
Computational Caches

Amos Waterland1 Elaine Angelino1 Ekin D. Cubuk1 Efthimios Kaxiras2,1

Ryan P. Adams1 Jonathan Appavoo3 Margo Seltzer1

1School of Engineering and Applied Sciences, Harvard University
2Department of Physics, Harvard University

3Department of Computer Science, Boston University

ABSTRACT
Caching is a well-known technique for speeding up com-
putation. We cache data from file systems and databases;
we cache dynamically generated code blocks; we cache page
translations in TLBs. We propose to cache the act of com-
putation, so that we can apply it later and in different con-
texts. We use a state-space model of computation to sup-
port such caching, involving two interrelated parts: spec-
ulatively memoized predicted/resultant state pairs that we
use to accelerate sequential computation, and trained proba-
bilistic models that we use to generate predicted states from
which to speculatively execute. The key techniques that
make this approach feasible are designing probabilistic mod-
els that automatically focus on regions of program execution
state space in which prediction is tractable and identifying
state space equivalence classes so that predictions need not
be exact.

Categories and Subject Descriptors
C.5.1 [Large and Medium (“Mainframe”) Comput-
ers]: Super (very large) computers; I.2.6 [Artificial Intel-
ligence]: Learning—Connectionism and neural nets

General Terms
Performance,Theory

1. INTRODUCTION
Caching has been used for decades to trade space for time.

File system and database caches use memory to store fre-
quently used items to avoid costly I/O; code caches store
dynamically instrumented code blocks to avoid costly rein-
strumentation; TLBs cache page translations to avoid costly
page table lookups. Caches are used to both speed up re-
peated accesses to static data and to avoid recomputation by
storing the results of computation. However, computation is
dynamic, an action that advances a state, such as the state
of a program plus associated data, to another state. We

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR ’13, June 30–July 2, 2013, Haifa, Israel.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

pose the question – can we cache the act of computation so
that it can be applied repeatedly and in new contexts?

Conventional caches have a crucial property that we would
like to replicate in a computational cache: the ability to load
their contents at one time and place but use their contents
repeatedly at different times and places. There are several
ways to exploit a computational cache having this property:
we could load the cache and then use it later on the same ma-
chine, or we could load the cache using large, powerful com-
puters and stream it to smaller, more resource-constrained
computers where the cost of a cache lookup is less than the
cost of executing the computation.

Our computational cache design arises from a model of
computation that we originally developed to extract paral-
lelism from sequential programs [29]. In this model, com-
putation is expressed as a walk through a high-dimensional
state space describing the registers and memory; we call such
a walk a trajectory. The model is practical enough that we
have built a prototype x86 virtual machine and in current
work have successfully used it to automatically parallelize
programs with obvious structure. The virtual machine em-
beds in its execution loop learning, prediction, and parallel
speculative execution; we call this trajectory-based execu-
tion.

Computational cache entries are stored pieces of observed
trajectories. The entries can be pieces of trajectories we
encountered during normal execution or during speculative
execution. In either case, we can think of these entries as
begin-state and end-state pairs – any time the virtual ma-
chine finds itself in a state matching the begin-state of some
cache entry, it can immediately speed up execution by using
the cache entry to jump to the corresponding end-state and
then continue normal execution.

In the rest of this paper we summarize our model of com-
putation, present the specifics of our computational cache,
address the dual challenges of representing cache entries ef-
ficiently and allowing each entry to be reused in as many
different ways as possible, analyze the relationship between
the predictive accuracy of a cache’s models and the resultant
speedup, and report experimental results.

2. MODEL OF COMPUTATION
The two key ideas from trajectory-based execution that

give rise to computational caching are: representing the
state of computation as a state vector and representing the
execution of an instruction as applying a fixed transition
function. A state vector contains all information relevant
to the future of the computation. A transition function de-

pends only on an input state vector to deterministically pro-
duce an output state vector.

Consider the memory and registers of a conventional com-
puter as defining a very large state space. Applying the
transition function executes one instruction, deterministi-
cally moving the system from one state vector to the next
state vector. Program execution thus traces out a trajectory
through the state space. For the moment, we exclude exter-
nal non-determinism and I/O – we assume that execution
begins after all input data and the program have been loaded
into memory. Programs can still use a pseudo-random num-
ber generator; we simply require that it be seeded determin-
istically. Given these constraints, execution is a memoryless
process – each state depends only upon the previous state.
This means that any pair of state vectors known to lie on the
same trajectory serve as a compressed representation of all
computation that took place in between; our computational
cache design arises from this fact.

