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Abstract

Professional-grade software applications are
powerful but complicated—expert users can
achieve impressive results, but novices often
struggle to complete even basic tasks. Photo
editing is a prime example: after loading a
photo, the user is confronted with an array
of cryptic sliders like “clarity”, “temp”, and
“highlights”. An automatically generated
suggestion could help, but there is no single
“correct” edit for a given image—different ex-
perts may make very different aesthetic deci-
sions when faced with the same image, and a
single expert may make different choices de-
pending on the intended use of the image (or
on a whim). We therefore want a system that
can propose multiple diverse, high-quality ed-
its while also learning from and adapting to a
user’s aesthetic preferences. In this work, we
develop a statistical model that meets these
objectives. Our model builds on recent ad-
vances in neural network generative model-
ing and scalable inference, and uses hierarchi-
cal structure to learn editing patterns across
many diverse users. Empirically, we find that
our model outperforms other approaches on
this challenging multimodal prediction task.

1 INTRODUCTION

Many office workers spend most of their working days
using pro-oriented software applications. These appli-
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cations are often powerful, but complicated. This com-
plexity may overwhelm and confuse novice users, and
even expert users may find some tasks time-consuming
and repetitive. We want to use machine learning and
statistical modeling to help users manage this com-
plexity.

Fortunately, modern software applications collect large
amounts of data from users with the aim of providing
them with better guidance and more personalized ex-
periences. A photo-editing application, for example,
could use data about how users edit images to learn
what kinds of adjustments are appropriate for what
images, and could learn to tailor its suggestions to the
aesthetic preferences of individual users. Such sug-
gestions can help both experts and novices: experts
can use them as a starting point, speeding up tedious
parts of the editing process, and novices can quickly
get results they could not have otherwise achieved.

Several models have been proposed for predicting and
personalizing user interaction in different software ap-
plications. These existing models are limited in that
they only propose a single prediction or are not readily
personalized. Multimodal predictions1 are important
in cases where, given an input from the user, there
could be multiple possible suggestions from the appli-
cation. For instance, in photo editing/enhancement,
a user might want to apply different kinds of edits to
the same photo depending on the effect he or she wants
to achieve. A model should therefore be able to rec-
ommend multiple enhancements that cover a diverse
range of styles.

In this paper, we introduce a framework for multi-
modal prediction and personalization in software ap-
plications. We focus on photo-enhancement appli-

1We mean “multimodal” in the statistical sense (i.e.,
coming from a distribution with multiple maxima), rather
than in the human-computer-interaction sense (i.e., having
multiple modes of input or output).
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Figure 1: The main goals of our proposed models: (a) Multimodal photo edits: For a given photo, there may be
multiple valid aesthetic choices that are quite different from one another. (b) User categorization: A synthetic example
where different user clusters tend to prefer different slider values.

cations, though our framework is also applicable to
other domains where multimodal prediction and per-
sonalization is valuable. Fig. 1 demonstrates our high-
level goals: we want to learn to propose diverse, high-
quality edits, and we want to be able to personalize
those proposals based on users’ historical behavior.

Our modeling and inference approach is based on the
variational autoencoder (VAE) (Kingma and Welling,
2013). We propose an extension of the VAE which uses
a hierarchical structure to learn styles across many di-
verse users. We further extend our model to provide
personalized results, learning each user’s personal style
from their historical behavior. We introduce a novel
encoder architecture that, for each user, analyzes each
edit independently, and then combines the results in
a symmetric, exchangeable way that extends to any
number of user edits.

We apply our framework to three different datasets
(collected from novice, semi-expert, and expert users)
of image features and user edits from a photo-
enhancement application and compare its performance
qualitatively and quantitatively to various baselines.
We demonstrate that our model outperforms other ap-
proaches.

2 BACKGROUND AND RELATED
WORK

In this section, we first briefly review the VAE frame-
work that our model is built upon; next, we provide an
overview of the available models for predicting photo
edits and summarize their pros and cons.

