Edge e)
{ int v = e.v, w = e.w;
  G->adj[v] = NEW(w, G->adj[v]);
  G->adj[w] = NEW(v, G->adj[w]);
  G->E++;
}
```

Summary of basic costs

E edges, V vertices

Space requirements:
- Adjacency lists: V+E
- Adjacency matrix: V^2
- Set of edges: E (+V)

Choice of representation affects algorithm efficiency
- even for simple primitives

Ex: Is there an edge from A to B?
- lists: O(E)
- matrix: O(1)

Ex: Is there an edge from A to anywhere?
- lists: O(1)
- matrix: O(V)

Basic graph problems (short list)

PATHS
- Is there a path from A to B?
CYCLES
- Does the graph contain a cycle?
CONNECTIVITY (SPANNING TREE)
- Is there a way connect all the vertices?
BICONNECTIVITY
- Is there a vertex whose removal will disconnect the graph?
PLANARITY
- Is there a way to draw the graph without edges crossing?
SHORTEST (LONGEST) PATH
- What is the shortest (longest) way from A to B?
MINIMAL SPANNING TREE
- What is the best way to connect the vertices?
HAMILTON TOUR
- Is there a cycle that uses each vertex exactly once?
ISOMORPHISM
- Do two given adj matrices represent the same graph?
Traversing graphs

Goal: VISIT every vertex in the graph

Depth-first search (DFS)
- To VISIT a node \(k \)
 - mark it (recursively) VISIT all unmarked vertices connected to \(k \)
- To TRAVERSE a graph
 - initialize all nodes to be unmarked
 - VISIT each unmarked node

Solves some simple graph problems
- connectivity
- cycles
- basis for solving some difficult graph problems
 - biconnectivity
 - planarity

Traversing a graph's components

Needed for any implementation of VISIT UNLESS graph is known to be connected

IF visit(\(k \)) marks all nodes connected to \(k \)
THEN traverse(G) marks all of G's nodes

```c
int mark[maxV]; int cnt = 0;
traverse(Graph G)
{
    int k;
    for (k = 1; k <= G->V; k++) mark[k] = 0;
    for (k = 1; k <= G->V; k++)
        if (mark[k] == 0) visit(G, k);
}
```

DFS implementation

Adjacency matrix

```c
visit(Graph G, int k)
{
    int t;
    mark[k] = ++cnt;
    for (t = 1; t <= V; t++)
        if (G->adj[k][t] != 0)
            if (mark[t] == 0) visit(G, t);
}
```

Adjacency lists

```c
visit(Graph G, int k)
{
    link t;
    mark[k] = ++cnt;
    for (t = G->adj[k]; t != z; t = t->next)
        if (mark[t->v] == 0) visit(G, t->v);
}
```

DFS example (adjacency lists)

```
visit A
- visit F (first on A's list)
  - check A on F's list (been there)
  - visit E (second on F's list)
    - visit G (first on E's list)
      - check E on G's list (been there)
      - check A on G's list (been there)
    - check F on E's list (been there)
      - check F on D's list (been there)
    - visit D (third on E's list)
      - check F on D's list (been there)
      - check E on D's list (been there)
      - check D on F's list (done that)
  - visit C (second on A's list)
  - visit B (third on A's list)
  - check G on F's list (done that)
  - ...
```

"been there": currently working on it
"done that": totally finished dealing with it
DFS tree (adjacency lists)

Tree structure captures dynamics of DFS

TREE links
- first encounter: recursive call
- second encounter: been there

BACK links
- first encounter: been there
- second encounter: done that

A: F C B G
B: A
C: A
D: F E
E: G F D
F: A E D
G: E A
H: I
I: H
J: K L M
K: J
L: J M
M: J L

Connected components ADT function

Is there a path from s to t?

UNION-FIND (lecture 1)
- query: \(O(\log* V)\)
- preprocessing: \(O(E \log* V)\)
- space: \(O(V)\)

DFS
- query: \(O(1)\)
- preprocessing: \(O(E)\)
- space: \(O(V)\)

UF advantage: can intermix query and edge insertion

DFS advantage: can give client the path
- change arg to pass EDGE taken to visit the vertex
- maintain parent-link representation of DFS tree
 - [see text]

Connected-components ADT functions (DFS)

GRAPHcc: preprocessing (DFS)
GRAPHconnect: query
cc: vertex-indexed array in graph representation