Our prototype x86 virtual machine is a parallel program
that has hard-wired into its execution loop the tasks of
(1) learning patterns from the observed state vector trace of
the program it is executing, (2) issuing predictions for future
states of the program, (3) executing the program specula-
tively based on the predictions, (4) storing the speculative
execution results in our computational cache, and (5) using
the computational cache to speed up execution. The virtual
machine smoothly increases or decreases the scale of these
tasks as a function of the raw compute, memory, and com-
munications resources available to it. More raw resources
cause the virtual machine to query and fill a larger compu-
tational cache, learn more complex models, predict further
into the future, and execute more speculations in parallel.

As aggressive as these ideas sound, we have previously
demonstrated that we can use them in limited cases to au-
tomatically speed up certain classes of binary programs [29].
This paper addresses a broader question – how can we go
beyond speeding up a single computation to reusing work
performed in the context of one program to improve the
performance of a different program?

We examine two ways to reuse and generalize information
gained from executing a program. The first is to extract
the symmetries of a stored trajectory – constraints which if
satisfied allow pieces of many other distinct trajectories to
be considered equivalent to it and thus can be sped up by
it. For example, the same library function can be called by
two different programs. The second is to extract the statis-
tical patterns of a stored trajectory – which when encoded
as the parameters of a probabilistic model allow accurate
predictions for future states of a wide class of similar pro-
grams. For example, similar machine code generated for
two different programs allows a predictor trained on one to
be immediately useful for speculative computation on the
other.

3. CACHE DESIGN
Our computational cache stores two kinds of objects: com-

pressed state vector pairs along with their symmetries, and
the parameters of trained probabilistic models. To fill our
cache, we take in a sequence of vectors produced by execut-
ing some program for some useful number of instructions,
and insert in the cache only the first and last vector as a
pair. By construction in a state-space model, we lose no in-
formation by forgetting the intermediate vectors, no matter

how long the sequence. The two vectors are themselves often
highly compressible, so in practice a billion-instruction se-
quence of megabit state vectors often results in just a kilobit
cache entry.

Our execution loop continually queries our cache for a pair
whose first vector matches our current vector. If the cache
hits, we immediately transform our current vector into the
second entry of the pair, speeding up computation by fast-
forwarding through potentially billions of instructions. If
the cache misses, we execute one instruction by applying the
transition function as normal, then try again. Sequences of
state vectors usually have many symmetries, so our current
vector need only match along the causal coordinates of a
stored pair in order to get a cache hit. Matching is conser-
vative: we tolerate false negatives in order to guarantee that
we will never have false positives. Cache hits speed up exe-
cution but produce the exact same computation as normal,
and cache misses just result in normal execution with query
overhead.

There are characteristics of both execution and the state
space that we exploit in our computational cache: trajec-
tories are not random, each instruction modifies only small
portions of the state, and even long sequences of instruc-
tions frequently depend upon only small portions of the
state. Programs are frequently constructed out of compo-
nents: functions, library routines, loops, etc. Within each
one of these constructs, execution typically depends on only
a small portion of the space and modifies only a small por-
tion of the space. We’ll use these observations to construct
useful entries in a computational cache.

Let’s begin by identifying some useful characteristics of
a cache entry and then move on to techniques for produc-
ing such entries. First, an entry has to encapsulate enough
computation that the benefit of using the entry to fast-
forward through a certain minimum number of instructions
outweighs the cost of looking it up. We do not yet have a
comprehensive cost model for the trade-off between caching
a sequence of computation and regenerating that sequence [1],
but in our prototype virtual machine we find that entries
must comprise a pair of state vectors separated by at least
104 instructions to make the cache lookup time worthwhile.
Second, we would like entries that correspond to units of
computation with few dependencies, since they will have
larger equivalence classes of matching states. Third, we
would like the entries to correspond to building blocks that
are likely to be used repeatedly within a single program or
frequently among different programs.

