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Abstract

Topic modeling is a powerful tool for uncovering latent
structure in many domains, including medicine, finance,
and vision. The goals for the model vary depending
on the application: sometimes the discovered topics are
used for prediction or another downstream task. In other
cases, the content of the topic may be of intrinsic scien-
tific interest. Unfortunately, even when one uses modern
sparse techniques, discovered topics are often difficult
to interpret due to the high dimensionality of the under-
lying space. To improve topic interpretability, we intro-
duce Graph-Sparse LDA, a hierarchical topic model that
uses knowledge of relationships between words (e.g.,
as encoded by an ontology). In our model, topics are
summarized by a few latent concept-words from the un-
derlying graph that explain the observed words. Graph-
Sparse LDA recovers sparse, interpretable summaries
on two real-world biomedical datasets while matching
state-of-the-art prediction performance.

Introduction
Probabilistic topic models (Blei, Ng, and Jordan 2003;
Steyvers and Griffiths 2007) were originally developed to
discover latent structure in unorganized text corpora. How-
ever these models provide a powerful general framework
for uncovering structure in data drawn from many domains
(e.g., medicine, finance and vision, to name a few). In the
popular Latent Dirichlet Allocation (LDA) (Blei, Ng, and
Jordan 2003) model, topics are distributions over the words
in a vocabulary, and documents are summarized by the mix-
ture of topics that they contain. Here, a “word” is anything
that can be counted and a “document” is an observation.
LDA has been applied to a diverse set of tasks, including
finding scientific topics in articles (Griffiths and Steyvers
2004), classifying images (Fei-Fei and Perona 2005), and
recognizing human actions (Wang and Mori 2009). The
modeling objective varies depending on the application: in
some cases, topic models are used to provide compact sum-
maries of documents that can then be used for downstream
tasks such as prediction, classification, or recognition. In
other situations, the discovered topics themselves may be of
independent interest. For example, a clinician may want to
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understand why a certain topic within their patient’s data is
correlated with mortality (Ghassemi et al. 2012).

Applications in which interpretation is paramount present
unique challenges and opportunities for topic modeling.
Typically, topics are distributions over the words in a (very
large) vocabulary that is usually assumed to be unstruc-
tured, i.e., words do not have a priori relationships. Sparse
topic models, e.g., (Archambeau, Lakshminarayanan, and
Bouchard 2011; Williamson et al. 2010), offer some inter-
pretability via the constraint that many of a topic’s word
probabilities should be zero. Unfortunately, when vocabu-
laries are large, there may still be hundreds of words with
non-zero probabilities. Enforcing sparsity alone is therefore
not sufficient to induce interpretable topics.

We propose a new strategy for achieving interpretabil-
ity: exploiting controlled structured vocabularies, which
exist in many technical domains. These structures encode
known relationships between words. For example, diseases
are organized into billing hierarchies, and clinical concepts
are related by directed acyclic graphs (DAGs) (Bodenrei-
der 2004). Keywords for biomedical publications are or-
ganized in a hierarchy known as MeSH (Lipscomb 2000).
Genes are organized into pathways and interaction networks.
Such structures often summarize large bodies of scientific
research and human thought. While these structured vocab-
ularies are necessarily imperfect, they have the important
property that they (by definition) represent how domain ex-
perts codify knowledge, and thus might help to create models
that such experts can meaningfully use and interpret. And
because they were designed to be understood by humans,
these relationships provide a form of information unique
from any learned ontology.

Existing topic modeling machinery is not equipped to
leverage controlled structured vocabularies. We propose
Graph-Sparse LDA (GS-LDA), a new model that exploits
DAG-structured vocabularies to induce interpretable topics
that still summarize the data well. Our approach is appro-
priate when documents are annotated with structured vo-
cabulary terms, e.g., biomedical articles with MeSH head-
ers, genes with known interactions, and species with known
taxonomies. GS-LDA introduces an additional layer of hi-
erarchy into the standard LDA model: instead of topics be-
ing distributions over observed words, they are distributions
over concept-words, which then generate observed words
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via a noise process that is informed by the structure of the
vocabulary (see example in Figure 1). By exploiting the
structure in the vocabulary to induce sparsity, we recover
topics that are more interpretable to domain experts.

