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Randomized Optimum models (RandOMs) are probabilistic models that de-
fine distributions over structured outputs by making use of structured opti-
mization procedures within the model definition. This chapter reviews Ran-
dOMs and develops a new application of RandOMs to the problem of fac-
torizing shortest paths; that is, given observations of paths that users take
to get from one node to another on a graph, learn edge-specific and user-
specific trait vectors such that inner products of the two define user-specific
edge costs, and the distribution of observed paths can be explained as users
taking shortest paths according to noisy samples from their cost function.

3.1 Introduction

A broad challenge in statistics and machine learning is to build probabilistic
models of structured data. This includes abstract structures like segmenta-
tions, colorings, matchings, and paths on graphs, and natural structures like



46 Factorizing Shortest Paths with Randomized Optimum Models

images, text, source code, and chemical molecules. The main di�culty is
that estimating the normalizing constant for commonly-used modeling dis-
tributions over these objects is often computationally hard. An interesting
computational phenomenon is that in some cases where it is challenging to
compute a sum over the entire space, it is e�cient to find the maximum (or
minimum). For example, the problem of computing a matrix permanent,
which is #-P hard (Valiant, 1979), corresponds to computing a normalizing
constant for a probabilistic model where the most probable configuration
can be computed e�ciently as a bipartite matching. More specifically, given
an energy function f(·) over structures y (e.g., a path on a graph G) from an
output space Y (e.g., all paths on G), the normalizing constant or partition
function is Z =

P

y2Y exp{�f(y)}. This chapter focuses on the case where
the output space is a combinatorial set, by which we mean that membership
can be tested e�ciently but enumeration is intractable (Bouchard-Côté and
Jordan, 2010); however, in principle, the output space could also be contin-
uous. The corresponding optimization problem is to find the most probable
structure: argmin

y2Y f(y).
The typical approach for defining probability distributions over structured

objects is to use a Gibbs distribution. That is, make sensible assumptions
about the structure of an energy function f(y) and combinatorial set Y, and
then define p(y) / 1{y 2 Y} exp{f(y)}. For example, to define a model of
foreground-background segmentations of an image with D pixels, a common
choice might be y 2 {0, 1}D and to define an energy function according to
a graph structure G = (V,E) as

f(y) = f(y; g) =
X

i2V
g
i

· y
i

+
X

ij2E
g
ij

· 1{y
i

= y
j

} ,

which encodes the assumption that there are node-specific costs g
i

for each
pixel i to be labeled 1 (foreground) and that edges in the graph encourage
neighboring nodes to take on the same label with an edge-dependent cost
for di↵ering g

ij

. A typical choice of edge structure would be a 4-connected
grid, where there are edges between nearest neighbor pixels.

While the above assumptions are sensible, they immediately lead to com-
putational di�culty. Consider making test-time predictions, which depend
on p(y) and therefore require the intractable Z. There are two common
choices: (1) use approximate inference like belief propagation (see e.g., Koller
and Friedman (2009)) to compute approximate marginals, or (2) use Markov
chain Monte Carlo (MCMC) to draw approximate samples (see e.g., (Robert
and Casella, 2013)). The focus of this chapter is on cases where the combina-
torial structure of the object is important, so marginals do not su�ce. The
point of Randomized Optimum Models (RandOMs) is to provide an e�-
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cient alternative to MCMC at test time without sacrificing the well-founded
probabilistic model.

The outline is as follows:

Background on structured prediction, and design considerations for build-
ing probabilistic models of structured objects

A review of RandOMs

Shortest Path Factorization with RandOMs

Experiments

Related work

Discussion

3.2 Building Structured Models: Design Considerations

Structured prediction is a large field, and there are many approaches for
learning models of structured objects. This section describes a high level
overview of the key considerations, with a bias towards probabilistic models
of structured objects.

A key issue that a↵ects the choice of model is what the utility function
will be. That is, how will we evaluate the quality of a test-time output? Is
the system going to be used by some downstream process, or is it going to
be used to make a single prediction? In the former case, a natural output
for the system is a probability distribution (e.g., a probability that a patient
has cancer); in the latter case, the utility function needs to be considered by
the system (e.g., how unpleasant the patient finds the treatment, and how
much value they would place on being cured).

A second question is about the structure of the utility function, which is
relevant even if the system is producing a probability distribution, because
it has bearing on how the probability distribution should be represented.
In a structured prediction setting, a key property of utility functions to
consider is whether they are sensitive to high order structure or not. For
example, if an image segmentation system is judged based on the number
of pixel-level classifications that it gets correct, then the utility function
depends only on low order statistics of the output probability distribution,
i.e., it can be shown that the expected utility of a predictive distribution
depends only on the marginal distributions of each pixel’s label. In this
case, representing a probability distribution over pixel labelings as a set
of marginal distributions is perfectly reasonable. Even in cases where the
utility function appears at first glance to have high order interactions, such
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as with the intersection-over-union measure that is common in evaluating
image segmentations (Everingham et al., 2010), Nowozin (2014) has shown
that marginal distributions contain enough information to make accurate
utility-aware predictions.

However, there are cases where the utility function truly is high order,
and in fact, these are very common cases. One might even argue that
most natural utility functions over structured objects depend heavily on
high order structure, and it is only computational convenience that leads to
utility functions based on low order structure. Examples of utility functions
that depend on high order structure include perceptual measures of the
naturalness of an image or image segmentation when outputting images or
pixel-wise labels (Movahedi and Elder, 2010; Lubin, 1998; Wang et al., 2004),
measures of whether code compiles when outputting source code (Nguyen
et al., 2014), measures of the meaningfulness of a generated sentence when
outputting language, and measures of whether a driver could follow a path
that is output by the model.

When the utility function has high order structure and we wish to directly
output a single prediction, then in some cases max-margin learning (Taskar
et al., 2004; Tsochantaridis et al., 2005) can be a good option. High order
utility functions present challenges, but can sometimes be handled e�ciently,
such as in certain image segmentation settings (Tarlow and Zemel, 2012;
Pletscher and Kohli, 2012).

When the utility function has high order structure and we wish to output
a probability distribution, sample-based representations of the output distri-
bution are the natural choice. This is the setting that motivates RandOMs,
along with several other works, including some in this book, such as Perturb
& MAP (Chapter 2), PAC-Bayesian perturbation models (Chapter 10), and
MAP-perturbation models (Chapter 5); see Section 3.9 for a discussion of
the similarities and di↵erences between RandOMs and other works that fo-
cus on this regime. Our focus is to train models such that at test time, we
can e�ciently produce perfect samples from the model without resorting to
MCMC or rejection sampling.

3.3 Randomized Optimum Models (RandOMs)

This section introduces notation and then develops the RandOM model.
RandOMs implicitly define a probability distribution over an output

space Y via a generative procedure that includes a call to an algorithm
that performs optimization over Y. In the typical instantiation, Y is a
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combinatorial set and the optimization algorithm is a discrete optimization
procedure.

3.3.1 Notation.

Let f
w

: Y ! R be a family of scoring functions indexed by w 2 RP , each
of which maps a structure y to a real-valued cost. Let Y be the set of legal
structures. For example, w may be node weights for a weighted vertex cover
algorithm or edge costs for a graph cut algorithm, and Y would be the set
of all vertex covers or the set of all graph cuts, respectively. In these cases,
the individual dimensions of w might be costs of specific nodes or edges in
some graph. A further description of f ’s dependence on w appears below.