Our next task is to identify pieces of a trajectory whose
start states are close in state space, as these states often rep-
resent the start state of a repeated pattern of computation
worth caching and training models on. One approach is to
look for a sequence of states that share the same value for
the instruction pointer (IP). Such states represent repeated
visits to the exact same location in a program, presumably
in a loop, although they could also correspond to repeated
invocations of a function. By tracking such sequences of
states, we can ask if the computation between any two vis-
its is sufficiently long to consider creating a cache entry. If
it is not, we might try using every n-th occurrence of the
IP. If it is, then we compute the distance between two such
states to see if they are close in state space. If they are,
we next consider the dependencies and modifications that
happen between any two occurrences of the IP.

Given the sequence of states sharing the same IP, we ex-
amine execution between subsequent pairs of states. Our
virtual machine keeps track of every state vector element
that the program reads or writes between those states. The
computation depends on any element that it reads before
writing – if the number of such elements is relatively small,
then we’ve satisfied our three criteria, and we have identi-
fied good candidates for cache entries. Storing trajectories
with few dependencies is key to implementing a cache with
wide reusability. A cache entry will match all states in the
space that match on its dependent elements; entries with
fewer dependencies have larger equivalence classes of match-
ing states. Thus, we have reduced our problem from having
to match on a ridiculously large state vector to having to
match only a few elements in that vector.

When the current state vector matches a cache entry we
speed up execution by overwriting the current state with
the output elements in the cache entry. Figure 1 illustrates
this process, but there are intuitive interpretations as well.
Thinking of the state space geometrically: states matching
on dependent elements form a hyperplane in the space; the
dimensionality of the hyperplane is much lower than that of
the space. We use cache entries by translating the entry to
any state we encounter that lies on the hyperplane. Alter-
nately, programmatically, imagine that the IP value corre-
sponds to a location inside a loop that operates over an array
of data. Execution depends only upon the loop variable and
the location being read in the loop, and those two elements
are likely perfectly correlated. Better yet, consider the IP
to be that of a pure function call encapsulated in a loop – in
this case, the function arguments are the dependencies and
return value of the function is the output. In this latter case,
the cache entry corresponds perfectly to memoization [17].

We can now take this cache entry algorithm one step far-
ther. Once we have found sequences of states with matching
IP values that are good cache entry candidates, we can be-
gin trying to predict likely future states that will match the
entry. We can then use those predictions to launch parallel
threads that begin speculatively executing from those pre-
dicted states. Each thread executes until it next encounters
the right IP value and enters its computation into the cache.
This provides a form of speculative, generalized memoiza-
tion.

We have implemented this cache entry detection algorithm
in our virtual machine only for sequences of matching IP val-
ues (e.g., program locations that appear in a loop), however,
we have experimented with other forms of detection such as
function call invocation and return. We expect to pursue a
variety of cache entry detection algorithms as future work.
Our virtual machine watches the IP looking for repeated
values that are sufficiently far apart to warrant further in-
vestigation. When it finds such values, it does three things.
First, it begins adding entries to the cache for instances it
has seen. Second, it dispatches an ensemble of predictors
that use the sequence of states sharing the same IP to build
models and generate predictions. Third, using the predic-
tions, it launches speculative threads to create cache entries
from those predictions. Meanwhile, whenever it encounters
the IP value, it queries the cache for matching entries; when
it finds one, it then fast-forwards its execution to the state
that results from applying the cached entry, then resumes
execution.

Our predictive models operate on state vectors of bits or

101011000111100010110001000#

101011001000100001000100010#

IP#(read)#

101011001000100001001110111#

IP#(wri.en)#

read#

wri.en#

A#

B#

C#

101011000111100010111110111#D#

read#Figure 1: Cache Matching. State vectors A and
B represent the entire computational state at two
subsequent visits to states sharing the designated IP
value. During the execution from A to B, we keep
track of the bytes that have been read (marked in
A) and written (marked in B). State C matches the
cache entry we created from execution from A to B,
because it has identical bit patterns for all the bits
read. We use the cache entry by replacing C’s bits
with the bits marked as written in C to produce the
state in D.

on transformed feature vectors (e.g., 32-bit integers) and are
able to find patterns that are difficult to resolve at the se-
mantic level of a programming language. However, for the
purpose of exposition we present an example pattern that
corresponds to a human-level concept that was automati-
cally discovered by the neural network we discuss in §5.