We demonstrate GS-LDA on two real-world applications.
The first is a collection of diagnoses for patients with autism
spectrum disorder. For this we use a diagnosis hierarchy
(Bodenreider 2004) to recover clinically relevant subtypes
described by a small set of concepts. The second is a cor-
pus of biomedical abstracts annotated with hierarchically-
structured Medical Subject Headings (MeSH) (Lipscomb
2000). Here GS-LDA identifies meaningful, concise group-
ings (topics) of MeSH terms for use in biomedical literature
retrieval tasks. In both cases, the topic models found by GS-
LDA have the same or better predictive performance as a
state-of-the-art sparse topic model (Latent IBP compound
Dirichlet Allocation (Archambeau, Lakshminarayanan, and
Bouchard 2011)) while providing much sparser topic de-
scriptions. To efficiently sample from this model, we intro-
duce a novel inference procedure that prefers moves along
manifolds of constant likelihood to identify sparse solutions.

Graph-Sparse LDA
In this paper, our data are documents that are modeled using
the standard “bag of words” representation. Let the data X
consist of the counts of each of the V words in the vocabu-
lary for each of the N documents. The standard LDA model
(Blei, Ng, and Jordan 2003) posits the following generative
process for the words win comprising each document (data
instance) in X:

Bn ∼ Dirichlet(αB1K) (1)
Ak ∼ Dirichlet(αA1V ) (2)

zin |Bn ∼ Discrete(Bn) (3)
win | zin, {Ak} ∼ Discrete(Azin) (4)

where K is the number of topics. The rows of the N×K
matrix B are the document-specific distributions over top-
ics, and the K×V matrix A represents each topic’s distri-
bution over words. The notation Ak refers to the kth row
of A. The zin encode the topic to which the ith word in doc-
ument n was assigned, and win∈ 1, . . . , V is the ith word
in document n.

Our Bayesian nonparametric model, GS-LDA, builds
upon a recent nonparametric extension of LDA, Latent IBP
compound Dirichlet Allocation (LIDA) (Archambeau, Lak-
shminarayanan, and Bouchard 2011). LIDA introduces spar-
sity over both the document-topic matrix B and the topic-
word matrix A using a three-parameter Indian Buffet Pro-
cess. This prior encodes a preference for describing each
document with a few topics and each topic with a few words.
We extend LIDA by assuming that words in our document
have known relationships that form a tree or DAG, and that
nearby groups of terms—as defined with respect to the graph
structure—are associated with specific phenomena. For ex-
ample, in a biomedical ontology, nodes on one sub-tree may
correspond to a particular virus (e.g., HIV) and a differ-
ent sub-tree may describe a specific drug or treatment (e.g.,

Figure 1: Simplified section of the ICD9-CM diagnostic hi-
erarchy. Here, “Epilepsy” might be a good concept-word to
summarize the very specific forms of epilepsy that are its
descendants. Knowing that a patient has epilepsy may also
explain instances of “Central Nervous System Disorder” or
even “Disease.”

anti-retrovirals) used to treat HIV. Papers investigating anti-
retrovirals for treatment of HIV would then tend to have
terms drawn from both sub-trees. Intuitively, we would like
to uncover these sub-trees as the concepts underpinning a
topic.

Using concept-words to summarize the words in a topic
is natural in many scenarios because structured vocabularies
are often both very specific and inconsistently applied. For
example, a trial may be annotated with the term antiviral
agents or its child anti-retroviral agents. Nearby words in
the vocabulary can be thought of as having been generated
from the same core concept. Our model posits that a topic
is made up of a sparse set of concept-words that can explain
words that are its ancestors or descendants (Figure 1). For-
mally, we define the following generative process that intro-
duces w̃in as the concept word behind observed word win:

πk ∼ IBP-Stick(γB) (5)
ρv ∼ Beta(γA/V, 1) (6)

B̄nk |πk ∼ Bernoulli(πk) (7)

