Symbol Table, Dictionary

- records with keys
- INSERT
- SEARCH

Goal: Symbol table implementation

- with \(O(\lg N)\) GUARANTEED performance
- for both search and insert
- (and other ST operations)

Three approaches
1. PROBABILISTIC “guarantee”
2. AMORTIZED “guarantee”
3. WORST-CASE GUARANTEE
IDEA: new node should be root with probability 1/(N+1)
DO IT!

link insertR(link h, Item item)
{
 Key v = key(item), t = key(h->item);
 if (h == z) return NEW(item, z, z, 1);
 if (rand() < RAND_MAX/(h->N+1))
 return insertT(h, item);
 if less(v, t) h->l = insertR(h->l, item);
 else h->r = insertR(h->r, item);
 (h->N)++; return h;
}

void STinsert(Item item)
{
 head = insertR(head, item);
}

Trees have same shape as random BSTs FOR ALL INPUTS
Random BSTs: exponentially small chance of bad balance
Randomized BST example

Insert keys in order: tree shape still random!
Other operations in randomized BSTs

FIND kth largest
- another use of size field already there

JOIN disjoint STs
- straightforward recursive implementation
- to join STs A (of size M) and B (of size N)
 - use A root with probability M/(M+N)
 - use B root with probability N/(M+N)
 - join other tree with subtree recursively

DELETE
- remove the node, do join (above)

THM: Trees still random after delete (!!)
Randomized BSTs

Always look like random BSTs

- implementation straightforward
- support all symbol table ADT ops
- $O(\log N)$ average case
- bad cases provably unlikely
Skip lists

Idea: Add fast tracks to linked lists

Nodes have variable number of links

Problems:
- how to maintain structure under insertion
- how many links in a particular node?
Skip list data types

Skip Lists are links
Links are pointers to nodes
Nodes are items plus **Arrays** of links

```c
typedef struct STnode* link;
struct STnode { Item item; link* next; int sz;};
link NEW(Item item, int k)
{ int i; link x = malloc(sizeof *x);
  x->next = malloc(k*sizeof(link));
  x->item = item; x->sz = k;
  for (i = 0; i < k; i++) x->next[i] = z;
  return x;
}
void STinit(int max)
{ N = 0; lgN = 0;
  z = NEW(NULLItem, 0);
  head = NEW(NULLItem, lgNmax); }
```
Skip list insert implementation

Idea: give each node \(j \) links with probability \(1/2^j \)

```c
void insertR(link t, link x, int k)
{
    Key v = key(x->item);
    if (less(v, key(t->next[k]->item)))
    {
        if (k < x->sz)
        {
            x->next[k] = t->next[k];
            t->next[k] = x;
        }
        if (k == 0) return;
        insertR(t, x, k-1); return;
    }
    insertR(t->next[k], x, k);
}
void STinsert(Key v)
{
    insertR(head, NEW(v, randX()), lgN); N++;
}
```

Same properties as randomized BSTs
- plus: easier to understand
- minus: more pointer-chasing
Splay trees

Idea: slight modification to root insertion
Check two links above current node
Orientations differ: same as root insertion
Orientations match: do top rotation first
Splay tree balance

THM: Splay rotations halve the search path

guaranteed performance over SEQUENCE of operations
link splay(link h, Item item)
{
 Key v = key(item);
 if (h == z) return NEW(item, z, z, 1);
 if (less(v, key(h->item)))
 {
 if (hl == z) return NEW(item, z, h, h->N+1);
 if (less(v, key(hl->item)))
 {
 hll = splay(hll, item); h = rotR(h);
 }
 else
 {
 hlr = splay(hlr, item); hl = rotL(hl);
 return rotR(h);
 }
 }
 else
 {
 if (hr == z) return NEW(item, h, z, h->N+1);
 if (less(key(hr->item), v))
 {
 hrr = splay(hrr, item); h = rotL(h);
 }
 else
 {
 hrl = splay(hrl, item); hr = rotR(hr);
 return rotL(h);
 }
 }
}
2-3-4 trees

Allow one, two, or three keys per node
Keep link for every interval between keys
- 2-node: one key, two children
- 3-node: two keys, three children
- 4-node: three keys, four children

SEARCH
- compare search key against keys in node
- find interval containing search key
- follow associated link (recursively)

INSERT
- search to bottom for key
- 2-node at bottom: convert to a 3-node
- 3-node at bottom: convert to a 4-node
- 4-node at bottom: ??
Top-down 2-3-4 trees

Transform tree on the way DOWN
 • to ensure that last node is not a 4-node

Local transformations to split 4-nodes:

Invariant: “current” node is not a 4-node
 • One of two local transformations must apply at next node
 • Insertion at bottom is easy (not into a 4-node)
Top-down 2-3-4 tree construction

Trees grow up from the bottom
In top-down 2-3-4 trees,
 - all paths from top to bottom are the same length

Tree height:
 - worst case: $\lg N$ (all 2-nodes)
 - best case: $\lg N/2$ (all 4-nodes)
 - between 10 and 20 for a million nodes
 - between 15 and 30 for a billion nodes

Comparisons within nodes not accounted for
Fantasy code (sketch):

```c
link insertR(link h, Item item)
{
    Key v = key(item);
    link x = h;
    while (x != z)
    {
        x = therightlink(x, v);
        if fourNode(x) then split(x); }
    if twoNode(x) then makeThree(x, v); else
    if threeNode(x) then makeFour(x, v); else
    return head;
}
```

Direct implementation complicated because of
- "therightlink(x, v)"
- maintaining multiple node types
- large number of cases for "split"

Search also more complicated than for BST
Red-black trees

Represent 2-3-4 trees as binary trees

- with "internal" edges for 3- and 4-nodes

Correspondence between 2-3-4 and RB trees

Not 1-1 because 3-nodes swing either way
Splitting nodes in red-black trees

Two cases are easy (need only to switch colors)

Two cases require ROTATIONS
RB tree node split example
link RBinsert(link h, Item item, int sw)
 { Key v = key(item);
 if (h == z) return NEW(item, z, z, 1, 1);
 if (((hl->red) && (hr->red))
 { h->red = 1; hl->red = 0; hr->red = 0; }
 if (less(v, key(h->item)))
 {
 hl = RBinsert(hl, item, 0);
 if (h->red && hl->red && sw) h = rotR(h);
 if (hl->red && hll->red)
 { h = rotR(h); h->red = 0; hr->red = 1; }
 }
 else
 { hr = RBinsert(hr, item, 1);
 if (h->red && hr->red && !sw) h = rotL(h);
 if (hr->red && hrr->red)
 { h = rotL(h); h->red = 0; hl->red = 1; }
 }
 return h;
 }
void STinsert(Item item)
 { head=RBinsert(head, item, 0); head->red=0; }
Red-black tree construction
In red-black trees,

- LONGEST path at most twice as long as SHORTEST path

worst case: less than $2\lg N$

Comparisons within nodes *are* counted
Summary

GOAL: ST implementation with O(lgN) GUARANTEE for all ops
probabilistic guarantee: random BSTs, skip lists
amortized guarantee: splay trees
optimal guarantee: red-black trees
Algorithms are variations on a theme (rotations when inserting)

Different abstractions, but equivalent
Ex: skip-list representation of 2-3-4 tree

Are balanced trees OPTIMAL?
- worst-case: no (can get C\lg N for C>1)
- average-case: open

Extensions to search structures for huge files
- [stay tuned]