In Listing 1, we know at compile time that this loop is
calling a function, potential(), that dereferences pointers.
Thus, the function is not amenable to conventional mem-
oization. As we show in Listing 2, this function traverses
a dynamic data structure and is computationally intensive.
If our models correctly predict a state corresponding to the
entry point of potential with correct values for the pointer
node and the contents of the memory to which it refers, then

struct node ∗node = head ;

while (node) {
energy = po t en t i a l (node) ;

i f (energy < GROUND + e)
break ;

node = node−>next ;
}

Listing 1: List traversal.

when we later encounter that element of the list, we will be
able to use the cached entry. In other words, if we specu-
latively execute a possible future invocation of this function
and cache the computation, we can use it later to accelerate
execution.

Having accomplished the basics of caching computation
both by capturing actual executions as well as possible ex-
ecutions, we can consider ways to extend this idea. In our
current framework, the cache entries depend on the value of
the pointer in the list and the value stored in the list entry.
It is easy to imagine a hybrid approach that uses seman-
tic information about the relationship between the pointer
and the value to do even better (i.e., require matching only
on the value of the list element and not the pointer). An-
other way to extend this work is to attempt techniques to
more rapidly train our models. For example, right now we
train only on states we have actually observed, however, we
could also synthesize training data by first fixing the bits
corresponding to the instructions of the program and then
sampling the remaining bits from some distribution.

Creating and using cache entries is similar to some conven-
tional parallelization approaches, such as loop paralleliza-
tion. However, the scope of our technique is more general.
Our hypothesis is that while there exist programs for which
prediction is impossible, in practice there are a great many
interesting programs for which prediction is tractable. Some
of those programs are the“embarrassingly parallel”ones that
modern compilers can also parallelize. However, it is also
possible that many programs are not able to be parallelized
by conventional approaches for incidental reasons, such as
aliasing, rather than fundamental unpredictability inherent
in the problems they are solving. For example, the code
from which we extracted Listings 1 and 2 is in daily use
in a local research lab and computes on data stored in a

int po t en t i a l (struct node ∗node) {
int i , j , spin , energy = 0 ;

for (i = 0 ; i < 1024 ; i++) {
for (j = 0 ; j < 1024 ; j++) {

sp in = node−>sp in s [i] [j] ;
/∗ Ca lcu la t e energy . ∗/

}
}

return energy ;
}

Listing 2: Function that dereferences pointers.

linked list that is not amenable to conventional paralleliza-
tion. However, we show in §5 that a neural network can
generate accurate predictions and also be robust to small
changes in the program code.

The direct cost of filling a cache is mostly that of depen-
dency tracking overhead during speculative execution, which
we currently measure at about 13% over and above the cost
of running in a virtual machine. Indirectly we can smoothly
consume increasing amounts of otherwise unused compute
and memory resources by speculatively filling the cache.

4. SPEEDUP
To further explore the potential of computational caching,

we analyze how often cache entries must be used to yield
useful speedup. We know that entries created from actual
execution are always correct, so let’s focus on entries we
create speculatively. Assume that we have N cores, one of
which is running the master computation and the otherN−1

Figure 2: Speedup contours.

are running workers whose job it is to speculatively fill the
computational cache. Suppose that a constant fraction α of
the speculative computation is correct. It is straightforward
to show that with these assumptions the expected speedup
S as a function of α and the number of workers has the
relationship:

S ≤ 1 + α(N − 1). (1)

We obtain equality when the cache entries represent evenly
spaced pieces of the full trajectory with no latencies or re-
dundancies. A system that uses decision theory to maximize
its expected speedup may be able to get quite close to this
even spacing, in which case its speedup is linear in the num-
ber of cores and accuracy. Figure 2 shows contour lines of
constant speedup when Equation 1 is an equality. These
“isospeedup” contours give an intuitive view of why a com-
putational cache is so interesting. Imagine that we are cur-
rently running on a computer with N = 20 cores that has
constant predictive accuracy α = 0.16. Then our speedup
lies on the S = 4 contour. Now imagine that we populate
the cache with results from a much larger machine that has
a constant predictive accuracy of α = 0.48. Our speedup
now lies on the S = 10 contour, which means that our sys-
tem now performs as if we installed nearly 40 additional
cores. To date, most of our experience comes from scientific
applications, so we envision a world where we create large
distributed caches using supercomputers and make them ac-
cessible to your laptop, letting you perform computations
locally that would normally far exceed local capacity. In
the long run, one might imagine sets of distributed compu-
tational caches that contain cached executions of common
library functions or other widely used computations. In the
extreme, the line between data caching and computational
caching blurs.