2.1 Variational Autoencoder (VAE)

The VAE, introduced by Kingma and Welling (2013),
has been successfully applied to various models with
continuous latent variables and a complicated likeli-
hood function (e.g., a neural network with nonlinear
hidden layers). In these settings, posterior inference is
typically intractable, and even approximate inference

may be prohibitively expensive to run in the inner loop
of a learning algorithm. The VAE allows this difficult
inference to be amortized over many learning updates,
making each learning update cheap even with complex
likelihood models.

As an instance of such models, consider modeling a
set of N i.i.d. observations y = {yn}Nn=1 with the fol-

lowing generative process: zn
iid∼ h and yn ∼ f(gθ(zn)),

where zn is a latent variable generated from a
prior h(z) (e.g., N (0, I )) and the likelihood func-
tion pθ(yn|zn) = f(yn; gθ(zn)) is a simple distribu-
tion f whose parameters gθ(zn) can be a compli-
cated function of zn. For example, pθ(yn|zn) might
be N (yn;µ(zn; θ),Σ(zn; θ)) where the mean and the
covariance depend on zn through a multi-layer per-
ceptron (MLP) richly parameterized by weights and
biases θ.

In the VAE framework, the posterior density pθ(z|y) is
approximated by a recognition network qφ(z|y), which
can take the form of a flexible conditional density
model such as an MLP parameterized by φ. To learn
the parameters of the likelihood function θ and the
recognition network φ, the following lower bound on
the marginal likelihood is maximized:

LVAE(φ, θ) , Eqφ(z|y)[log pθ(y|z)]−KL(qφ(z|y)||p(z)).

To compute a Monte Carlo estimate of the gradient of
this objective with respect to φ, Kingma and Welling
(2013) propose a reparameterization trick for sampling
from qφ(z|y) by first sampling from an auxiliary noise
variable and then applying a differentiable map to
the sampled noise. This yields a differentiable Monte
Carlo estimate of the expectation with respect to φ.
Given the gradients, the parameters are updated by
stochastic gradient ascent.

When the prior on z has more structure, this amor-
tized inference approach can be extended to exploit
that structure (Johnson et al., 2016; Sønderby et al.,
2016). In Section 3.2, we will develop a particularly
natural structure-exploiting amortized variational ap-
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proximation.

2.2 Related Work on the Prediction of Photo
Edits

There are two main categories of models, parametric
and nonparametric, that have been used for prediction
of photo edits:

Parametric methods These methods approximate
a parametric function by minimizing a squared (or a
similar) loss. The loss is typically squared L2 distance
in Lab color space, which more closely approximates
human perception than RGB space (Sharma and Bala,
2002). This loss is reasonable if the goal is to learn
from a set of consistent, relatively conservative edits.
But when applied to a dataset of more diverse edits, a
model that minimizes squared error will tend to pre-
dict the average edit. At best, this will lead to con-
servative predictions; in the worst case, the average of
several good edits may produce a bad result.

Bychkovsky et al. (2011) collect a dataset of 5000 pho-
tos enhanced by 5 different experts; they identify a set
of features and learn to predict the user adjustments
after training on the collected dataset. They apply a
number of regression techniques such as LASSO and
show their proposed adjustments can match the ad-
justments of one of the 5 experts. Their method only
proposes a single adjustment and the personalization
scheme that they suggest requires the user to edit a
set of selected training photos. Yan et al. (2016) use
a deep neural network to learn a mapping from an
input photo to an enhanced one following a particu-
lar style; their results show that the proposed model
is able to capture the nonlinear and complex nature
of this mapping. More recently, Gharbi et al. (2017)
propose a network architecture that is faster in pro-
cessing every image compared to the model by Yan
et al. (2016). Both of these models only propose a
single style of adjustment.

Nonparametric methods The few available non-
parametric methods are typically able to propose mul-
tiple edits or some uncertainty over the range of ad-
justments. Lee et al. (2015) propose a method that
can generate a diverse set of edits for an input pho-
tograph. The authors have a curated set of exemplar
images in various styles. They use an example-based
style-transfer algorithm to transfer the style from an
exemplar image to an input photograph. To choose
the right exemplar image, they do a semantic similar-
ity search using features that they have learned via a
convolutional neural network (CNN). Although their
approach can recommend multiple edits to a photo,
their edits are destructive; that is, the recommended

edits are directly applied to the photo and the user
is not able to further customize those edits. Koyama
et al. (2016) introduce a model for personalizing photo
edits only based on the history of edits by a single
user. The authors use a self-reinforcement procedure
in which after every edit by a user they: 1) update the
distance metric between the user’s past photos, 2) up-
date a feature vector representation of the user’s pho-
tos, and 3) update an enhancement preference model
based on the feature vectors and the user’s enhance-
ment history. This model requires data collection from
a single user and does not benefit from other users’ in-
formation.