Ākv | ρv ∼ Bernoulli(ρv) (8)

Bn | B̄n ∼ Dirichlet(B̄n � αB1K) (9)

Ak | Āk ∼ Dirichlet(Āk � αA1V ) (10)
zin |Bn ∼ Discrete(Bn) (11)

w̃in | zin, {Ak} ∼ Discrete(Azin) (12)
Pv ∼ Dirichlet(Ov � αP 1V ) (13)

win | w̃in, P ∼ Discrete(Pw̃in
) (14)

where � is the element-wise Hadamard product and IBP is
the Indian Buffet Process (Griffiths and Ghahramani 2011).
We assume both concept words and observed words come
from the same vocabulary. As in the standard LDA model,
the document-topic matrix B represents the distribution of
topics in each document. However, Bn is now masked ac-
cording to a document-specific vector B̄n, which is the nth
row of a matrix B̄ that is itself drawn from an IBP with
concentration parameter γB . Thus B̄nk is 1 if topic k has
nonzero probability in document n and 0 otherwise. Sim-
ilarly, the topic-concept matrix A and the binary topic-
concept mask matrix Ā represent the topic matrix and its
sparsity pattern, except that now A and Ā represent the
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relationship between topics and concept-words. The pri-
ors over the document-topic and topic-concept matrices B
and A (and their respective masks B̄ and Ā) follow those
in LIDA (Archambeau, Lakshminarayanan, and Bouchard
2011).

The concept-word matrix P describes distributions over
words for each concept. The form of the ontology O de-
termines the sparsity pattern of P : we denote by Ow a bi-
nary vector of length V that is 1 if the concept-word w̃ is
a descendant or ancestor of observed word w and 0 oth-
erwise. We illustrate these sparsity constraints in Figure 2,
where the dark-shaded concept nodes 1, 2, and 3 can each
only explain themselves, and words that are ancestors or de-
scendants. The brown and green nodes are ancestor observed
words that are shared by more than one concept word.

Intuitively, the concept-word matrix P allows for varia-
tion in the process of domain experts assigning terms to doc-
uments (citations, diagnoses, etc.). For example, if a docu-
ment is about anti-retroviral agents, an annotator may de-
scribe the document with a key-word nearby in the vocabu-
lary, such as antiviral agents, rather than the more specific
term. Similarly, a primary care physician using the hierarchy
in Figure 1 may note that a patient has epilepsy since she
is not an expert in neurological disorders, while a specialist
might assign the more specific term Convulsive Epilepsy, In-
tractable. More generally, the concept-word matrix P can be
thought of as describing a neighborhood of words that could
be covered by the same concept. Introducing this additional
layer of hierarchy allows us to induce sparse topic-concept
matrices A that still explain a large number of observed
words. (Note that setting P = IV recovers LIDA from GS-
LDA; GS-LDA is therefore a generalization of LIDA that
allows for more structure.)

Inference
In the supplementary materials, we derive a blocked-Gibbs
sampler for B, B̄, A, Ā, and P (as well as for adding
and deleting topics). However, Gibbs sampling alone does
not give us sparsity in the topic-concept word matrix A fast
enough. Mixing is slow because the only time the blocked-
Gibbs sampler sets Ākw̃ = 0 is when no counts of w̃ are
assigned to topic k across any of the documents. When there
are many documents, reaching zero counts is unlikely, and
the sampler is slow to sparsify the topic-concept word matrix
A.1

We introduce an MH procedure to encourage moves of the
topic concept-word matrixA in directions of greater sparsity
through joint moves on both A and P . Given a proposal dis-
tribution Q(A′, P ′ |A,P ), the acceptance ratio for an MH
procedure is given by

aMH = 1 ∧ p(X |B,A
′, P ′) p(A′) p(P ′)Q(A,P |A′, P ′)

p(X |B,A, P ) p(A) p(P )Q(A′, P ′ |A,P )

The prior A prefers sparse topic-concept word matrices A′.
However, the likelihood term p(X |B,A, P ) will generally
dominate the prior terms p(A) and p(P ).