5. NEURAL NETWORK EXAMPLE
We close this paper with a small, but concrete example

of how we populated a cache using neural networks. This
example is intended to show some initial promising steps
toward three goals: (1) that our system can automatically
learn models that achieve nontrivial predictive accuracy on
interesting programs, such as the linked list one we have
been discussing, (2) that it is feasible to populate caches
on one machine and use them on another, and (3) that the
cache becomes more useful as it grows.

We use the standard GNU toolchain to compile and stat-

ically link the program given in Listing 1 and Listing 2. We
then run this program in our x86 virtual machine with a
dimensionality of state space n = 8 × 25000 bits.

We use an important family of probabilistic models that
are a nice fit for the problem of predicting binary vectors.
These models are robust in a modular way – once we train
one on a particular program, a large fraction of the trained
parameters will also be the trained parameters for modu-
lar perturbations of that program. For example, a research
group of physicists who are all running variants of the same
program might all be able to benefit from the same cache.
Our virtual machine represents its state space as a bit vector,
and recall that execution is memoryless – each state depends
only on the previous state. We decompose the problem of
predicting a future state vector from an earlier state vector
into n conditionally independent binary classification prob-
lems, where n is the number of bits in our state, each of
which we need to classify as either a 0 or a 1. This is fortu-
nate as binary classification is one of the most well-developed
areas of machine learning [21]. It also makes model training
parallelizable. It has the disadvantage though of forcing the
models to learn low-level representations for things such as
a loop induction variable, which might be much better han-
dled as a feature. In practice, we fit models for only the bits
that we have seen change, which is usually a small fraction
of the total number of bits.

We used a single-layer neural network for our model. For
each bit i in our state, we use training data pairs that map
the dependent bits at one occurrence of the IP value to the
bit i at the subsequent occurrence of that IP value. Given
a current state, the trained neural network outputs a value
between 0 and 1 that can be interpreted as its estimate of
the probability, conditioned on the current state, that the
i-th bit of the state next time we see this IP value will be 1.

As we populated our cache, we automatically trained a
neural network model of the kind just described to predict
the state next time we encounter the instruction right be-
fore the outermost for loop of Listing 2. To evaluate this
model, we gave it a test set of states from the execution of

Figure 3: Robustness of predictive model.

the same program that it had never seen before and asked
it to predict the next such state. In Figure 3, the blue line
shows the empirical cumulative mass function of how many
bits the model got wrong. About 20% of the time the model
predicted the entire state vector perfectly, and 50% of the
time, it predicted only six or fewer bits wrong. The dashed
red line shows the CMF for the number of bits the model
mispredicted when asked to make predictions for a variant
of the original program that we produced by adding a small

amount of random noise to its linked list contents. We find
these results highly encouraging as they demonstrate the
cache’s robustness; we populated the cache using one pro-
gram and were able to make accurate predictions for a dif-
ferent version of the program.

6. RELATED WORK
Identifying good cache entries is closely related to tech-

niques in compiler loop parallelization. While early paral-
lelization techniques relied largely on static analysis [2, 3,
6, 14], the limitations of static analysis have become ap-
parent [10]. Incorporation of runtime checks [22] expanded
the reach of parallelizing compilation systems, but these
techniques still do not generalize easily to general-purpose
programs in the face of interprocedural dependencies and
pointer-based access [15]. To date, we have only demon-
strated the potential of computational caches on programs
that have obvious repetitive structure, but we have shown
that they work in the presence of pointer-based codes, which
is promising.

Speculatively populating our computational cache might
be considered an extreme case of some of the other spec-
ulative approaches to parallelization such as Thread-Level
Speculation [20, 23, 5] and Decoupled Software Pipelining [25,
26, 19]. Our virtual machine design draws inspiration from
trace caches [18], memoizing processors [13, 17, 27], caching
cellular automata [9] and perceptron branch prediction [12].