It will then be useful to define F : RP ! Y as the function that executes an
optimization algorithm given parameters w and returns a cost-minimizing
configuration y

⇤; i.e., F (w;Y) = argmin
y2Y f

w

(y). Also useful will be the
inverse set F�1(y;Y), which is defined as F�1(y;Y) = {w | F (w;Y) = y}.
When the appropriate Y is clear from context, it will be dropped from the
notation, resulting in F (y) and F�1(y).

In some problems there is a notion of legal settings of w. For example, a
shortest path algorithm might reasonably assert that all edge costs should
be non-negative, or a graph cut algorithm may assert that edge potentials
are submodular. To handle these cases, the predicate L : RP ! {0, 1} will
be used to indicate whether a w is legal.

3.3.2 RandOM Model.

The key idea of RandOM models is to define probabilistic models where
parameters w are latent variables. That is, a probabilistic model p(y; ) is
defined via a distribution over w, parameterized by  ; the link between y

and w values is a deterministic relationship that comes from running the
optimization algorithm:

p(y; ) /
Z

p(w; ) 1{F (w) = y} 1{L(w)} dw. (3.1)

The design space of distributions over w is large and flexible. Many varia-
tions are possible, such as conditioning on inputs x:

p(y | x; ) /
Z

p(w | x; ) 1{F (w) = y} 1{L(w)}dw, (3.2)

which is the form that was the focus of Tarlow et al. (2012). It would
also be straightforward to treat  as random variables which themselves
have prior distributions. The key to test-time tractability is that a sample
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from p0(w) / p(w)1{L(w)} can be drawn e�ciently. Given the sample
of w, the optimization algorithm can be executed to yield a sample y; i.e.,
set y = F (w).

3.3.3 Constructing Conditional Random Field-like f

This section describes a pattern for constructing p(w | x; ) that parallels
the energy function used in conditional random field (CRF) models. To
illustrate how this works within the RandOM formulation, we focus on a
pairwise CRF with binary variables, as would be used for the foreground-
background segmentation example in the introduction.

To review, CRFs define distributions over Y via the Gibbs distribution. For
pairwise CRFs with binary variables, the energy function f(y) is constructed
as a sum of unary and pairwise terms:

f(y) =
X

i2V
g
i

(y
i

,x; ) +
X

ij2E
g
ij

(y
i

, y
j

,x; ). (3.3)

The g(·) terms are parameterized by weights  and can depend arbitrarily
on the input x, but have only local dependence on y. The g(·) functions
are usually constructed as a weighted sum of unary features and pairwise
features. An example unary feature would be an a�nity for the average color
of image x around pixel i to class y

i

. An example pairwise feature would be
a cost for neighboring pixels i and j to take di↵erent classes with strength
depending on the di↵erence of appearance of the pixels.

Finally, the probability of a configuration is defined by the Gibbs distri-
bution: p(y) / exp {�f(y)}.

3.3.3.1 CRF Energy Functions in RandOM Notation

First, a vector of su�cient statistics of y are chosen, de-
noted ⇢(y) = (⇢

p

(y))P
p=1 where ⇢

p

: Y ! {0, 1}. Each ⇢
p

(·) is an indicator
function that selects out some statistic of y that is relevant for the model.
Example indicator functions are whether a particular subset of dimensions
of y take on a particular joint configuration, or they could indicate whether
the number of dimensions of y taking on a particular value (say a) is equal
to some value (say b); i.e., ⇢

p

(y) = 1{(
P

i

1{y
i

= a}) = b}.
As another example, in a pairwise graphical models, there are unary

and pairwise su�cient statistics. The unary su�cient statistics are func-
tions indicating if y

i

= a for each variable i and each possible value a.
Pairwise su�cient statistics are defined over all edges and might in-
dicate all joint configurations of a pair of neighboring variables, i.e.,
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(1{y
i

= 0 ^ y
j

= 0}, · · · , 1{y
i

= 1 ^ y
j

= 1}), or just whether neighboring
variables take on the same label, i.e., (1{y

i

= y
j

}). There is flexibility in
the choice of su�cient statistics. The main issue to be mindful of is that the
choice of su�cient statistics can impact the tractability of the minimization
problem, so some care must be taken. More examples of choices of su�cient
statistics that lead to tractable optimization appear below.

Given a vector of su�cient statistics, the definition of f
w

(y) is then simply
that each dimension of w weights the su�cient statistic in the corresponding
dimension:

f
w

(y) = w

>
⇢(y). (3.4)

To produce an equivalent f
w

using the RandOM formulation, de-
fine p(w | x; ) to be a deterministic function of input x and parameters  
as follows.

First, rewrite f as

f(y) =
X

i2V

X

ŷ

i

1{y
i

= ŷ
i

}g
i

(ŷ
i

,x; ) (3.5)

+
X

ij2E

X

ŷ

i

,ŷ

j

1{y
i

= ŷ
i

^ y
j

= ŷ
j

}g
ij

(ŷ
i

, ŷ
j

,x; ). (3.6)

Then it becomes clear that by defining su�cient statistics vector ⇢(y) to
be a concatenation of (1{y

i

= a}) for all i and a with (1{y
i

= 0 ^ y
j

=
0}, 1{y

i

= 0 ^ y
j

= 1}, 1{y
i

= 1 ^ y
j

= 0}, 1{y
i

= 1 ^ y
j

= 1}) for
all ij 2 E, and analogously defining g to be a vector of the g

i

(·) or g
ij

(·)
functions corresponding to the entries of ⇢(y), then setting w = g ensures
that f(y) = f

w

(y) for all y.
Of course, if w is a deterministic function of x and  , then the output

distribution will be degenerate and assign nonzero probability to a single y.
Instead, to induce a meaningful distribution over outputs, w must be
random. This is in contrast to CRFs, which define an energy function to be
deterministically constructed from inputs, but then the distribution over y

given the energy function is random.

3.3.3.2 Example: The Gibbs Distribution

As noted by Papandreou and Yuille (2011) and extended by Hazan and
Jaakkola (2012), it is possible to leverage properties of Gumbel distributions
in order to exactly represent the Gibbs distributions that arises in standard
CRF models. While this connection is of theoretical interest, it is not
a practical construction because it requires the set of su�cient statistics
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to be exponentially large, with one su�cient statistic for each possible
configuration of y. The connection is presented here for completeness. See
Chapters 2, 6 and 7 for additional discussions of related issues.

A random variable G is said to have a Gumbel distribution with loca-
tion m 2 R if the CDF is p(G < g) = exp (� exp(�g + m)). The key
property of Gumbel distributions is that for a collection of independent
Gumbels G1, . . . , GK

with locations m1, . . . , mK

respectively, the distribu-
tion of the maximum is also Gumbel-distributed but with location equal to
the logsumexp of the locations, and the argmax is distributed according to
the Gibbs distribution where m

k

is the negative energy of configuration k.
More precisely,

max
k

G
k

⇠ Gumbel

 

log
K

X

k=1

exp m
k

!