1We focus on A in this section because we found that B̄ is faster
to mix; each document may not have many words. However, a sim-
ilar approach could be used to sparsify B.

32

1

Figure 2: Example tree. Each node (including interior nodes)
represents a vocabulary word. A concept-word can explain
instances of its descendants and ancestors, e.g., if node 1
is a concept-word, the matrix P would only have non-zero
values the nodes in red and brown.

To allow for moves toward greater sparsity, our MH pro-
posal uses two core ideas. First, we use the form of the ontol-
ogy to propose intelligent split-merge moves forA′. Second,
we attempt to make a move that keeps the likelihood as con-
stant as possible by proposing a P ′ such that AP = A′P ′.
Thus, the prior terms p(A) and p(P ) will have a larger in-
fluence on the move. The form of Q(A′, P ′ |A,P ) is as fol-
lows:

• Q(A′ |A,P ): We choose a random topic k and
concept word w̃. Let Dw̃ denote the set of con-
cept words that are descendants of w̃ (including w̃).
With probability psplit, we sample a random vec-
tor r from Dirichlet(1|Dw̃|) and create a new A′

k with
A′

kw̃ = 0 and A′
kw̃′ = Akw̃′ + rAkw̃, ∀w̃′ ∈ Dw̃. Oth-

erwise, we perform the merge A′
kw̃′ = 0, ∀w̃′ ∈ Dw̃,

and A′
kw̃ =

∑
w̃′∈Dw̃

Akw̃′ . This split-merge move cor-
responds to adjusting probabilities in a sub-graph of the
ontology, with the merge move corresponding to moving
all the mass to a single node.

• Q(P ′ |A′, A, P ): Let P ? be the solution to the optimiza-
tion problem minP̂ ||AP −A′P̂ ||2F , where F denotes the
Frobenius norm, with the constraints that each row of P ?

must lie on the simplex and respect the ontology O. This
optimization can be solved as a quadratic program with
linear constraints. We then sample each row of the pro-
posal P ′ according to P ′

v ∼ Dirichlet(βMHP
?
v ). We find

in practice that βMH generally needs to be large in order
to propose appropriately conservative moves.

While this procedure can still propose moves over the en-
tire parameter space (thus guaranteeing Harris recurrence on
the appropriate stationary distribution corresponding to the
prior), it guarantees visits to sparse, high-likelihood solu-
tions with high probability.

Results
We demonstrate that our Graph-Sparse LDA model finds in-
terpretable, predictive topics on one toy example and two
real-world examples from biomedical domains. In each case
we compare our model with the state-of-the-art Bayesian
nonparametric topic modeling approach LIDA (Archam-
beau, Lakshminarayanan, and Bouchard 2011). We focus on
LIDA because it subsumes two other popular sparse topic
models, the focused topic model (Williamson et al. 2010)
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and sparse topic model (Wang and Blei 2009), and because
the proposed model is a generalization of LIDA.

We ran all samplers for 250 iterations. To reduce burn-
in, The product AP was initialized using an LDA tensor
decomposition (Anandkumar et al. 2012) and then factored
into A and P using alternating minimization to find a sparse
A that enforced the simplex and ontology constraints. A ran-
dom 1% of each data-set was held out to compute predictive
log-likelihoods.

Demonstration on a Toy Problem We first considered a
toy problem with a 31-word vocabulary arranged in a bi-
nary tree (see Figure 2). There were three underlying top-
ics, each with only a single concept (the three darker nodes
in Figure 2, labeled 1, 2, and 3). Each row in the matrix
Pw̃ uniformly distributed 10% of its probability mass to the
ancestors of each concept word and 90% of its probability
mass to the concept word’s descendants (including itself).
Each initialization of the problem had a randomly generated
document-topic matrix comprising 1000 documents.