2.3 Related Multimodal Prediction Models

Traditional neural networks using mean squared er-
ror (MSE) loss cannot naturally handle multimodal
prediction problems, since MSE is minimized by pre-
dicting the average response. Neal (1992) introduces
stochastic latent variables to the network and pro-
poses training Sigmoid Belief Networks (SBN) with
only binary stochastic variables. However, this model
is difficult to train, and it can only make piecewise-
constant predictions and is therefore not a natural fit
to continuous-response prediction problems.

Bishop (1994) proposes mixture density networks
(MDN), which are more suitable for continuous data.
Instead of using stochastic units, the model directly
outputs the parameters of a Gaussian mixture model.
The complexity of MDNs’ predictive distributions is
limited by the number of mixture components. If the
optimal predictive distribution cannot be well approxi-
mated by a relatively small number of Gaussians, then
an MDN may not be an ideal choice.

Tang and Salakhutdinov (2013) add deterministic hid-
den variables to SBNs in order to model continuous
distributions. The authors showed improvements over
the SBN; nevertheless, training the stochastic units
remained a challenge due to the difficulty of doing ap-
proximate inference on a large number of discrete vari-
ables. Dauphin and Grangier (2015) propose a new
class of stochastic networks called linearizing belief
networks (LBN). LBN combines deterministic units
with stochastic binary units multiplicatively. The
model uses deterministic linear units which act as mul-
tiplicative skip connections and allow the gradient to
flow without diffusion. The empirical results show that
this model can outperform standard SBNs.

3 MODELS

Given the limitations of the available methods for pre-
dicting photo edits (described in Section 2.2), our goal
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is to propose a framework in which we can: 1) rec-
ommend a set of diverse, parametric edits based on a
labeled dataset of photos and their enhancements, 2)
categorize the users based on their style and type of ed-
its they apply, and finally 3) personalize the enhance-
ments based on the user category. We focus on the
photo-editing application in this paper, but the pro-
posed framework is applicable to other domains where
users must make a selection from a large, richly param-
eterized design space where there is no single right an-
swer (for example, many audio processing algorithms
have large numbers of user-tunable parameters).

Our framework is based on VAEs and follows a
mixture-of-experts design (Murphy, 2012, Section
11.2.4). We first introduce a conditional VAE that
can generate diverse set of enhancements to a given
photo. Next, we extend the model to categorize the
users based on their adjustment style. Our model
can provide interpretable clusters of users with similar
style. Furthermore, the model can provide personal-
ized suggestions by first estimating a user’s category
and then suggesting likely enhancements conditioned
on that category.

3.1 Multimodal Prediction with Conditional
Gaussian Mixture VAE (CGM-VAE)

Given a photo, we are interested in predicting a set of
edits. Each photo is represented by a feature vector
xn and its corresponding edits yn are represented by a
vector of slider values (e.g., contrast, exposure, satura-
tion, etc.). We assume that there are L clusters of pos-
sible edits for each image. To generate the sliders yn
for a given image xn, we first sample a cluster assign-
ment sn and a set of latent features zn from its corre-
sponding mixture component N (µsn ,Σsn). Next, con-
ditioned on the image and zn, we sample the slider val-
ues. The overall generative process for the slider values
{yn}Nn=1 conditioned on the input images {xn}Nn=1 is

sn|π iid∼ π, zn|sn,{µ`,Σ`}L`=1 ∼ N (µsn ,Σsn),

yn|xn, zn, θ ∼ N (µ(zn, xn; θ),Σ(zn, xn; θ)), (1)

where µ(zn, xn; θ) and Σ(zn, xn; θ) are flexible para-
metric functions, such as MLPs, of the input im-
age features xn concatenated with the latent fea-
tures zn. Summing over all possible values for the
latent variables sn and zn, the marginal likelihood
p(yn|xn) =

∑
sn

∫
zn
p(yn, sn, zn|xn)dzn yields com-

plex, multimodal densities for the image edits yn.