, and (3.7)

argmax
k

G
k

⇠ exp m
k

P

K

k

0=1 exp m
k

0

. (3.8)

Letting p = 1, . . . , |Y| index all configurations and ŷ(p) be the pth con-
figuration under this ordering, we can then let ⇢(y) = (1{y = ŷ(p)})|Y|

p=1;
i.e., there is one su�cient statistic for each ŷ 2 Y indicating whether y

is exactly equal to ŷ(p). Finally, let w̄ = (�f(ŷ(p)))|Y|
p=1 be the vec-

tor that puts the negative energy of configuration p in dimension p, and
let �w

p

⇠ Gumbel(w̄
p

) for all p. Then

argmin
p

w

>
⇢(ŷ(p)) = argmax

p

�w
p

⇠ exp w̄
p

P

p

0 exp w̄
p

0
=

exp �f(ŷ(p))
P

p

0 exp �f(ŷ(p0))
,

(3.9)

which shows the equivalence to the Gibbs distribution.

3.3.3.3 Example: Bipartite Matching f

The weighted perfect bipartite matching problem is defined in terms of a
bipartite graph G with partite sets A and B with J = |A| = |B|. The only
edges in G are between a node v 2 A and v0 2 B; we will additionally
assume that all possible edges exists, so there is an edge from each v 2 A to
each v0 2 B.

A perfect matching is a one-to-one mapping between nodes in A and nodes
in B. Each edge (v, v0) is assigned a cost w

vv

0 , and the cost of a matching is
the sum of the costs of edges that are included in the matching.

To formalize this in terms of above notation, let y
vv

0 2 {0, 1} be an
indicator that edge (v, v0) is used in a matching. Let y be an ordered list
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of indicators for each edge {y
vv

0 : v 2 A, v0 2 B}. Let w be an analogous
ordered list {w

vv

0 : v 2 A, v0 2 B} such that element p of w is the weight
for edge being indicated by element p of y. Finally, let Y be the set of
binary vectors of length J2 that correspond to valid matchings according
to the encoding of y above. Then the cost of any matching y 2 Y is
simply f

w

(y) = w

>
y. (To match the general form in (3.4), ⇢ could be

set to be the identity ⇢(y) = y, and then f
w

(y) = w

>
⇢(y) as above.)

3.3.3.4 Example: Shortest Paths f

An encoding of a shortest paths problem is similar. The shortest path
problem is defined in terms of a weighted graph G, and a start-end node
pair (s, t). The combinatorial problem is to find the shortest path in G from s
to t, where the cost of a path is a sum of the costs of the edges traversed by
the path.

To encode an f function corresponding to this problem, let y be a vector
of indicators of edges (as above), with dimension p indicating whether edge p
is used in the path. Let w be the corresponding vector of edge costs. Then
as in the bipartite matching case, f

w

(y) = w

>
y.

The combinatorial set Y = Y(s, t) is the set of all simple paths from s to t
(i.e., paths with no repeating vertices).

3.3.4 Other types of f

In all of the above examples, f has been a linear function of w. It is always
possible to define ⇢(y) = (1{y = ŷ})

ŷ2Y, and thus if f
w

(y) = w

>
⇢(y) then

each y 2 Y has an independent entry of w and all possible energy functions
can be expressed; this is the equivalent of representing an energy function
in a tabular form that assigns some cost to each configuration.

While such a construction is as flexible as possible, it does not mean
that all interesting f

w

(y) are linear functions of w. Indeed, for F (w) to
be implemented e�ciently, w must be represented in some compact form
(such as edge costs in the above example), and each e�cient combinatorial
optimization routine expects an input of a particular form.

3.3.4.1 Example: Connected Components f

For example, consider the weighted connected components problem. Given
a weighted graph G, cut all edges with weight less than some parameter ⌧
to get an unweighted graph G0 that contains the uncut edges in G, then
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partition the nodes into connected components; that is, two nodes v and v0

are in the same connected component i↵ there is a path from v to v0 in G0.
For a given ⌧ , the natural parameterization of the problem is to have one

dimension of w to represent each edge cost in G. There is some flexibility
in how to represent y, but one reasonable choice is to let y

i

2 {1, . . . , |V|}
be equal to the smallest index j such that nodes i and j are in the same
connected component. Then Y is the set of all y such that all nodes with
a given label l are connected via edges where both endpoints are labeled
l. One might then ask if there is some choice of su�cient statistics ⇢ such
that f

w

(y) = w

>
⇢(y) and argmin

y

f
w

(y) gives the same output as the
connected components algorithm described above. It turns out that this is
not possible.

Lemma 3.1. Let G : R|E| ! Y be the function that maps w to the solution to
the above weighted connected component problem with parameter ⌧ . There is
no choice of su�cient statistics ⇢(y) such that for all w, argmin

y

w

>
⇢(y) =

G(w; ⌧).

Proof. (By contradiction). Suppose there were a choice of ⇢(y) such that
for all w, argmin

y

w

>
⇢(y) = G(w). Then F�1(y) is an intersection of

halfspaces {w :
w

>
⇢(y)  w

>
⇢(y0)} for each y

0 2 Y, and is thus a convex
set. However, G�1(y) is not a convex set, and thus F cannot be equivalent
to G.

To see that G�1(y) is not a convex set, consider the fully connected graph
on three vertices 1, 2, 3 with edges (1, 2), (1, 3), (2, 3) and ⌧ = 1�✏. Let wA =
(1, 1, 0), wB = (0, 1, 1), and y

⇤ be the configuration where all nodes belong to
a single connected component. Clearly w

A 2 G�1(y⇤) and w

B 2 G�1(y⇤).
However, consider w

C = 1
2w

A + 1
2w

B = (.5, 1, .5). G(wC) assigns node 2
to its own connected component, and thus w

C 62 G�1(y) and G�1(·) is not
always a convex set.

3.4 Learning RandOMs

There are two main approaches to learning RandOMs. Both are based on an
Expectation Maximization (EM) algorithm (Dempster et al., 1977) with w

as latent variables. A fully Bayesian treatment would also be straightforward,
in which case the M step in the Monte Carlo EM variant would be replaced
with an MCMC update, but this approach is not discussed further.

The di↵erence between the two EM approaches is how distributions over w
are estimated. In the Monte Carlo EM algorithm (MCEM) (Wei and Tanner,
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1990), values of w are sampled from a posterior distribution over w; in the
Hard EM algorithm, a single most likely estimate of w is used.

In more detail, the EM algorithm can be understood as optimizing a
single objective (Neal and Hinton, 1998) via an alternating maximization
scheme. In the case of general RandOMs (3.1), the objective given a data
set D = {y(n)}N

n=1 is J( , {Q(n)}N
n=1)

=
N

X

n=1

E
ŵ⇠Q

(n)(·)

h

log
⇣

p(y(n) | ŵ)p(ŵ; )
⌘

� log Q(n)(ŵ)
i

(3.10)

=
N

X

n=1

E
ŵ⇠Q

(n)(·)

h

log 1{y(n) = F (ŵ)} + log p(ŵ; ) � log Q(n)(ŵ)
i

.

(3.11)

EM algorithms alternate between maximizing J with respect to {Q(n)}N
n=1

(E step) and with respect to  (M step). Note that the E step is amenable
to embarassingly parallel computation.