The low-level representation from which we make our pre-
dictions suggests analogies between computational caches
and binary translation [4] and binary parallelization systems
[8, 16, 7, 10, 28, 30, 31]. We believe that hybrid approaches
that leverage existing work, such as applying branch predic-
tion to parallelization [11, 24] or code rewriting systems [16,
8, 28] to generate better predictors could further improve
the efficacy of computational caches.

7. CONCLUSION
Computational caches have enormous potential. We have

described them here in terms of making a large cache acces-
sible to a small computer, but as we are exploring in concur-
rent work, they also have the ability to automatically paral-
lelize programs that are not currently amenable to conven-
tional parallelization techniques. In the long run we imagine
a computational infrastructure where an entire network of
computers coordinate and collaborate by sharing model pa-
rameters and cache entries, thus harnessing their combined
compute power, automatically, without any special problem-
specific middleware. Realizing these visions requires that we
develop robust models with sufficient predictive accuracy to
produce useful speculative trajectories. The results from
our simple neural network predictor demonstrate that such
accuracy may be possible.

8. ACKNOWLEDGMENTS
The authors would like to thank Gerald Sussman, Miguel

Aljácen, Jeremy McEntire, Liz Bradley, Benjamin Good and
Scott Aaronson for their contributions. This work was sup-
ported by the National Science Foundation Graduate Re-
search Fellowship under Fellow ID 2012116808, the Depart-
ment of Energy Office of Science under its agreement number
DE-SC0005365, and the National Institutes of Health under
Award Number 1R01LM010213-01.

9. REFERENCES
[1] I. F. Adams, D. D. E. Long, E. L. Miller,

S. Pasupathy, and M. W. Storer. Maximizing
efficiency by trading storage for computation. In
Proceedings of the 2009 conference on Hot topics in
cloud computing, HotCloud’09, Berkeley, CA, USA,
2009. USENIX Association.

[2] V. S. Adve, J. Mellor-Crummey, M. Anderson, J.-C.
Wang, D. A. Reed, and K. Kennedy. An integrated
compilation and performance analysis environment for
data parallel programs. In Proceedings of the 1995
ACM/IEEE conference on Supercomputing
(CDROM), Supercomputing ’95, New York, NY, USA,
1995. ACM.

[3] S. P. Amarasinghe and M. S. Lam. Communication
optimization and code generation for distributed
memory machines. In Proceedings of the ACM
SIGPLAN 1993 conference on Programming language
design and implementation, PLDI ’93, pages 126–138,
New York, NY, USA, 1993. ACM.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a
transparent dynamic optimization system. ACM
SIGPLAN Notices, 35(5):1–12, 2000.

[5] A. Bhowmik and M. Franklin. A general compiler
framework for speculative multithreading. In
Proceedings of the fourteenth annual ACM symposium
on Parallel algorithms and architectures, SPAA ’02,
pages 99–108, New York, NY, USA, 2002. ACM.

[6] B. Blume, R. Eigenmann, K. Faigin, J. Grout,
J. Hoeflinger, D. Padua, P. Petersen, B. Pottenger,
L. Rauchwerger, P. Tu, and S. Weatherford. Polaris:
The next generation in parallelizing compilers. In
Proceedings Of The Workshop On Languages And
Compilers For Parallel Computing, pages 10–1.
Springer-Verlag, Berlin/Heidelberg, 1994.

[7] M. K. Chen and K. Olukotun. The jrpm system for
dynamically parallelizing java programs. In
Proceedings of the 30th annual international
symposium on Computer architecture, ISCA ’03, pages
434–446, New York, NY, USA, 2003. ACM.

[8] A. Dasgupta. Vizer: A framework to analyze and
vectorize intel x86 binaries. Master’s thesis, Rice
University, 2002.

[9] B. Gosper. Exploiting regularities in large cellular
spaces. Physica D. Nonlinear Phenomena, 1984.

[10] B. Hertzberg. Runtime Automatic Speculative
Parallelization of Sequential Programs. PhD thesis,
Stanford University, 2009.

[11] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez.
Core fusion: accommodating software diversity in chip
multiprocessors. In Proceedings of the 34th annual
international symposium on Computer architecture,
ISCA ’07, pages 186–197, New York, NY, USA, 2007.
ACM.

