Union-Find Algorithms

- network connectivity
- quick find
- quick union
- improvements
- applications
Steps to developing a usable algorithm.
- Define the problem.
- Find an algorithm to solve it.
- Fast enough?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java
network connectivity
quick find
quick union
improvements
applications
Network connectivity

Basic abstractions
- set of objects
- **union** command: connect two objects
- **find** query: is there a path connecting one object to another?
Union-find applications involve manipulating objects of all types.

- Computers in a network.
- Web pages on the Internet.
- Transistors in a computer chip.
- Variable name aliases.
- Pixels in a digital photo.
- Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

- Hide details not relevant to union-find.
- Integers allow quick access to object-related info.
- Could use symbol table to translate from object names.
Union-find abstractions

Simple model captures the essential nature of connectivity.

- Objects.

- Disjoint sets of objects.

- Find query: are objects 2 and 9 in the same set?

- Union command: merge sets containing 3 and 8.
Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

<table>
<thead>
<tr>
<th>in</th>
<th>out</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

3 = 10 - 7 components

7 union commands
Network connectivity: larger example

$\text{find}(u, v)$?
Network connectivity: larger example

\text{find}(u, v) \ ?

true

63 components
Union-find abstractions

- Objects.
- Disjoint sets of objects.
- **Find queries:** are two objects in the same set?
- **Union commands:** replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

- Find queries and union commands may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.
- network connectivity
- quick find
- quick union
- improvements
- applications
Quick-find [eager approach]

Data structure.
- Integer array \(\text{id[]} \) of size \(N \).
- Interpretation: \(p \) and \(q \) are connected if they have the same \(\text{id} \).

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{id}[i])</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

5 and 6 are connected
2, 3, 4, and 9 are connected
Quick-find [eager approach]

Data structure.
- Integer array \(id[] \) of size \(N \).
- Interpretation: \(p \) and \(q \) are connected if they have the same id.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[i]</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Find. Check if \(p \) and \(q \) have the same id.

Union. To merge components containing \(p \) and \(q \), change all entries with \(id[p] \) to \(id[q] \).

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[i]</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

5 and 6 are connected
2, 3, 4, and 9 are connected

3 and 6 not connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

problem: many values can change
Quick-find example

3–4 0 1 2 4 4 5 6 7 8 9
4–9 0 1 2 9 9 5 6 7 8 9
8–0 0 1 2 9 9 5 6 7 0 9
2–3 0 1 9 9 9 5 6 7 0 9
5–6 0 1 9 9 9 6 6 7 0 9
5–9 0 1 9 9 9 9 9 7 0 9
7–3 0 1 9 9 9 9 9 9 0 9
4–8 0 1 0 0 0 0 0 0 0 0
6–1 1 1 1 1 1 1 1 1 1 1

problem: many values can change
public class QuickFind
{
 private int[] id;

 public QuickFind(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean find(int p, int q)
 {
 return id[p] == id[q];
 }

 public void unite(int p, int q)
 {
 int pid = id[p];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = id[q];
 }
}
Quick-find is too slow

Quick-find algorithm may take $\sim MN$ steps to process M union commands on N objects

Rough standard (for now).
- 10^9 operations per second.
- 10^9 words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
- 10^{10} edges connecting 10^9 nodes.
- Quick-find takes more than 10^{19} operations.
- 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.
- New computer may be 10x as fast.
- But, has 10x as much memory so problem may be 10x bigger.
- With quadratic algorithm, takes 10x as long!
- network connectivity
- quick find
- quick union
- improvements
- applications
Quick-union [lazy approach]

Data structure.
- Integer array $\text{id}[]$ of size N.
- Interpretation: $\text{id}[i]$ is parent of i.
- Root of i is $\text{id}[$id[id[...id[i]...]]$].

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[i]</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

3’s root is 9; 5’s root is 6
Quick-union [lazy approach]

Data structure.
- Integer array $id[]$ of size N.
- Interpretation: $id[i]$ is parent of i.
- Root of i is $id[id[id[...id[i]...]]]$.

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

\[
\begin{array}{cccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 id[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 id[i] & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 7 & 8 & 9 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 id[i] & 0 & 1 & 9 & 4 & 9 & 6 & 7 & 8 & 9 & 9 \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 id[i] & 0 & 1 & 9 & 4 & 9 & 6 & 9 & 7 & 8 & 9 \\
\end{array}
\]
Quick-union example

3–4 0 1 2 4 4 5 6 7 8 9
4–9 0 1 2 4 9 5 6 7 8 9
8–0 0 1 2 4 9 5 6 7 0 9
2–3 0 1 9 4 9 5 6 7 0 9
5–6 0 1 9 4 9 6 6 7 0 9
5–9 0 1 9 4 9 6 9 7 0 9
7–3 0 1 9 4 9 6 9 9 0 9
4–8 0 1 9 4 9 6 9 9 0 0
6–1 1 1 9 4 9 6 9 0 0 0

problem: trees can get tall
public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {
 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}
Quick-union is also too slow

Quick-find defect.
- Union too expensive (N steps).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be N steps)
- Need to do find to do union

<table>
<thead>
<tr>
<th>algorithm</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick-find</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>Quick-union</td>
<td>N*</td>
<td>N</td>
</tr>
</tbody>
</table>

* includes cost of find

worst case
network connectivity
quick find
quick union
improvements
applications
Improvement 1: Weighting

Weighted quick-union.
- Modify quick-union to avoid tall trees.
- Keep track of size of each component.
- Balance by linking small tree below large one.