3.4.1 M Step

In both the MCEM and Hard EM algorithms, Q(n)(·) is represented via
a set of L samples ŵ

(n1), . . . , ŵ(nL). The M step is an incremental M
step (Neal and Hinton, 1998), meaning that rather than updating  to
optimality, an update is made that just increases J . Note that given fixed
samples from {Q(n)}N

n=1 where each sample is in the corresponding inverse
set F�1(y(n)), the M step objective (dropping terms that do not depend
on  ) is

N

X

n=1

1

L

L

X

l=1

log p(ŵ(nl); ). (3.12)

This is a standard maximum likelihood objective with parameters  and
data w

(nl), which can be optimized with whatever standard optimizer is
most appropriate for the specific form of p(w; ) that is chosen. For example,
if p(w; ) is a neural network, then stochastic gradient ascent can be used.

3.4.2 Monte Carlo E Step

The optimal choice for Q(n)(·) in the E step is to set it equal to the
posterior distribution p(w | y

(n); ) / p(w; )1{F (w) = y

(n)}L(w). For
most RandOMs, it does not appear possible to represent this posterior in
closed form. Instead, in Monte Carlo EM, Q(n)(·) is represented via a set
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of L samples from this posterior. In principle, any MCMC method can be
used in the E step, but Slice Sampling (Neal, 2003) is particularly well suited
to handle the structure of the problem, as will be discussed in more detail
in Section 3.7.3.

3.4.3 Hard E Step

In the Hard EM algorithm, sampling from the posterior is replaced with a
maximization step: ŵ is chosen so as to be the argmax

w

p(w; )1{F (w) =
y

(n)}L(w). When f
w

(y) is a linear function of w (as in (3.4)) and p(w; )
is a Gaussian distribution (log quadratic), then the argmax computation is
a quadratic program (QP). More details of this approach appear in Tarlow
et al. (2012). An improved Hard EM algorithm appears in Gane et al. (2014).

3.5 RandOMs for Image Registration

In Tarlow et al. (2012), RandOMs are applied to registration problems. The
main application is deformable image registration in volumetric CT scans
of human lungs. For each human subject in the data set, data consists of
scans at di↵erent stages of the respiratory process that are annotated with
landmarks. The problem is to take a pair of images with their associated
landmarks and determine the correspondences between landmarks across
the two images. To formulate this problem as a RandOM, Y is the set of all
bipartite matchings with the first (second) partite set being landmarks in
the first (second) image. The su�cient statistics indicate whether landmark
i in the first image matches to landmark j in the second image, and w

assigns a cost for each i, j pair. Features are extracted for each pair based
on the di↵erence in appearance of the volume around the landmarks, and
parameters  weight the importance of di↵erent features.

Experimentally, RandOMs are compared against a Structural SVM ap-
proach (Taskar et al., 2004; Tsochantaridis et al., 2005) and Perturb & MAP
(Papandreou and Yuille, 2011). Results show that RandOMs are competitive
with the alternatives and perform best in terms of accuracy.

3.6 Shortest Path Factorization

This section introduces the problem studied in detail in this chapter.
The Shortest Path Factorization (SPF) problem is to observe a data set D

of pairs of driver ids and paths D = {(d
n

,y
n

)}N
n=1 where each y

n

is a path
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through a graph G = (V,E) and d
n

2 {1, . . . , D} denotes the identity of the
driver. The goal is to infer properties of the edges and drivers’ preferences for
edge properties under the assumption that drivers are taking shortest paths
according to noisy copies of an underlying cost function. Given inferred
driver preferences and edge costs, it is then possible to make predictions
about the routes that will be taken by a driver on edges that have never been
encountered by the driver before. For example, we can imagine learning from
a driver traversing the streets of London and then make predictions about
what routes the driver will prefer in Toronto. Alternatively, if city planners
were considering changing road structures and they wanted to forecast how
drivers would behave given a new road topology, a shortest path factorization
model might be a good choice. In the factorization problem, we assume that
driver-specific edge costs have a low-rank structure.

More specifically, paths are assumed to be shortest paths according to the
driver’s cost function. The cost function for a path is the sum of costs of
edges on the path. Noise-free driver-specific edge costs are computed as the
inner product of trait vector U

e

2 RK for each edge e with a driver-specific
preference vector V

d

2 RK for each driver d. Noisy edge costs are drawn
independently from Gaussian distributions with mean equal to the noise-free
cost that are truncated to ensure that edge costs are non-negative.

The SPF problem is to infer U and V from the observations of paths.
Intuitively, suppose that edges correspond to road segments, and drivers
are members of the driving population. Paths are the routes that drivers
take to get from home to work, from home to the grocery store, from
a family member’s house to the gas station, etc. The assumption is that
there are a small number of traits that characterize each road segment. For
example, real roads vary based on the average speed of tra�c, start-stop
frequency, the risk of tra�c build-ups, their crowdedness, the scenery, the
degree to which being an aggressive driver helps speed progress, etc. The
degree to which a road segment e has such traits would be the kind of
information stored in U

e

. The corresponding dimensions of V would then
denote how important each of these traits is to each driver. Some drivers
may be aggresive drivers concerned only about the total transit time, while
others may prefer a minimal stress drive, even if it is slower. These di↵erent
types of drivers could be represented via di↵erent V

d

vectors. As in other
matrix factorization-based algorithms like used in recommendation systems
(Rennie and Srebro, 2005; Salakhutdinov and Mnih, 2007), it is not assumed
that the traits are given ahead of time. The assumption is simply that this
low rank structure exists, and it is up to the learning algorithm to discover
which edges and drivers have which traits.
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3.7 Shortest Path Factorization with RandOMs

This section describes how to apply the RandOM formulation to the
SPF problem.

3.7.1 Generative Model

The RandOM generative model for SPF given a graph G = (V,E) is as
follows:

U
e

⇠ Gaussian(0,�2I) for each e 2 E (3.13)

V
d

⇠ Gaussian(0,�2I) for each d = 1, . . . , D (3.14)

where �2 is a fixed variance.
Next sample each path conditional upon a driver d, a start node s, and

an end node t. To sample each path:

w
e

⇠ TruncGaussian(U>
e

V
d

+ b, 1) for each e 2 E (3.15)

y = ShortestPath(s, t,G,w) (3.16)

where b is a fixed bias, TruncGaussian(µ,�2) is a Truncated Gaussian that
is constrained to be greater than 0, and ShortestPath(s, t,G,w) returns the
shortest path from s to t in G using edge costs given by w.

3.7.2 Learning

The learning problem is to observe the data set D and infer parameters U
and V. Learning is done via MCEM.

The EM objective (Neal and Hinton, 1998) for a single data
point J(U,V, Q;D

n

) is

E
ŵ⇠Q(·) [log (p(y

n

| w)p(ŵ | U,V)p(U)p(V)) � log Q(ŵ)] . (3.17)

The EM algorithm alternates between performing E (expectation) steps and
M (maximization) steps. In the E step, U and V are held fixed and Q(·) is
updated to optimize J . Here there is a separate Q

n

for each n. The standard
result is that optimal choice for Q

n

(·) is to set it equal to the posterior
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distribution

p(w | y
n

, d
n

,U,V) / 1{y
n

= F (w)}p(w | U,V, d
n

) (3.18)

= 1{y
n

= F (w)}
Y

e2E
TruncGaussian(w

e

;U>
e

V
d

n

, 1).