[12] D. A. Jiménez and C. Lin. Dynamic branch prediction
with perceptrons. In Proceedings of the 7th
International Symposium on High-Performance
Computer Architecture, HPCA ’01, pages 197–,
Washington, DC, USA, 2001. IEEE Computer Society.

[13] Y. Kamiya, T. Tsumura, H. Matsuo, and
Y. Nakashima. A speculative technique for
auto-memoization processor with multithreading. In

Parallel and Distributed Computing, Applications and
Technologies, 2009 International Conference on, pages
160 –166, dec. 2009.

[14] K. Kennedy and J. R. Allen. Optimizing compilers for
modern architectures: a dependence-based approach.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[15] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and
D. I. August. Automatic speculative DOALL for
clusters. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization,
CGO ’12, pages 94–103, New York, NY, USA, 2012.
ACM.

[16] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and
R. Barua. Automatic parallelization in a binary
rewriter. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 547–557,
Washington, DC, USA, 2010. IEEE Computer Society.

[17] D. Michie. Memo functions and machine learning.
Nature.

[18] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A
study of slipstream processors. In Proceedings of the
33rd annual ACM/IEEE international symposium on
Microarchitecture, MICRO 33, pages 269–280, New
York, NY, USA, 2000. ACM.

[19] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and
D. I. August. Speculative parallelization using
software multi-threaded transactions. In Proceedings
of the fifteenth edition of ASPLOS on Architectural
support for programming languages and operating
systems, ASPLOS ’10, pages 65–76, New York, NY,
USA, 2010. ACM.

[20] L. Rauchwerger and D. Padua. The lrpd test:
speculative run-time parallelization of loops with
privatization and reduction parallelization. In
Proceedings of the ACM SIGPLAN 1995 conference
on Programming language design and implementation,
PLDI ’95, pages 218–232, New York, NY, USA, 1995.
ACM.

[21] D. S. Richard Duda, Peter Hart. Pattern Classification
(Second Edition). Wiley-Interscience, 2001.

[22] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid
analysis: static & dynamic memory reference analysis.
Int. J. Parallel Program., 31(4):251–283, Aug. 2003.

[23] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry.
The stampede approach to thread-level speculation.
ACM Trans. Comput. Syst., 23(3):253–300, Aug. 2005.

[24] D. Tarjan, M. Boyer, and K. Skadron. Federation:
repurposing scalar cores for out-of-order instruction
issue. In Proceedings of the 45th annual Design
Automation Conference, DAC ’08, pages 772–775,
New York, NY, USA, 2008. ACM.

[25] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A
practical approach to exploiting coarse-grained
pipeline parallelism in c programs. In Proceedings of
the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 40, pages 356–369,
Washington, DC, USA, 2007. IEEE Computer Society.

[26] N. Vachharajani, R. Rangan, E. Raman, M. J.
Bridges, G. Ottoni, and D. I. August. Speculative
decoupled software pipelining. In Proceedings of the

16th International Conference on Parallel Architecture
and Compilation Techniques, PACT ’07, pages 49–59,
Washington, DC, USA, 2007. IEEE Computer Society.

[27] C. Verbowski, E. Kiciman, A. Kumar, B. Daniels,
S. Lu, J. Lee, Y.-M. Wang, and R. Roussev. Flight
data recorder: Monitoring persistent-state interactions
to improve systems management. In OSDI, pages
117–130. USENIX Association, 2006.

[28] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager,
T.-f. Ngai, and J. Fang. Dynamic parallelization of
single-threaded binary programs using speculative
slicing. In Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pages
158–168, New York, NY, USA, 2009. ACM.

[29] A. Waterland, J. Appavoo, and M. Seltzer.
Parallelization by simulated tunneling. In Proceedings
of the 4th USENIX conference on Hot Topics in
Parallelism, HotPar’12, pages 9–14, Berkeley, CA,
USA, 2012. USENIX Association.

[30] J. Yang, K. Skadron, M. Soffa, and K. Whitehouse.
Feasibility of dynamic binary parallelization. In
Proceedings of the 4th USENIX conference on Hot
Topics in Parallelism, 2011.

[31] E. Yardimci and M. Franz. Dynamic parallelization
and mapping of binary executables on hierarchical
platforms. In Proceedings of the 3rd conference on
Computing frontiers, CF ’06, pages 127–138, New
York, NY, USA, 2006. ACM.