Ex. Union of 5 and 3.
- Quick union: link 9 to 6.
- Weighted quick union: link 6 to 9.
Weighted quick-union example

no problem: trees stay flat
Weighted quick-union: Java implementation

Java implementation.
- Almost identical to quick-union.
- Maintain extra array `sz[]` to count number of elements in the tree rooted at `i`.

Find. Identical to quick-union.

Union. Modify quick-union to
- merge smaller tree into larger tree
- update the `sz[]` array.

```java
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }
```
Weighted quick-union analysis

Analysis.
- Find: takes time proportional to depth of \(p \) and \(q \).
- Union: takes constant time, given roots.
- Fact: depth is at most \(\lg N \). [needs proof]

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Union</th>
<th>Find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick-find</td>
<td>(N)</td>
<td>1</td>
</tr>
<tr>
<td>Quick-union</td>
<td>(N^*)</td>
<td>(N)</td>
</tr>
<tr>
<td>Weighted QU</td>
<td>(\lg N^*)</td>
<td>(\lg N)</td>
</tr>
</tbody>
</table>

* includes cost of find

Stop at guaranteed acceptable performance? No, easy to improve further.
Path compression. Just after computing the root of i, set the id of each examined node to $\text{root}(i)$.

![Diagram showing path compression](image)
Weighted quick-union with path compression

Path compression.

• Standard implementation: add second loop to `root()` to set the id of each examined node to the root.
• Simpler one-pass variant: make every other node in path point to its grandparent.

```java
public int root(int i) {
    while (i != id[i]) {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.
Weighted quick-union with path compression

3–4 0 1 2 3 3 5 6 7 8 9
4–9 0 1 2 3 3 5 6 7 8 3
8–0 8 1 2 3 3 5 6 7 8 3
2–3 8 1 3 3 3 5 6 7 8 3
5–6 8 1 3 3 3 5 5 7 8 3
5–9 8 1 3 3 3 3 5 7 8 3
7–3 8 1 3 3 3 3 5 3 8 3
4–8 8 1 3 3 3 3 5 3 3 3
6–1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat
WQUPC performance

Theorem. Starting from an empty data structure, any sequence of M union and find operations on N objects takes $O(N + M \lg^* N)$ time.

- Proof is very difficult.
- But the algorithm is still simple!

Linear algorithm?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is **linear**.

Amazing fact:

- In theory, no linear linking strategy exists

<table>
<thead>
<tr>
<th>N</th>
<th>$\lg^* N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>65536</td>
<td>4</td>
</tr>
<tr>
<td>265536</td>
<td>5</td>
</tr>
</tbody>
</table>
Summary

Ex. Huge practical problem.
- 10^{10} edges connecting 10^9 nodes.
- WQUPC reduces time from 3,000 years to 1 minute.
- Supercomputer won't help much.
- Good algorithm makes solution possible.

Bottom line.
WQUPC makes it possible to solve problems that could not otherwise be addressed.
- network connectivity
- quick find
- quick union
- improvements
- applications
Union-find applications

✓ Network connectivity.
 • Percolation.
 • Image processing.
 • Least common ancestor.
 • Equivalence of finite state automata.
 • Hinley-Milner polymorphic type inference.
 • Kruskal's minimum spanning tree algorithm.
 • Games (Go, Hex)
 • Compiling equivalence statements in Fortran.
Percolation

A model for many physical systems

- N-by-N grid.
- Each square is vacant or occupied.
- Grid **percolates** if top and bottom are connected by vacant squares.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
Percolation phase transition

Likelihood of percolation depends on site vacancy probability p

Experiments show a threshold p^*

- $p > p^*$: almost certainly percolates
- $p < p^*$: almost certainly does not percolate

Q. What is the value of p^*?
UF solution to find percolation threshold

- Initialize whole grid to be “not vacant”
- Implement “make site vacant” operation that does `union()` with adjacent sites
- Make all sites on top and bottom rows vacant
- Make random sites vacant until `find(top, bottom)`
- Vacancy percentage estimates p^*
Q. What is percolation threshold p^*?
A. about 0.592746 for large square lattices.

Q. Why is UF solution better than solution in IntroProgramming 2.4?
Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

- Two players alternate in picking a cell in a hex grid.
- Black: make a black path from upper left to lower right.
- White: make a white path from lower left to upper right.

Union-find application. Algorithm to detect when a player has won.
Subtext of today’s lecture (and this course)

Steps to developing an usable algorithm.
• Define the problem.
• Find an algorithm to solve it.
• Fast enough?
• If not, figure out why.
• Find a way to address the problem.
• Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java