(3.19)

In the M step, all Q
n

(·) are held fixed, and J is optimized with respect to U
and V. The objective including all n is

U,V = argmax
U

0
,V

0

N

X

n=1

E
ŵ⇠Q

n

(·)
⇥

log
�

p(ŵ | U0,V0)p(U0)p(V0)
�⇤

. (3.20)

These updates are not tractable to perform exactly, so instead an incremen-
tal MCEM algorithm is used (Neal and Hinton, 1998). In this variant, for
each n, L samples ŵ(n1), . . . , ŵ(nL) are drawn from (3.19) using a specialized
slice sampler (described below). Then the M step objective is replaced with
a Monte Carlo approximation:

N

X

n=1

1

L

L

X

l=1

h

log
⇣

p(ŵ(nl) | U,V)p(U)p(V)
⌘i

, (3.21)

and U and V are updated using a small number of steps of gradient ascent.

3.7.3 Slice Sampling for the E Step

This section describes how to implement the Monte Carlo E step using a
specialized slice sampler. The section begins by reviewing slice sampling,
and then it describes how to combine slice sampling with combinatorial
algorithms to obtain a fast sampler. This section describes a slice sampler
tailored to the shortest paths problem, and it makes a general observation
that may lead to minor improvements over Tarlow et al. (2012) for general
RandOM slice samplers.

3.7.3.1 Review of Slice Sampling

Slice sampling (Neal, 2003) is a Markov Chain Monte Carlo (MCMC)
method. It has favorable properties over alternatives like Metropolis Hast-
ings in being less sensitive to parameters of a proposal distribution, and
it has been shown to mix in polynomial time when run on log concave
distributions (Lovász and Vempala, 2003). Tarlow et al. (2012) describe a
specialization of slice sampling to RandOM models.
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Slice sampling is used to draw samples from an unnormalized probability
distribution p̃(w). The basic idea is to sample uniformly from the region R =
{(w, u) : 0 < u < p̃(w)} using an MCMC algorithm that alternates
between resampling w and resampling u. The definition of R ensures that
R

p(w, u)du / p̃(w), so it is valid to jointly sample w and u, and then discard
the u components of the sample.

Slice sampling alternates between resampling w conditioned on u and u
conditioned on w.

It works by repeatedly applying a transition kernel that leaves the distri-
bution invariant. Starting from a current point w0, the next point is chosen
as follows:

Sample u ⇠ Uniform(0, p̃(w0)) (note: this should all be implemented in
log-space).

Sample w uniformly from the slice, {w0 : p̃(w0) > u}.

We say that w is in the slice if p̃(w) > u. The second step cannot always
be implemented exactly, so Neal (2003) gives alternative updates that leave
the uniform distribution over the slice invariant. The main suggestion is to
do the following:

Construct a random initial interval [w
l

, w
r

] such that w0 2 [w
l

, w
r

].

Step outwards by incrementing w
l

= w
l

�↵ until p̃(w
l

) < u, where ↵ 2 R
>0

is a parameter that controls the speed at which the interval is expanded.
Similarly, step outwards by incrementing w

r

= w
r

+ ↵ until p̃(w
r

) < u.
At this point, a contiguous section of the slice lies completely within the
interval.

Step inwards by sampling ŵ ⇠ Uniform(w
l

, w
r

). If ŵ is in the slice, then
finish and transition to ŵ. Otherwise, shrink the interval so that w0 remains
inside the interval and ŵ is one of the endpoints. Repeat the stepping inwards
step.

The above describes how to use slice sampling with a 1D w. To handle
higher dimensions as will be needed when sampling w 2 RP , a standard
approach is to choose a random direction � 2 RP uniformly from the
surface of a sphere centered at w, and then to sample along the line defined
by w + �� for � 2 (�1, 1).

3.7.3.2 Specialization to General RandOMs

This section gives guidance on how slice samplers should be implemented in
general for RandOM models.
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The problem is to perform one step of slice sampling on the MCEM pos-
terior (e.g., (3.19)). We are given an initial w0 2 F�1(y) and a direction �,
and would like to choose a � that leaves the distribution invariant (i.e., do
a slice sampling update). The key idea is to define three sub-slices.

The legal slice {� : L(w + ��)}.

The y-slice {� :
w + �� 2 F�1(y)}.

The prior slice {� : p(w + �� | U,V, d) > u}.

The slice is then the intersection of these three sub-slices.
There are then properties of the subslices that can be useful to improve

e�ciency.

Convexity. The first source of e�ciency is convexity, which can arise in
all three types of sub-slice (but in any specific model may only arise in a
subset of the sub-slices). For example:

1. If L(w) measures whether all dimensions of w are positive, then the legal
slice is a convex set.

2. F�1(y) can be defined as {w : f
w

(y)  f
w

(y0) 8y0 2 Y}. If f
w

(y) is
a CRF-like energy function as discussed in Section 3.3.3, then f

w

(y) is a
linear function of w (see (3.4)), so F�1(y) is an intersection of halfspaces
and thus convex set, and the y-slice is also a convex set.

3. If p(w | . . .) is a log-concave distribution, then the prior slice is a convex
set.

Convexity of the individual slices can be leveraged during the Stepping In
phase of slice sampling. Since the initial point w0 will always be inside the
slice and the interval resulting from the Stepping Out phase will always have
endpoints outside the slice, convexity implies that there is a single transition
point in between w0 and each endpoint where one leaves each convex sub-
slice. For example, suppose for some �̂ > 0, w0+ �̂� is in the y-slice but not
in the slice (maybe the point is not in the prior slice); it is then immediately
known that [0, �̂] is fully contained in the y-slice, and there is no need for
calling an expensive combinatorial algorithm for any later � in this range
that is encountered; it su�ces to simply return true. When the union of
the subslices is substantially di↵erent from the intersection, this can provide
significant savings.

Combinatorial Algorithms for the y-slice The second type of e�ciency
comes from the combinatorial optimization view of F (w) and the fact that
a slice sampling step always starts with a setting of w0 that is in the y-slice.
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This source of e�ciency can be leveraged in addition to convexity structure
if both are present. There are three ways of framing the problem of testing
whether a particular w 2 F�1(y):

1. Run a combinatorial optimization algorithm with weights w and check
whether y is an argmin.

2. Suppose we have recently solved a combinatorial optimization algorithm
with weights w

0. Use a dynamic combinatorial optimization algorithm to
update the solution to be the one for w, and check whether y is an argmin.

3. Suppose we have recently solved a combinatorial optimization algorithm
with weights w

0 and that y was an argmin. Check whether the argmin
changes given weights w.

Tarlow et al. (2012) shows how to use (2) to improve e�ciency for bipar-
tite matching RandOMs using dynamic combinatorial algorithms. The new
observation here is that (3) can be more e�cient than (2). Details for the
shortest path case are given in the next section.