The posterior p(s, z|x, y) is intractable. We approxi-
mate it with variational recognition models as

pθ(s, z|x, y) ≈ qφs(s|x, y)qφz (z|x, y, s). (2)

Note that this variational distribution does not model

s and z as independent. For qφs(s|x, y), we use an
MLP with a final softmax layer, and for qφz (z|x, y, s),
we use a Gaussian whose mean and covariance are the
output of an MLP that takes s, x, and y as input.
Fig. 2 (parts a and b) outlines the graphical model
structures of the CGM-VAE and its variational distri-
butions qφ.

Given this generative model and variational family,
to perform inference we maximize a variational lower
bound on log pθ(y|x), writing the objective as

L(θ, φ) ,Eqφ(s,z|x,y)[log pθ(y|z, x)]

−KL(qφ(s, z|x, y)||pθ(s, z)).

By marginalizing over the latent cluster assignments
s, the CGM-VAE objective can be optimized using
stochastic gradient methods and the reparameteriza-
tion trick. Marginalizing out the discrete latent vari-
ables is not computationally intensive since s and y
are conditionally independent given z, pθ(s, z) is cheap
to compute relative to pθ(y|x, z), and we use a rel-
atively small number of clusters. However, with a
very large discrete latent space, one could use alternate
approaches such as the Gumbel-Max trick (Maddison
et al., 2016) or REBAR (Tucker et al., 2017).

3.2 Categorization and Personalization

In order to categorize the users based on their adjust-
ment style, we extend the basic CGM-VAE model to
a hierarchical model that clusters users based on the
edits they make. We call this new model personal-
ized VAE or P-VAE for short. While the model in
the previous section considered each image-edit pair
xn, yn in isolation, we now organize the data accord-
ing to U distinct users, using xun to denote the nth
image of user u and yun to denote the corresponding
slider values (see Fig. 2(c)). Nu denotes the number of
photos edited by user u. As before, we assume a GMM
with L components {µ`,Σ`}L`=1 and mixing weights π,
but here these clusters will model differences between
users.

For each user u we sample a cluster index su to in-
dicate the user’s category, then for each photo n ∈
{1, . . . , Nu} we sample the latent attribute vector zun
from the corresponding mixture component:

su|π iid∼ π, zun|su, {(µ`,Σ`)}L`=1
iid∼ N (µsu ,Σsu).

Finally, we use the latent features zun to generate the
vector of suggested slider values yun. As before, we
use a multivariate normal distribution with mean and
variance generated from an MLP parameterized by θ:

yun|xun, zun, θ iid∼ N (µ(zun,xun; θ),Σ(zun, xun; θ)).
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Figure 2: (a) The graphical model for CGM-VAE introduced in Section 3.1 (b) The dependency structure for the
variational approximations qφs(s|x, y) and qφz (z|x, y, s) in CGM-VAE (c) The P-VAE model introduced in Section 3.2)
for categorization and personalization. There are U users and each user u has Nu photos. (d) The dependency structure
in the variational distributions for the P-VAE model. Note that the recognition network for su depends on all the images
and their corresponding slider values of user u.

For inference in the P-VAE model, our goal is to max-
imize the following variational lower bound (VLB) for
a dataset of U users:

L(θ, φ) ,
1

U

∑
u

[ Nu∑
n=1

Eqφ(z,s|x,y)[log pθ(yun|xun, zun)]

−KL(qφ(zun|xun, yun, su)||pθ(zun|su))
]

−KL(qφ(su|{xun, yun}Nun=1)||p(su)).

In the following we define the variational factors and
the recognition networks that we use.

Variational factors For the local variables z and s,
we restrict q(z|s) to be normal and we have q(s) in the
categorical form. As in the CGM-VAE, we marginalize
over cluster assignments at the user level. Fig. 2 (parts
c and d) outlines the graphical model structures of the
P-VAE and its variational distributions qφ.