```c
void dfsRcc(Graph G, int v, int id)
{ link t;
  G->cc[v] = id;
  for (t = G->adj[v]; t != NULL; t = t->next)
    if (G->cc[t->v] == -1) dfsRcc(G, t->v, id);
}
int GRAPHcc(Graph G)
{ int v, id = 0;
  G->cc = malloc(G->V * sizeof(int));
  for (v = 0; v < G->V; v++)
    G->cc[v] = -1;
  for (v = 0; v < G->V; v++)
    if (G->cc[v] == -1) dfsRcc(G, v, id++);
  return id;
}
int GRAPHconnect(Graph G, int s, int t)
{ return G->cc[s] == G->cc[t]; }
```

Graph-search overview

DFS is one of a family of graph-search functions
- all visit all nodes and edges
- strategy to use dictated by problem at hand

GENERALIZED GRAPH SEARCH
To TRAVERSE a graph
- initialize all nodes to be unmarked
- put some vertex on a generalized queue (GQ)
- while the GQ is nonempty
 - remove a vertex and mark it
 - put all unmarked adjacent vertices on the GQ

ISSUE: duplicate vertices on queue
- ignore the new one or forget the old one?
Stack-based graph traversal

Use explicit stack instead of recursive calls

```
visit(Graph G, int k)
{ link t;
    STACKpush(k);
    while (!STACKempty())
    {
        k = STACKpop(); mark[k] = ++id;
        for (t = G->adj[k]; t != z; t = t->next)
            if (mark[t->v] == 0)
            { STACKpush(t->v); mark[t->v] = -1; }
    }
}
```

Stack-based traversal example (adjacency lists)

Visit A
- push F, push C, push B, push G
- visit G
 - push E, been to A
 - visit E
 - been to G, been to F, push D
 - visit D
 - been to F, been to E
- visit B
 - been to A
- visit C
 - been to A
- visit F
 - been to A, done with E, done with D

Stack-based search

Not the same as recursive DFS. Why?

Algs differ in treatment of vertices that are adjacent to partially visited vertices
- DFS: visits such a vertex
- stack-based: avoids it
 - (it is on the stack and will get visited later)

Nonrecursive DFS: PUSH next node on adj list
- equivalent to disallowing duplicate vertices on stack

No particular reason to use stack
- other ADTs work as well (stay tuned)

Graph search: generalized-queue-based traversal

Graphs and mazes

Vertices: intersections
Edges: hallways

DFS
- mark ENTRY and EXIT halls at each vertex
- leave by ENTRY when no unmarked halls

Stack-based?
Breadth-first search (BFS)

Put unvisited nodes on a QUEUE, not a stack

```
visit(Graph G, int k)
{
    link t;
    QUEUEput(k);
    while (!QUEUEempty())
    {
        k = QUEUEget(); mark[k] = ++id;
        for (t = G->adj[k]; t != z; t = t->next)
            if (mark[t->v] == 0)
            {
                t->v = QUEUEput(); mark[t->v] = -1;
            }
    }
}
```

DFS example

Search order depends on graph representation

BFS vs DFS example

Depth-first search

Same graph, different order of edges on adj lists

Breadth-first search
Graph search and path problems

Problem: PATHS
- Is there a path from A to B?
Solution: DFS, BFS, any graph search

Problem: SHORTEST PATH
- Find a shortest path (fewest edges) from A to B.
Solution: BFS

Problem: EULER PATH (existence)
- Is there a cycle that uses each EDGE exactly once?
Solution: Yes, if degrees of all vertices are even

Problem: EULER TOUR
- Find a cycle that uses all the graph's edges.
Solution: interesting exercise [see text]

Problem: HAMILTON TOUR
- Is there a cycle that uses each VERTEX exactly once?
Solution: ?? (NP-complete)