Ordering the Slices. The final suggestion is to test whether a point is
in the slice by checking each of the sub-slices in order of least expensive
to most expensive, and to short-circuit the computation as soon as a point
is determined not to be in any of the sub-slices, since this implies that
the point is not in the slice. This saves runs of the more expensive sub-
slice computations and also makes the implementation more convenient by
checking for legality of a point before calling the combinatorial optimization.

3.7.3.3 E�ciently Handling the y-slice with Shortest Path Trees

Given a source node s in a weighted graph G with all edge costs > 0, we
can run Dijkstra’s algorithm to get a shortest path tree. A shortest path tree
is represented via a pointer from each node v 6= s to a parent pa(v), and
a cost c(v) for each node. Such a structure is a shortest path tree if c(v)
represents the distance from s to v via the shortest path in G and if the last
step in the shortest path from s to v is to go from v’s parent to v. This
implies c(v) = c(pa(v)) + w

pa(v),v, where w
uv

is the cost of edge uv.
An interesting property of shortest path trees is that they can be verified

more e�ciently than they can be constructed. They can be constructed
in O(|V| log |V| + |E|) time using Dijkstra’s algorithm but verified in O(|E|)
time using a simple loop over edges (Cormen et al., Exercise 24.3-4 Solution).

To leverage this property within the slice sampler, we need a fast method
for proposing a shortest path tree T(w) given a shortest path tree T(w0).
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The new suggestion is to keep the parent structure of T(w) fixed and update
the node costs c(v) so that c(v) = c(pa(v))+w

pa(v),v. By iterating over nodes
in topological order, this can be done in one loop over nodes (O(|V|) time).
We can then run the verification algorithm on the newly proposed shortest
path tree. If the verification algorithm succeeds, then we have proven that w
is in the y-slice. If the verification algorithm fails, then it is necessary to run
a more expensive check (e.g., run Dijkstra’s algorithm from scratch), since it
is possible for the structure of the shortest path tree to change while leaving
the shortest path from s to some target node v unchanged. However, perhaps
there is a more e�cient method for determining whether the shortest path
has changed; this could be studied in future work. In general, the suggestion
when working with RandOMs is to focus on the dynamic combinatorial
verification problem (which returns true or false as to whether the argmin
has changed) instead of focusing on the dynamic combinatorial optimization
problem (which returns a full configuration).

The verification procedure is most useful in the Stepping Out phase of slice
sampling. If ↵ is chosen to be small, then it will induce small changes in w

that do not a↵ect the structure of the shortest path tree. In these cases, the
above procedure provides a fast way of verifying that a particular � remains
in the y-slice.

3.8 Experiments

3.8.1 Baseline model

The goal in choosing a baseline model is to illustrate a common tradeo↵ when
modelling structured data: models that ignore the combinatorial structure
of the data can be appealing because they are often simpler to train, and
sometimes a post-hoc cleanup step can enforce the combinatorial constraints
(e.g., using rejection sampling). The baseline model adopts this philosophy.

The baseline model ignores the combinatorial structure of paths and
produces a distribution that factorizes fully over the choice of each edge.
More specifically, the approach follows 3-way factored models (Memisevic
and Hinton, 2007; Krizhevsky et al., 2010; Kiros et al., 2014). There are
three input components: the driver d, the start and end nodes s and t, and
the edge identity e. Given the three inputs, the model produces a probability
that edge e is used p(u

e

) in the shortest path from s to t. The goal of the
model is to assign high probability to edges that are used on an observed
path and low probability to edges that are not used. A training instance is
then composed of the tuple (d, s, t, u⇤

e

).
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More specifically, p(u
e

| d, s, t) is defined as

p(u
e

| d, s, t) = �
⇣

U>
e

(V
d

� (T
s

+ T
t

))
⌘

, (3.22)

where �(·) is the logistic sigmoid and � is either elementwise addition
or multiplication for additive and multiplicative variants of the model,
respectively. U 2 R|E|⇥K , V 2 RD⇥K , and T 2 R|V|⇥K are parameter
matrices for edges, drivers, and nodes respectively. Subscripts select rows,
so there is a K-dimensional real-valued representation vector for each entity.
Note that the T parameters are needed so that the distribution over which
edges are used is a function of the start and end points of the path. The
training objective is then a standard maximum likelihood objective that can
be optimized with gradient ascent.

3.8.2 Data

To test the RandOM model on the SPF problem we create a data set of N
paths describing the routes of D = 3 drivers traversing a square grid graph
with dimensions 3 ⇥ 6. We synthesise this data, by constructing K = 2
dimensional ground truth trait vectors Ugt and Vgt from which we generate
noisy edge costs

w ⇠ TruncGaussian(U>
gtVgt, ⌘

2), (3.23)

where ⌘ sets the scale of the noise. For simplicity, we start by setting
the elements of the trait vectors to be random numbers uniformly drawn
from [0, 1). Later, we will consider a more carefully crafted Ugt designed to
highlight di↵erences between the baseline and RandOM models (see Section
3.8.4).

Using these edge costs we construct an element (d
n

,y
n

) in the data set
by picking a random driver, d

n

2 {1, 2, 3}, and random distinct nodes, s
n

and t
n

on the graph and then constructing the shortest path y

n

from s
n

to t
n

according a sample from w
e,d

n

.

3.8.3 Quantitative Results as a Function of Noise and Data Size

To measure the performance of the learned parameters U and V, we
draw 3 ⇥ 103 samples from the RandOM model to obtain Monte-Carlo
estimates of log(p(y

n

| U,V, d
n

)) for each path (d
n

,y
n

) in the data. We
report the “training score” as the average of these log probabilities over the
training data and similarly compute a “test score” for 200 test paths not seen
during training. If none of the Monte-Carlo samples match y

n

, we remove y
n
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from the evaluation procedure and separately report the proportion of such
failures as the sampling failure rate.

For the baseline model, we compute the equivalent training and test scores
using

p(y
n

| U,V,T, d
n

) =
Y

e2y
n

p(u
e

| d
n

, s
n

, t
n

)
Y

e/2y
n

(1 � p(u
e

| d
n

, s
n

, t
n

)) .

(3.24)

We find that the baseline model assigns a significant probability to configu-
rations of edges which do not correspond to valid paths between s

n

and t
n

.
A simple fix for this is to reject these samples at test time until a valid
path is produced, but this comes at a computational cost. The score of this
rejection-sampled baseline is analytically computed on our small 3 ⇥ 6 node
example by enumerating all valid paths, Y(s

n

, t
n

), between s
n

and t
n

and
then evaluating

1

N

N

X

n=1

[log (p(y
n

| U,V,T, d
n

)) � log(A
n

)] , (3.25)

where

A
n

=
X

y2Y(s
n

,t

n

)

p(y | U,V,T, d
n

). (3.26)

The average value of A
n

is the typical acceptance rate for the rejection
sampler which gives an indication the computational ine�ciency of this
method.