Figures 3a and 3b show the difference in the held-out test
likelihoods for the final 50 samples over 20 independent in-
stantiations of the toy problem. The difference in held-out
test likelihoods is skewed positive, implying that GS-LDA
makes somewhat better predictions than LIDA. More im-
portantly, GS-LDA also recovers a much sparser matrix A,
as can be seen in Figure 3b. Of course, that GS-LDA has
an additional layer of structure that allows for a very sparse
topic concept-word matrix A; LIDA does not have access
to the ontology information O. The important point is that
by incorporating this available controlled structured vocabu-
lary into our model, we find a solution with similar or better
predictive performance than state-of-the-art models with the
additional benefit of a much more interpretable structure.

Real World Application: Patterns of Co-Occurring Di-
agnoses in Autism Spectrum Disorder Autism Spectrum
Disorder (ASD) is a complex, heterogenous disease that is
often accompanied by many co-occurring conditions such
as epilepsy and intellectual disability. We consider a set of
3804 patients with 3626 different diagnoses where the da-
tum Xnw corresponds to the number of times patient n re-
ceived diagnosis w during the first 15 years of life.2 Diag-
noses are organized in a tree-structured hierarchy known as
ICD-9CM (Bodenreider 2004). Diagnoses higher up in the
hierarchy are less specific (such as “Diseases of the Central
Nervous System” or “Epilepsy with Recurrent Seizures,” as
opposed to “Epilepsy, Unspecified, without mention of in-
tractable epilepsy”). Clinicians may encode a diagnosis at
any level of the hierarchy, including less specific ones.

Figure 3c shows the difference in test log-likelihood be-
tween GS-LDA and LIDA over 5 independent runs, divided
by the overall mean test-likelihood. GS-LDA has slightly
better predictive performance—certainly on par with current
state-of-the-art topic modeling. However, the use of the on-
tology results in much sparser topics, as seen in figure 3d. In

2The Internal Review Board of the Harvard Medical School ap-
proved this study.
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Figure 3: The top row shows the difference in held-out test
log-likelihoods between GS-LDA and Sparse LDA, divided
by the overall mean held-out log-likelihood of both models
after burn-in. In three domains, the predictive performance
of GS-LDA is within a few percent of LIDA. The second
row shows the number of non-zero dimensions in the topic-
concept word and the topic-word for GS-LDA and LIDA
models, respectively. Results are shown over 20 independent
instantiations of the toy problem and 5 independent MCMC
runs of the Autism and systematic review (SR) problems.

this application, the topics correspond to possible subtypes
in ASD. Being able to concisely summarize these subtypes
is an important step for guiding future clinical research.

Finally, Table 1 shows an example of one topic recov-
ered by GS-LDA and its corresponding topic discovered by
LIDA. While the corresponding topic in LIDA has very sim-
ilar diagnoses, using the hierarchy allows for GS-LDA to
summarize most of the probability mass in this topic in 6
concept words rather than 119 words. This topic—which
shows a connection between the more severe form of ASD,
intellectual disability, and epilepsy—as well as the other top-
ics, matched recently published clinical results on ASD sub-
types (Doshi-Velez, Ge, and Kohane 2013).

Real World Application: Medical Subject Headings for
Biomedical Literature The National Library of Medicine
maintains a controlled structured vocabulary of Medical
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Table 1: A sample topic from the ASD data. GS-LDA required only 6 concepts to summarize most of probability mass in the
topic, while LIDA required 119. For LIDA, we do not show all of the diagnoses associated with the topic, only a sample of the
diagnoses summarized by the shown concept words.

Graph-Sparse LDA LIDA
(6 total nonzero) (119 total nonzero)
0.333: Autistic disorder, current
or active state

(1) 0.213: Autistic disorder, current or active state

0.203: Epilepsy and recurrent
seizures

(15), including 0.052: Epilepsy, unspecified, without mention of intractable epilepsy, 0.0283: Localization-related
epilepsy and epileptic syndromes with com, 0.023: Generalized convulsive epilepsy, without mention of intractable
epilepsy, 0.008: Localization-related epilepsy and epileptic syndromes with sim, 0.006: Generalized convulsive
epilepsy, with intractable epilepsy, 0.005: Epilepsy, unspecified, with intractable epilepsy, 0.004: Infantile spasms,
without mention of intractable epilepsy, ...