For the variational factor of the latent mixture com-
ponent index su, we write:

q(su|{xun, yun}Nun=1;φ) ∝

exp

{〈
log π +

∑Nu
n=1 log r(yun, xun;φ), ts(su)

〉}
,

where ts(su) denotes the one-hot vector encoding of
su and r(yun, xun;φ) is the recognition network that
belongs to some parametrized class of functions. That
is, for each user image xun and corresponding set of
slider values yun, the recognition network produces a
potential over the user’s latent mixture component su.
These image-by-image guesses are then combined with
each other and with the prior to produce the inferred
variational factor on su.

This recognition network architecture is
both natural and convenient. It is natu-
ral because a powerful enough r can set
rk(yun, xun;φ) ∝ pθ(yun|xun, su = k), in which

case qφ(su|{xun, yun}Nun=1) ≡ p(su|{xun, yun}Nun=1) and
there is no approximation error. It is convenient
because it analyzes image-edit pairs independently,
and these evidence potentials are combined in a
symmetric, exchangeable way that extends to any
number of user images Nu.

4 EXPERIMENTS

We evaluate our models and several strong baselines on
three datasets. We focus on the photo editing software
Adobe Lightroom. The datasets that we use cover
three different types of users that can be roughly de-
scribed as 1) casual users who do not use the applica-
tion regularly, 2) frequent users who have more famil-
iarity with the application and use it more frequently
3) experts who have more experience in editing pho-
tos than the other two groups. We randomly split all
three datasets into 10% test, 10% validation, and 80%
train set. For more details on the datasets, baselines
and hyperparameter settings, see the supplementary
materials.

Datasets The casual users dataset consists of
345000 images along with the slider values that a user
has applied to the image in Lightroom. There are 3200
users in this dataset. Due to privacy concerns, we only
have access to the extracted features from a CNN ap-
plied to the images. Hence, each image in the dataset
is represented by a 1024-dimensional vector. For the
possible edits to the image, we only focus on 11 basic
sliders in Lightroom. Many common editing tasks boil
down to adjusting these sliders. The 11 basic sliders
have different ranges of values, so we standardize them
to all have a range between −1 and 1 when training
the model.

The frequent users dataset contains 45000 images (in
the form of CNN features) and their corresponding
slider values. There are 230 users in this dataset.
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Table 1: Quantitative results: LL: Predictive log-likelihood for our model CGM-VAE and the three baselines. We
present the best model in terms of the VLB of the validation dataset. The optimal number of mixture components for
all 3 datasets is 3 (choosing from {1, 3, 5, 10}). The predictive log-likelihood is calculated over the test sets from all three
datasets. JSD : Jensen-Shannon divergence between normalized histograms of the true sliders and our model predictions
over the test sets (lower is better). See Fig. 3 for an example of these histograms. LAB : LAB error between the images
retouched by the experts and the images retouched by the model predictions. For each image we generate 3 proposals and
compare that with the images generated by the top 3 active experts in the experts dataset.

Dataset Casual Frequent Expert
Eval.
Metric

LL JSD LL JSD LL JSD LAB

MLP −15.71± 0.21 0.26± 0.04 −2.72± 0.31 0.11± 0.02 −4.28± 0.12 0.22± 0.06 7.81± 0.26

LBN −7.12± 0.15 0.14± 0.02 −3.7± 0.43 0.13± 0.02 −4.89± 0.24 0.17± 0.04 7.44± 0.29

MDN −14.53± 0.25 0.31± 0.06 −1.67± 0.47 0.24± 0.08 −4.91± 0.07 0.28± 0.11 8.41± 0.27

CGM-VAE −6.39± 0.11 0.10± 0.02 −1.42± 0.18 0.08± 0.02 −2.6± 0.15 0.12± 0.05 6.72± 0.27
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Figure 3: Marginal statistics for the prediction of the slid-
ers in the casual users dataset (test set). Due to space
limitations, We only display the top 5 most-used sliders in
the dataset. LBN has limited success compared to CGM-
VAE. MLP mostly concentrates around the mean edit.
The quantitative comparison between different methods in
terms of the distance between normalized histograms is
provided in Table 1.