Figure 3.1(a) shows the convergence of the training and test scores during
the training of a RandOM model on a data set of N = 100 paths generated
with noise ⌘ = 0.01. We find that even after the scores have plateaued, the
values of U and V continue to evolve, indicating a flat objective function
near the chosen solution. At convergence, the RandOM model considerably

Model Training Score Test Score Test Acceptance

Baseline (� : multiply) -8.035 -8.655 1.0

+Rejection -0.389 -0.572 0.003

Baseline (� : add) -7.594 -8.369 1.0

+Rejection -0.337 -0.542 0.003

RandOM -0.097(0%) -0.337(3.5%) 1.0

Table 3.1: Quantitative results for data size 100 and noise 0.01. Numbers in
parentheses indicate the sample failure rate.
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Figure 3.1: Performance of the RandOM model on the SPF problem. (a) Con-
vergence of the training and test scores for a RandOM model trained on a data
set with N = 100 and ⌘ = 0.01. (b) Comparison of the RandOM model with the
baseline (� : add) as a function of N for ⌘ 2 {0.1, 0.01}. (c) The decay of the mean
magnitude of the edge costs found by the RandOM model trained on N = 100
paths as the noise in the data set increases

outperforms the baseline models in predicting the shortest path taken by the
drivers. This superiority remains true even with costly rejection sampling
of the baseline model at test time (see table Table 3.1). We find that
surprisingly few paths are required in the training data set for the RandOM
model to achieve a good performance at test time (see Figure 3.1(b)), and
for all parameters (N , ⌘) we tested the RandOM model outperforms the
baselines.

Besides inferring U and V, we can also ask whether the RandOM model
captures the noise in the training data. The RandOM model can represent
variability in paths with a fixed standard deviation in (3.23) by changing
the magnitude of w; smaller (larger) values cause the fixed noise to have less
(more) e↵ect on which paths are chosen. Comparing (3.23) and (3.15), we
expect the mean magnitude, w̄, of the elements of [U>V+b] to scale as ⌘�1.
In Figure 3.1(c) we do not see this precise scaling, but we can correctly
observe the decay of w̄ with increasing ⌘.

Here we have shown that the RandOM model quantitatively outperforms
the baseline in a simple scenario. In the next section we describe a di↵erent
scenario, which is engineered to highlight the key qualitative di↵erence
between the models.

3.8.4 Qualitative Results: Bias Resulting from Ignoring Combinatorial
Structure

In the E step, the RandOM model only samples configurations of edge
costs which are consistent with the shortest path structures observed in
the data. The baseline model, in contrast, treats each edge independently,
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Figure 3.2: Biasing the baseline model. (a) By carefully arranging cheap, expensive
and “impassable” edges (black lines), we implement a scenario resembling two
islands linked by a bridge (grey outline). For the case illustrated the bridge contains
2 edges. We add the avoided decoy edge (D) and create a data set of paths starting
at the circled node. (b) The score (representing the mean log probability oveer the
test set of generating valid paths avoiding the decoy edge) for the RandOM model
and baselines as a function of the bridge length.

and tries to learn to assign a high probability to edges used frequently in the
training data (conditioning on the path start and end nodes). In this section
we present an exaggerated scenario where the baseline’s ignorance of the
combinatorial structure in the data significantly hampers its performance.

We create a square grid graph that consists of three types of edge:

“cheap” edges have feature vectors [1, 0]

“expensive” edges have feature vectors [0, 1]

“impassable” edges have feature vectors [0, 2]

The appropriate qualitative properties of these edges can be obtained by
setting all driver feature vectors to [v

n

, 1], where v
n

⌧ 1. We build two
separate “islands” of cheaply-linked nodes and connect these islands with
impassable edges. Then we allow one path of expensive edges (a “busy
bridge”) to link the islands. Finally, we place a single “decoy” expensive
edge on one of the islands which is never used in the ground truth paths
due to it’s cost (see Figure 3.2(a)). During training we give this carefully
constructed Ugt to the models and only learn the remaining parameters.

If we observe drivers crossing from one island to the other, the baseline
model will interpret the expensive edges on the bridge as being desirable,
since they are used frequently. This bias means that the baseline will
assign a significant probability for using the decoy edge even though this
is inconsistent with the observed paths when correctly interpreting the
constraints of the problem: if a driver is trying to get from one island to the
other, there is no choice but to use the bridge, so the fact that the bridge is
used should be irrelevant to determining the desirability of the decoy edge.
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Instead, one should only look at whether the decoy edge is used or avoided,
and in the data it is always avoided. The RandOM model correctly makes
this inference and learns to avoid the decoy edge.

We generate a set of N = 100 training paths and separate set of 200 test
paths on our engineered graph with edge cost noise ⌘ = 0.01. All paths start
at one end of the decoy edge and finish at randomly chosen points on the
graph.

Here we score the models by how often they produce samples which
correctly avoid the decoy edge when trained on this data. For the Ran-
dOM model, the decoy avoidance score is computed as the average of
Monte Carlo estimates of log (p(y 2 Y

D̄

(s
n

, t
n

) | Ugt,V, d
n

)) over the test
set, where Y

D̄

(s
n

, t
n

) is the set of valid paths between s
n

and t
n

avoiding
the decoy edge. For the baseline model, we again consider the case where
invalid paths are rejected and compute the decoy avoidance score as

1

N

X

n

2

4log

0

@

X

y2Y
D̄

(s
n

,t

n

)

p(y | Ugt,V,T, d
n

)

1

A� log(A
n

)

3

5 . (3.27)

Figure 3.2(b) shows how these scores vary as we increase the length of the
bridge between the islands. As the bridge extends there are more observa-
tions of drivers on expensive edges, which increasingly biases the baseline
towards paths containing the decoy edge. In contrast, the RandOM model
correctly interprets the shortest path structures in the data as indicating
that the decoy edge is undesirable.

3.9 Related Work

There are several areas related to RandOMs. One place where there has
been significant interest in perturbation-based models is in online learning,
and in particular on Follow the Perturbed Leader algorithms (Kalai and
Vempala, 2005). These algorithms have been applied to online learning in
combinatorial settings such as shortest paths (Takimoto and Warmuth, 2003;
Kalai and Vempala, 2005). See Chapter 8 for a detailed discussion of how
perturbations are used and can be understood in the online learning setting.

For the purpose of semi-supervised learning, Blum et al. (2004) construct
random graphs and find min-cuts that agree with labeled data. This lever-
ages the idea of solving random combinatorial optimization problems, but
no learning algorithm is presented. Perturb and MAP (P&M) (Papandreou
and Yuille, 2011) learn structured models that involve a combinatorial op-
timization algorithm within the model definition, focusing on the case of
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using e�cient minimum cut algorithms for image segmentation. The mod-
elling formulation is very similar, although the RandOM formulation seems
to extend more naturally to a broader range of models and optimization
procedures. The main di↵erence comes in the approach to learning. P&M
proposes a moment-matching objective that is easy to optimize and that
works well in practice, but the probabilistic underpinnings are less clear;
i.e., learning is not directly maximizing the likelihood of observed data un-
der the generative model. It is also not clear how, for example, P&M would
be extended to a fully Bayesian treatment. Hazan and Jaakkola (2012) devel-
ops an understanding of how the expected score of the argmax configuration
relates to the partition function of the more traditional Gibbs distribution.
Gane et al. (2014) delves deeper into the correlation structure that results
from using perturbation models with factorized perturbations.