0.131: Other convulsions (2) 0.083: Other convulsions, 0.015: Convulsions
0.055: Downs syndrome (1) 0.001: Conditions due to anomaly of unspecified chromosome
0.046: Intellectual disability (1) 0.034: Intellectual disability
0.040: Other Disorders of the
Central Nervous System

(31), including: 0.052: Epilepsy, unspecified, without mention of intractable epilepsy, 0.006: Generalized convulsive
epilepsy, with intractable epilepsy, 0.002: Other brain condition, 0.002: Quadriplegia, 0.0001: Hemiplegia, unspeci-
fied, affecting dominant side, 0.0001: Migraine without aura, with intractable migraine, 0.00009: Flaccid hemiplegia
Flaccid hemiplegia and hemiparesis affecting unspecified side, 0.00005: Metabolic encephalopathy...

Subject Headings (MeSH) (Lipscomb 2000). These terms
are hierarchical: terms near the root are more general than
those further down the tree. For example, cardiovascular
diseases subsumes heart diseases, which is in turn a parent
of Heart Aneurysm.

MeSH terms are commonly used in systematic reviews
(SR) (Grimshaw and Russell 1993), where the goal is to
summarize all publications relating to precise, scientific
questions. Retrieving these articles is time-consuming, ex-
pensive, and tedious. MeSH terms can help researchers
quickly decide if an article is relevant. MeSH terms are man-
ually assigned to articles by an expert team of annotators,
which results in high variability with respect to the speci-
ficity of the terms. GS-LDA provides a means of identifying
latent concepts that define distributions over terms nearby in
the MeSH structure. These interpretable, sparse topics can
provide concise summaries of biomedical documents, easing
the evidence retrieval process for overburdened researchers
and physicians.

We consider a dataset of 1218 documents annotated with
5347 unique MeSH terms (23 average terms per document)
that were screened for a systematic review of the effects of
calcium-channel blocker (CCB) drugs (Cohen et al. 2006).
Figure 3e shows that the test log-likelihood for GS-LDA on
these data is on par with LIDA, but the model produces a
much sparser summary of concept-words (figure 3f). Here,
the concepts found by GS-LDA correspond to sets of MeSH
terms that might help researchers rapidly identify studies re-
porting results for trials investigating the use of CCB’s –
without having to make sense of a topic comprising hun-
dreds of unique MeSH terms.

Table 2 shows the top concept-words in a sample topic
discovered by GS-LDA compared to a similar topic dis-
covered by LIDA. GS-LDA gives most of topic mass to
double-blind trials and CCBs; knowing the relative preva-
lence in an article of this topic would clearly help a re-

searcher looking to find reports of randomized controlled
trials of CCBs. In contrast, words related to concept CCBs
are divided among terms in LIDA. Some of the LIDA terms,
such as Drug Therapy, Combination and Mibefradil are also
present in GS-LDA, but with much lower probability – the
concept CCB summarizes most of the instances. We note
that a professional systematic reviewer at [Anonymous] con-
firmed that the more concise topics found by GS-LDA would
be more useful in facilitating evidence retrieval tasks than
those found by LIDA.

Related Work
GS-LDA is a novel approach to inducing interpretability
by exploiting structured vocabularies. Prior work on inter-
pretable topic models has focused on various notions of co-
herence. (Chang et al. 2009) measured interpretability by
how easily a human could identify an inserted “intruder”
word among the top 5 words in a topic. The ease of intru-
sion detection was negatively correlated with test likelihood.
(Newman et al. 2010; Mimno et al. 2011) introduced mea-
sures of coherence that correlate with human annotations of
topic quality. The evaluations in all of these works focussed
only on the top-nword lists, a powerful indication of closely
linked sparsity is to interpretability.