These users generally apply more changes to their pho-
tos compared to the users in the casual group.

Finally, the expert users dataset (Adobe-MIT5k, col-
lected by Bychkovsky et al. 2011) contains 5000 im-
ages and edits applied to these images by 5 different
experts, for a total of 25000 edits.

We augment this dataset by creating new images af-
ter applying random edits to the original images. To
generate a random edit from a slider, we add uniform
noise from a range of ±10% of the total range of that
slider. Given the augmented set of images, we extract
the “FC7” features of a VGG-16 (Simonyan and Zis-
serman, 2014) pretrained network and use the 4096-
dimensional feature vector as a representation of each
image in the dataset. After augmenting the dataset,
we have 15000 images and 75000 edits in total. Similar
to other datasets, we only focus on the basic sliders in
Adobe Lightroom.

Baselines We compare our model for multimodal
prediction with several models: a multilayer percep-
tron (MLP), mixture density network (MDN), and lin-
earizing belief network (LBN). The MLP is trained to
predict the mean and variance of a multivariate Gaus-
sian distribution; this model will demonstrate the lim-
itations of even a strong model that makes unimodal
predictions. The MDN and LBN, which are specif-
ically designed for multimodal prediction, are other
baselines for predicting multimodal densities. Table 1
summarizes our quantitative results.

We use three different evaluation metrics to compare
the models. The first metric is the predictive log-
likelihood computed over a held-out test set of differ-
ent datasets. Another metric is the Jensen-Shannon
divergence (JSD) between normalized histograms of
marginal statistics of the true sliders and the pre-
dicted sliders. Fig. 3 shows some histograms of these
marginal statistics for the casual users.

Finally, we use the mean squared error in the CIE-
LAB color space between the expert-retouched image
and the model-proposed image. We use the CIE-LAB
color space as it is more perpetually linear compared
to RGB. We only calculate this error for the experts
dataset (test set) since that is the only dataset with
available retouched images. To compute this metric,
we first apply the predicted sliders from the models
to the original image and then convert the generated
RGB image to a LAB image. For reference the dif-
ference between white and black in CIE-LAB is 100
and photos with no adjustments result in an error of
10.2 . Table 1, shows that our model outperforms the
baselines across all these metrics.

Hyperparameters For the CGM-VAE model, we
choose the dimension of the latent variable from {2,
20} and the number of mixture components from the
set {1, 3, 5, 10}. Note that by setting the number of
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Figure 4: Multimodal photo edits: Sample slider predictions from the CGM-VAE model (denoted by P in the figure)
compared to the edits of 3 most active experts in the expert users dataset (denoted by E). The images are selected from
the test subset of the dataset; the 3 samples are selected from a set of 10 proposals from the CGM-VAE model such that
they align with the experts. To show the difference between the model and experts, we apply their sliders to the original
image. For images in larger scale and more examples, refer to the supplementary material.

mixture components to 1, CGM-VAE will reduce to a
conditional VAE. For the remaining hyperparameters
see the supplementary materials. We choose the best
hyperparameter setting based on the VLB of the held-
out dataset. In all three datasets, 3 mixture compo-
nents provide the best VLB for the validation datasets.

Tasks In addition to computing the predictive log-
likelihood and JSD over the held-out test sets for all
three datasets, we consider the following two tasks:

1. Multimodal prediction: We predict different edits
applied to the same image by the users in the
experts dataset. Our goal is to show that CGM-
VAE is able to capture different styles from the
experts.

2. Categorizing the users and adapting the predic-
tions based on users’ categories: We show that
the P-VAE model, by clustering the users, makes
better predictions for each user. We also illustrate
how inferred user clusters differ in terms of edits
they apply to similar images.

4.1 Multimodal Predictions

To show that the model is capable of multimodal pre-
dictions, we propose different edits for a given image
in the test subset of the experts dataset. To generate
these edits, we sample from different cluster compo-
nents of our CGM-VAE model trained on the experts
dataset. For each image we generate 20 different sam-
ples and align these samples to the experts’ sliders.

From the 5 experts in the dataset, 3 propose a more
diverse set of edits compared to the others; hence, we
only align our results to those three to show that the
model can reasonably capture a diverse set of styles.