There are other approaches to learning probabilistic structured prediction
models to optimize high order utility functions. As mentioned previously,
Gane et al. (2014) propose an improved Hard EM algorithm for the RandOM
formulation that avoids a degeneracy that is heuristically worked around by
Tarlow et al. (2012). Kim et al. (2015) employ an empirical risk minimization
approach that directly minimizes expected losses in RandOM-like models
using the combinatorial structure of the optimizer in order to do more
e�cient integration. Premachandran et al. (2014) propose a pragmatic
approach of producing a set of diverse M-best proposals with combinatorial
optimization algorithms (Batra et al., 2012), and then re-calibrating a
probabilistic model over the proposals for use within a Bayesian decision
theory-like decision procedure. The downside of this approach is that it is
a two-stage procedure without a single objective function to optimize. For
the shortest paths application, Ratli↵ et al. (2006) present a max-margin
based approach that leverages e�cient search procedure; however, there is
no probabilistic interpretation.

A somewhat di↵erent line of work that shares the basic motivation is vari-
ational autoencoders (Kingma and Welling, 2014), generative adversarial
networks (Goodfellow et al., 2014), and generative moment matching net-
works (Li et al., 2015). The generative adversarial networks and moment
matching networks use di↵erent learning objectives from maximum likeli-
hood. The commonality is that a generative model is built around highly
e�cient deterministic primitives; in these cases, rather than using a com-
binatorial optimization algorithm, these works use neural networks as the
primitive. More precisely, if we let w = (✓,u), where ✓ are neural network pa-
rameters and u is random noise, then we could define F (w) to be the result
of applying a neural network parameterized by ✓ to inputs u. To make most
sense in this analogy, the output should be a structured discrete object, such
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as a sentence. This formulation would apply equally if ✓ were a parameter
or a random quantity as in Bayesian formulations of neural networks. The
challenge with this direction is that in the RandOM formulation, F�1(y) is
typically more structured than such a neural net formulation, which makes
the sampling in the E step more plausibly e↵ective. It is not immediately
obvious, for example, how one would find a w = (✓,u) such that F (w) = y

for a given a y, much less sample from the space of such w’s. However, if
this could be done e↵ectively then an MCEM algorithm analogous to the
RandOM formulation would be a reasonable learning formulation.

3.10 Discussion

This chapter reviewed Randomized Optimum Models (RandOMs) and pre-
sented a new application of RandOMs to the problem of factorizing shortest
paths into edge-specific and driver-specific trait vectors. The key computa-
tional challenge in RandOM formulations is developing a sampler for the
E step of Monte Carlo EM. For this problem, slice sampling is particularly
well-suited, and this chapter gives an additional illustration beyond Tarlow
et al. (2012) about how to construct a slice sampler that takes advantage
of the combinatorial structure in the problem. While it may be appealing
to design simpler models that ignore the combinatorial structure present in
the data (such as the baseline from Section 3.8.1), it is shown in Section
3.8.4 that this can lead to biases in the learned model that cause the wrong
qualitative conclusions to be drawn from the observed data.

Looking forward, we would like to apply a similar formulation to models of
highly structured natural data such as images and text, and to explore opti-
mization routines beyond standard combinatorial optimization algorithms.
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A. Bouchard-Côté and M. I. Jordan. Variational inference over combinatorial
spaces. In Advances in Neural Information Processing Systems, pages 280–288,
2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
algorithms.



3.11 References 71

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

A. Gane, T. Hazan, and T. Jaakkola. Learning with maximum a-posteriori pertur-
bation models. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 247–256, 2014.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

T. Hazan and T. Jaakkola. On the partition function and random maximum a-
posteriori perturbations. arXiv preprint arXiv:1206.6410, 2012.

A. Kalai and S. Vempala. E�cient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

A. Kim, K. Jung, Y. Lim, D. Tarlow, and P. Kohli. Minimizing expected losses in
perturbation models with multidimensional parametric min-cuts. In Proceedings
of Uncertainty in Artificial Intelligence (UAI), 2015.

D. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

R. Kiros, R. Salakhutdinov, and R. Zemel. Multimodal neural language models. In
Proceedings of the 31st International Conference on Machine Learning (ICML-
14), pages 595–603, 2014.

D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. 2009.

A. Krizhevsky, G. E. Hinton, et al. Factored 3-way restricted boltzmann machines
for modeling natural images. In International Conference on Artificial Intelli-
gence and Statistics, pages 621–628, 2010.

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. arXiv
preprint arXiv:1502.02761, 2015.

L. Lovász and S. Vempala. Hit-and-run is fast and fun. 2003.

J. Lubin. A human vision system model for objective image fidelity and target
detectability measurements. In Proc. EUSIPCO, volume 98, pages 1069–1072,
1998.

R. Memisevic and G. Hinton. Unsupervised learning of image transformations. In
Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE, 2007.

V. Movahedi and J. H. Elder. Design and perceptual validation of performance
measures for salient object segmentation. In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on,
pages 49–56. IEEE, 2010.

R. M. Neal. Slice sampling. Annals of Statistics, 31(3):705–767, 2003.

R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies
incremental and other variants. In M. I. Jordan, editor, Learning in Graphical
Models. Kluwer, Dordrecht, Netherlands, 1998.



72 Factorizing Shortest Paths with Randomized Optimum Models

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Migrating code with statisti-
cal machine translation. In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 544–547. ACM, 2014.

S. Nowozin. Optimal decisions from probabilistic models: the intersection-over-
union case. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 548–555. IEEE, 2014.

G. Papandreou and A. Yuille. Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models. In Proceedings of the
IEEE International Conference on Computer Vision, 2011.

P. Pletscher and P. Kohli. Learning low-order models for enforcing high-order
statistics. In AISTATS, 2012.

V. Premachandran, D. Tarlow, and D. Batra. Empirical minimum bayes risk
prediction: How to extract an extra few% performance from vision models
with just three more parameters. In Computer Vision and Pattern Recognition
(CVPR), 2014 IEEE Conference on, pages 1043–1050. IEEE, 2014.

N. Ratli↵, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In
International Conference on Machine Learning, 2006.

J. D. Rennie and N. Srebro. Fast maximum margin matrix factorization for
collaborative prediction. In Proceedings of the 22nd international conference on
Machine learning, pages 713–719. ACM, 2005.

C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science &
Business Media, 2013.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Advances in
neural information processing systems, pages 1257–1264, 2007.

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. The
Journal of Machine Learning Research, 4:773–818, 2003.

D. Tarlow and R. Zemel. Structured output learning with high order loss functions.
In Artificial Intelligence and Statistics (AISTATS), 2012.

D. Tarlow, R. P. Adams, and R. S. Zemel. Randomized optimum models for
structured prediction. In Artificial Intelligence and Statistics (AISTATS), 2012.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances
in Neural Information Processing Systems 16: Proceedings of the 2003 Confer-
ence, volume 16, page 25. MIT Press, 2004.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research (JMLR), 6:1453–1484, 2005.

L. G. Valiant. The complexity of computing the permanent. Theoretical computer
science, 8(2):189–201, 1979.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality as-
sessment: from error visibility to structural similarity. Image Processing, IEEE
Transactions on, 13(4):600–612, 2004.

G. C. Wei and M. A. Tanner. A monte carlo implementation of the em algorithm
and the poor man’s data augmentation algorithms. Journal of the American
statistical Association, 85(411):699–704, 1990.