In contrast, our approach does not sacrifice predictive
quality and, by using the ontological structure, provides a
compact summary that describes most of the words, not just
the top n. This quality is particularly valuable when an-
notation disagreement or diagnostic “slosh” can result in a
large number of words with non-trivial probabilities. The
use of a human-provided structure to induce interpretability
distinguishes GS-LDA from other hierarchical topic mod-
els where the structure is learned (Blei, Griffiths, and Jor-
dan 2010; Chen, Dunson, and Carin 2011; Li and McCallum
2006). Most similar to our work is the super-word concept
modeling of (El-Arini, Fox, and Guestrin 2012), in which
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Table 2: A sample from the Calcium Channels systematic review. Superscripts denote the same term found at different levels in
the MeSH structure; we collapse them when they appear sequentially in a topic. GS-LDA captures the concepts “double-blind
trial” and “calcium channel blockers” in one topic, which is exactly what the researchers were looking to summarize in this
systematic review.

Graph-Sparse LDA LIDA
(21 total nonzero) (90 total nonzero)
0.565: Double-Blind Method1,2,3,4 (1) 0.353: Double-Blind Method1,2,3,4

0.110: Calcium Channel Blockers1,2 (7) 0.031 Adrenergic beta-Antagonists1, 0.026 Drug Therapy, Combination, 0.022 Calcium Channel
Blockers, 0.016 Felodipine, 0.015 Atenololm, 0.006 Benzazepines, 0.01 Mibefradil1,2

0.095: Angina Pectoris1,2 (3) 0.030: Angina Pectoris2, 0.030: Myocardial Ischemia1,2, 0.003: Atrial Flutter

auxiliary information about the words, encoded in a feature
vector, can be used to encourage or discourage words from
being part of the same concept. Unlike (El-Arini, Fox, and
Guestrin 2012), we use the graph structure to guide the for-
mation of concepts, which maintains interpretability without
requiring concepts to have sparse support. More generally,
while a learned hierarchical structure allows for statistical
sharing between topics, each topic is still a distribution over
a large vocabulary. The interpretation task is more complex
as the expert must now inspect both the hierarchy and the
topics.

Finally, curated ontologies have been used in other topic
modeling contexts. (Abney and Light 1999) uses hierarchies
for word-sense disambiguation in n-gram tuples, and (Boyd-
Graber, Blei, and Zhu 2007) incorporate this idea into topic
models. (Slutsky, Hu, and An 2013; Andrzejewski, Zhu, and
Craven 2009) use the hierarchical structure as partial super-
vision in topic models to improve predictive performance. In
contrast to these efforts, which focus on prediction, Graph-
Sparse LDA uses the ontology in a probabilistic—rather
than enforced—manner to obtain sparse, interpretable top-
ics.

Discussion and Conclusion
Topic models have revolutionized many prediction tasks,
and scientists now commonly use them to uncover under-
standable structure from data. Understanding is a more nu-
anced objective than prediction, and successful applications
of topic models for this aim cannot ignore the structured
knowledge-bases that exist in many scientific domains.

Graph-Sparse LDA exploits such resources to induce
interpretable topics. Specifically, leveraging ontological
knowledge enabled us to uncover sparse sets of concept
words that provided succinct, interpretable topic summaries
while still explaining a large number of observed words. Our
approach is robust in the sense that if ontology encoded in
the concept-word matrix P does not permit sparse solutions,
then we will simply discover a less sparse topic-concept ma-
trix A that is still predictive. The combination of this repre-
sentational power and a novel, efficient inference procedure
allowed us to realize topic interpretability while matching
(or exceeding) state-of-the-art predictive performance.

While we have focused on biomedical domains, our ap-
proach could be applied to general text corpora using stan-
dard hierarchies such as WordNet. Our model can con-

sider concept-words that generate any nearby observed
word, where the definition of “nearby” (i.e., the sparsity
of concept-word matrix P ) is entirely up to the model de-
signer. Thus, the underlying structure can be a tree, a DAG,
or just some collection of neighborhoods. The key benefit
of using our approach is that the model designer can now
easily view and distinguish between intra-concept correla-
tions (in the concept-word matrix P , presumably unsurpris-
ing) and inter-concept correlations (in the topic-concept ma-
trix A, potentially new information). Finally, our inference
procedure is simpler than many other hierarchical models.
We expect Graph-Sparse LDA to be useful for a variety of
topic discovery applications in which the observed dimen-
sions have human-understandable relationships.
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