For each image in the test set, we compare the predic-
tions of MLP, LBN, MDN and the CGM-VAE with the
edits from the 3 experts. In MLP (and also MDN), we
draw 20 samples from the Gaussian (mixture) distribu-
tion with parameters generated from the MLP (MDN).
For the LBN, since the network has stochastic units,
we directly sample 20 times from the network. We
align these samples to the experts’ edits and find the
LAB error between the expert-retouched image and
the model-proposed image.

To report the results, we average across the 3 experts
and across all the test images. The LAB error in
Table 1 indicates that CGM-VAE model outperforms
other baselines in terms of predicting expert edits.
Some sample edit proposals and their corresponding
LAB errors are provided in Fig. 4. This figure shows
that the CGM-VAE model can propose a diverse set of
edits that is reasonably close to those of experts. For
further examples see the supplementary material.

4.2 Categorization and Personalization

Next, we demonstrate how the P-VAE model can lever-
age the knowledge from a user’s previous edits and pro-
pose better future edits. For the users in the test sets
of all three datasets, we use between 0 and 30 image-
slider pairs to estimate the posterior of each user’s
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Figure 5: Predictive log-likelihood for users in the test set of different datasets. For each user in the test set, we compute
the predictive log-likelihood of 20 images, given 0 to 30 images and their corresponding sliders from the same user. 30
sample trajectories and the overall average ± s.e. is shown for casual, frequent and expert users. The figure shows that
knowing more about the user (up to around 10 images) can increase the predictive log-likelihood. The log-likelihood is
normalized by subtracting off the predictive log-likelihood computed given zero images. Note the different y-axis in the
plots. The rightmost plot is provided for comparing the average predictive log-likelihood across datasets.

Figure 6: User categorization: An example of sam-
ple edits for two different user groups which the P-VAE
model has identified (in the experts dataset). For similar
flower photos, users in group I prefer to use low contrast
and vibrance, whereas group II users tend to increase the
exposure and vibrance from their default values. There is
also group III users which do not show any specific prefer-
ence for similar flower photos. For results on group III and
more examples, see the supplementary materials.

cluster membership. We then evaluate the predictive
log-likelihood for 20 other slider values conditioned on
the images and the inferred cluster memberships.

Fig. 5 depicts how adding more image-slider combina-
tions generally improves the predictive log-likelihood.
The log-likelihood is normalized by subtracting off the
predictive log-likelihood computed given zero images.
The effect of adding more images is shown for 30 dif-
ferent sampled users; the overall average for the test
dataset is also shown in the figure. To compare how
various datasets benefit from this model, the average
values from the 3 datasets are overlaid. According to
Fig. 5, the frequent users benefit more than the casual
users and the expert users benefit the most2.

2To apply the P-VAE model to the experts dataset, we
split the image-slider combinations from each of the 5 ex-

To illustrate how the trained P-VAE model proposes
edits for different user groups, we use a set of similar
images in the experts dataset and show the predicted
slider values for those images. Fig. 6 shows how the in-
ferred user groups edit a group of similar images (i.e.,
flowers). This figure provides further evidence that the
model is able to propose a diverse set of edits across
different groups; moreover, it shows each user group
may have a preference over which slider to use. For
more examples see the supplementary material.

5 CONCLUSION

We proposed a framework for multimodal prediction
of photo edits and extend the model to make person-
alized suggestions based on each user’s previous edits.
Our framework outperforms several strong baselines
and demonstrates the benefit of having interpretable
latent structure in VAEs. Although we only applied
our framework to the data from photo editing applica-
tions, it can be applied to other domains where mul-
timodal prediction, categorization and personalization
are essential. Our proposed models could be extended
further by assuming more complicated graphical model
structure such as admixture models instead of the
Gaussian mixture model that we used. Also, the cat-
egories learned by our model can be utilized to gain
insights about the types of the users in the dataset.
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perts into groups of 50 image-sliders and pretend that each
group belongs to a different user. This way we have more
users to train the P-VAE model. However, this means the
same expert may have some image-sliders in both train and
test datasets. The significant advantage gained in the ex-
perts dataset might be due in part to this way of splitting
the experts.
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